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REZUMAT. - Sisteme parabolice cu nonlinearitate discontinud. Se studiazd
rezolvabilitatea problemei Cauchy-Dirichlet pentru sisteme parabolice cu
neliniaritate discontinua.

Let QCR' be a bounded domain with Lipshitz boundary 9Q. We

consider the Cauchy-Dirichlet problem

du
_at_' - Lu=f(Cu in D,=Qx(0T), i=1,.,N ey
U, (x| oo =0, 4, (x0) =9,(x) x€Q, i=1,.N 03]

where L, are second order linear differential operators with real coefficients of

the form

N n a y au_ N V 3
L =YY L la) 2| -Ya'u i=1.N €)
Jo1 kim1 0X, ox, =

and f,: Q% (0,7) xR — R are given functions.

Let
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LAQ, R = {u=(u,.,u) | uy, €LYQ) i=1,.,N}

with the scalar product resp. norm

Wmy = [S e, Wham, = [Slufas
i=1 i=]

ou
Hy(Q,RY) = {u € LYQ,R") a_’eﬁ(g),u,, =0 i=1,.,N, k=1,.n)
x Q

k

with the scalar product resp. norm

(*)amy = 12 E—_‘dx Il o = ![ ) (5)

inl k=1

and H (Q, R") the dual space of Hy(Q, RY).
Besides these we need some other spaces too.
Let X a Banach or Hilbert space. We denote by C([0,77, X) the linear
space of the continuous functions u: [0,7] — X with the norm
leel om0 = ‘Z[L(l)glllu(t)ll X
Analogously if X is a Hilbert space let L%(0,7; X) the set of the measurable
T
functions u:(0,7) —X for which ! ||u(t)|lf(dt <+00. In L*0,73X) we use the
scalar product
r
V) xomn = J (u(t),¥(0))  dt. (6
If X’ is the dual space of X we can similarly define the spaces
CLI0,7], X', L¥0,75X7).
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PARABOLIC SYSTEMS

We shall use the following notations:

v =L*0,T;L2QR") =LADRY), W=L20,T;H, (QR))
w'=L*0,T; H"(QR")), Z=C([0,1), L2(QRY))

(7

If the system Lu = (L,u,...,.L u) is elliptic and weakly closed [2] for allz € (0,7’)
or is strongly elliptic [13], the coefficients a,” satisfy some "sign" conditions,
then for all f, € L*(D,) (here £, does not depend on ) and for allgp, € L*(RQ)
there exists a unique weak solution « € W N Z of the problem (1) - (2) and an
estimate of the form

bull, = CA, + 19l,qu) ®)
is true.

For Cauchy-Dirichlet problem see [1, 6, 8, 14].

If the functions f, depend on u and satisfy Caratheodory type conditions,
then many existence results were obtained using various methods for nonlinear
operatos [6, 8, 10].

In the tehnical applications appear various problems for parabolic systems
with initial and boundary condition which contain discontinuous nonlinearities.
In the study of these problems usually the inclusions differentials are applied.
We use here a simple method propoSed by S. Carl [4].

In this paper we study the solvability of the Cauchy-Dirichlet problem (1)-
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(2) in the case when f, does not depend explicitly on x and ¢ and f, has
discontinuities in u,,...,u,. We assume in the sequel that a,/, a,’ € L*(D,) and

we build the bilinear forms a, : W x W — R

a(uy,) = Jj-l

DEFINITION 1. We say that u € W is a weak solution of (1) - (2) if

oy 0u, 0,
a) L'+ ao”u.vi dxdt )
kl=1 axk 0x X, /

ou / ou- 1 2
u€z, LEW, <6t >EL(OT)f(u)€L(DT)and

T

!<%:.,v>-dt + iz:: a,wy) = f@WV)pp py YVEW (10)

u(x0) = @(x) ae onQ 11)
Here <?3t > stays for the pairing of the functional —— (t) € H'(QR) with
v(-t) € Hy (QRY).

We introduce in L2 Dy, RY) a partially ordering relation. One says thatu < v
ifandonly if v-u € L2 (D, ,R") = {w € L?(0,T;R") | w,(x)20 ae. on D, }.
Let W,=WNL? (D, RY).If u, u€eL*(D,R") and u=<u, we denote

[uul={u€ L*(D,,R") |ususu}.
DEFINITION 2. We call u € W a weak upper solution of (1) - (2) if in

deﬁnition 1 condition (10) is changed into

!(T v> dt + E a,(u,v,) 2 (V) w Vv EW, (12)

i=1

Similarly we define the weak lower solutions changing the sign "z=" n
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(12) into "<".
We assume that
al) The system (L, u,..,.L,u) is strongly elliptic or weakly closed
a2) There exists a positive constant M, such that for all M= M, the

Cauchy-Dirichlet problem

-%z;-—Lu+Mu=g in D, u(x,f)|cq=0, u(x,0)=0¢(x) (13)

has a unique weak solution u for all g€ L*(D,,R") and ¢ € L*(Q,R"). For
the parabolic operator .(% - L + M1 the weak maximum and minimum principle
are true in the sense that: €W, u(x,0)=0 on Q and
T
A, (u,v):= I<%,v>dt+é a(u,v)+M é uyv,dxdt=0 YvEW | (14)
implies u(x,f)=0 a.. on D, ; and from u TE W, u(x,0)=0 on L, and from
A, (u,v)s0 'vE W, results that u(x,)<0 ae. on D,.

Conditions al and o2 are obviously fulfilled if L,u contains only the

function u,
9 i 0y, 1 .
Lu= —lay—|-ayu, i=1,.,N 15
i k,zl-:l axk Kl axll 0 %y ( )

and there exists 1> 0 such that

Y ay(x,NEE=pY E forae (x,)ED,, VEER', i=1,.N. (16)
k=1 k=1
For the maximum and minimum principles see [3, 5, 7, 12].

1) There exists a positive constant M, such that the functions
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F () =f(t)y+Mt, t€R i=1_.N (17)

are monotone increasing for every M=M,, e.g.
F,)sF,@) if v st j=1,.,N

B2) There exist a finite or countable number of surfaces S, CR" for which
we have a representation

S, ={t=(t,..Ty) ERV|7, =y, ), ¥ =(1,.73,,) ER"}, (18
where ¢, €C'R"") and

Yy, @)> v, () VY ERV, Vk
The functions f;: RY —R are continuous on R \ | JS,, f; has one-side limits
k

on S, e.g.

S =1limfE,..E) , f(x) =limfE,..5E)
exist and are finite.

¥) The Cauchy-Dirichlet problem (1) - (2) has a lower solution u and an
upper solution % such that u < u.

LEMMA 1. We assume that the conditions B1), B2) and y) are fulfilled
and M = max{M, ,M,} is a constant. Then

1° For every u € [u,u] the function F(u) = f(u) + Mu belongs t
L*(D,,R").

2°1f u,v€ [u,u] and u =<v then F(u) < F(v).
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3° The set {F(u)|u € [u,ul} is bounded in L*(D,,R").

For the proof see [11].

Let M, = max{M, ,M,}, M = M, a constant, 9 €L?*(Q,R") a fixed
element and w € [u,u] an arbitrary function.

THEOREM 1. If the hypotheses al, o2, B1, B2 and vy are satisfied, then

the Cauchy-Dirichlet problem

2-Lu+Mu=f(w)+Mw on D

ot T (19)
ux,N| o =0, ux,0) = @(x)
has a unique weak solution u€[u,u]. If 9€H, (Q,RY) then u €
WNL20,7,H*(Q,]Y)) and % eV
Proof. By Lemma 1 F(w) = f(w) + Mw € L*(D,,RY). In this case the
unique solvability of (19) results from al) and a2). Let u the weak solution of
(19). The function u is a weak upper solution of (1) - (2) with the same
¢ €L*Q,RY), thus we have

N
A, v) = [ Y Fw)vdcdt vwew

i=1
T

N
A,u,v) = !E F,(u)v,dx dt Vv e W,
i1

u(x,0) =u(x,0) = @(x) ae onQ
For the function # - u we obtain then
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A,G-u,v) = J[F,(Z) - F(w)]v,dxdt 20 YvE W,

T

and (% - u)(x,0) =0 .

Applying the maximum principles the last two formulae give
u-u=z0 ae. on D,. Simillarly we obtain » -u<0, and then yusu=<u.

If ¢ € H (Q,R") then u € L2(0,T, H*(Q,R")) and f’a_’t‘.e V (see
ap.

Let M, > M,. We consider the family of the cauchy-Dirichlet problem
(19).when w describes the interval [u,u], M € [M,,M,] and ¢ is the same
function for all problems. We denote by _,, the weak solution of (19).

THEOREM 2. There exist positive constants C, and C, such that

lu,, M, = C, Vw € [u,u], VM € [M,,M,] (20)

9 B :

’;:M“ s C, Vw € [u,u], VM € [M,,M,] (21)
W/

Proof. F(w) = f(w) + Mw € V so from conditions al) and a2) results
that there exists a constant C > 0 such that for the solutions u,, of the

problem (19) we have

lupdy = CUFMII, + 19l0 ) YW € [u,7] (22)

According to Lemma 1 { [F(w)ll, |w € [u,u]} is bounded, @ is the same for

all M, therefore there exists C, > 0 such that (20) is true. The estimate (21) is
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a consequence of (20) and

T

9 ul -
!( ;:M’V>dr+z al(uwM’vl)+M(uwM’v)V-JE F‘(W)v'dxdt VVEW

i=] i=l

LEMMA 2. Let u',u?,..,u*,.. a bounded monotone sequence
(increasing or decreasing) in W for which I% | k= 1;2,...} is also
bounded. Then (u*),, is weakly convergent in W, strongly convergent in
L*(D,,R) and f<% , v>dt—~'f<%'_:. , v> dt Vv EW (u=limu*).

Proof. The monotonicity of (u*), , means here the monotonicity of the
components of u*=(u,", ..., uy). Then .Lcmma .2 results from [4].

THEOREM 3. Let u,u € W be one lower resp. upper solution of the
Cauchy-Dirichlet problem (1) - (2). Assume that the conditions al), a2), pl),
B2) and v) are ﬁdﬁlled and f*(v) = f(t) (or f(t) =f(x)) for every tEUS,‘.
Then there exists at least one weak solution u € [u,u) of problem (1) - ("2).

Proof. We use a constructive iterative method proposed by S. Carl [4]
solving an infinite sequence of problems. Let mEL’(Q,i”) be the given

function in (2). We chose an M € [M,, M,] and start with the problem

1
U _ LU+ MU' = (U%) + MU® in Q% (0,T)
ot : (23)
U(x,0)|eo =0, U'(x,0) = @(x)
where U°=1u.
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(23) has a unique weak solution U'. Thus we have

N N
AM(U°,v)zJZf,(U°)v,dxdz +M (Y U'vdxat VvEW,

i=] i=1
T

N N
AU, v) = Ejj(U°)v,dxdt+MJEU,°v,dxdt W e W

2 i=1 i=1
The last two formulae give
A,(U-U",v)=0 WeEW,
In the same way we get
A,(u-U',v)s0 VYvEW,
Using the maximum resp. minimum principle we obtain
usU'sU%=1u .
In the same manner the sequence U',U?,..,U*,... is built solving the
Cauchy-Dirichlet problems

auhl
- LUhl + MUlul ’f(Uk) + Muk

UM, 1) g =0, UM(x,0)=0@) x€Q

It is obvious that
usUMsU's .. =sU'sU=u.

= C,. Then

k
By Theorem 2 the sequence (u *),_, is bounded in W, and |%

|4
from Lemma 2 results that (u*)_, is strongly convergent in V and weakly
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convergent in W. U* is the weak solution of (24), thus

T
UM N e 3 a (UM vye [3° U v ded
‘[< = ,v> t+Ea,(U V) an; , v,dxdt

i=1

N N (25)
Y LU v dedieM [ Y Uy, dxdt

i=1 i=1
T T

But according to Lemma 2 U, converges strongly toan U€E L 2(DT ,RY),

k
U*— U weakly in W, 3_EW' and ! aU >dt - J<%Lt/ v>dt

Consequently after passing to limit the left side of (25) is

J<_5_ v>dt + Ea(U,v,) + M EU,v,dxdt (26)

We shall show that the limit of the right side of (25) exists and is equal

to

N N

IIZf,(U) vdedt + M (Y U v, dt
i=1 i=l

U*(x,t) converges decreasing to U(x,?) a.e. on D,, f, is continuous on

R"’\U , f(®)=f(®) on S, thus f(UXx,n)—f,(U(x,1)) ae. on D, and

from Theorem 2 results that
Jf.(U"(x,t)) v, dedt | s WUy W, = C

where C is a conveniently chosen constant. Thus we can pass to limit in the

right side of (25), too, and we obtain
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T

U N N
J(..a.t_,v)dt*rza,(U,v, =[!’Ef‘(U)v,dxdt VWwwew
1 P

which means that U is a weak solution of problem (1) - (2).

If f(r) = f;(x) on S, then starting with u® = u (lower solution of (1) -

k

(2)) we can build a convergent sequence u',u?, ..  u*, .., u, is the solution

of
ou' - Lu*' + Mu*' = fu*) + Mu* in D
ot T 27
ub, g = 0, u*'(x,0) = @(x)

For the solution » = lim u#*! we have then

Ususu .
REMARK 1. For both cases f,x) = ffx) and f,(x) = f;(x) we may
start the iteration method with any U, u® € [u, u]. The sequences built by the
method (24) resp. (27) may converge to an element different from U resp. u
obtained in Theorem 3. We have the following
THEOREM 4. a) If in Theorem 3 f(x) = £7(x) <© € |S,. then the
solution U of the Cauchy-Dirichlet problem (1) - (2) obtained :n the proof of
Theorem 3 is maximal in the sense that Jor all solutions w € [u,u) of problem

(1) - (2) we have w < U.
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b) If /,(x) = f7(x) < € |JS,. then the solution u obtained by algorithm
k
(27) is minimal, that is u < w for any solution w € [u,u].
For the proof see [11].
REMARK 2. using differential inclusions we may weaken the assumptions
about the operator L and functions £, [9], but in this case we can not apply the

simple constructive method offered by the monotone iterative technique.
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