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REZUMAT. - Subordoniri diferentiale pentru functii olomorfe de mai
multe variabile complexe. In aceasti lucrare autorii consideri clase speciale
de subordonari diferentiale precum §i inegalitati cuprinzand derivate partiale
de ordinul intéi pentru transforméan olomorfe definite pe polidiscul unitate din
c.

Abstract. In this paper the authors consider special classes of
subordinations and inequalities involving first partial derivatives of holomorphic

mappings in the unit polidisc of C".

1. Introduction. In several papers [6], [7], [8] S.S. Miller and P.T.
Mocanu considered the analytic functions defined on the unit disc
U={z€C: |z| <1}, which satisfy some differential inequalities or

subordinations. Using the technique of subordination were obtained severeal
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results including inclusion relations, inequalities and some sufficient conditions
for univalence. K. Dobrowolska, P. Liczberski in [3] and also, S. Gong, S.S.
Miller in [4] proved that if an analytic function of several complex variables
defined on a complete circular domain satisfy certain partial differential
inequalities or subordinations, then the function itself must satisfies an
associated inequality or subprdinatioh. P. Liczberski in [5] obtained some results
concerning paﬂial differential inequalities for holomorphic mappings on the open
unit Euclidian ball.

In this paper we obtain a new generalization of Jack-Miller-Mocanu
Lemma and then, using this result we will obtain some properties of

holomorphic mappings defined on the unit polydisc of C".

2. Preliminaries. We let C" denote the space of n complex variables
Zl

z =|..| with the norm |z| = max |z|. By U, and H(U,") we shall
z k<jsn

denote the open polydisc in C"i.e. the set {z € C': ||z| < r}, and the family of
all holomorphic mappings /- U — C, respectively. If Q is a region in C’ and
f is a holomorphic mapping in €, then we denote by Df(z) the Frechct
derivative of fatz € Q. Also, if F is a holomorphic function in €, then by
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AF(2)
0z,
DF(z) we denote the complex vector for all z € Q and D*F(z) the
oF(2)
9z,
. D?F(2) . .
complex matrix — . Let L(C") the space of all linear continuous
Z' Zj I <i, jsn

operators from €’ into C* with the standard operator norm || and let / be the
identity in L(C"), then the restriction D2f(z)(z, *) of thg continuous symmetric
bilinear operator D*z) to z x C" belongs to L(C). If z € €', then z’ will
represent its transpose.

If Q is a region in €’ and f is holomorphic in Q, then we say that f is
biholomorphic mapping in Q if the inverse mapping f ' does exist, is
holomorphic on an open set ¥ C € and (V) = Q.

The main results are based“on the following lemmas.

LEMMA 2.1:[6,7]. Let g be a holomorphic function in the unit disc U
with g(0) = 0 and suppose that at T, € U with |G| = r,, where 0 <r,<1, g
satisfies the following condition

" 18| = max{|g@)|: [T s g}

then there exists a real number m = 1 such that

L8 (%) =mg(g,)

47



G. KOHR, M. KOHR-ILE

and

Re

1 + _C‘L”(E'L) = m.
g'(@,)

LEMMA 2.2 [3,4]. Let g: U — C be a function which is holomorphic
and univalent in U without at most one point T € U, which is a simple pole.
Let f be a holomorphic function in U," with f0) = g(0). Suppose that
fWU") & g(U), then there exists & € 3U, r, € (0,1), 2, € U, and a real

number m = 1 such that f(z,) = &C,) and [Df () (z,) = mGg'(T,).

3. Main results. Now we give the main result.
THEOREM 3.1. Let f € H(U,") with f0) = 0 and fiz) # 0. Let r be a
real number from the open interval (0,1). If for z, € l7r” we have
1/@)I = max{I/@): z € U}, (3.1)
then there exist the real numbers m, s such that s =z m = 1 and the following

relations are satisfied

| DAE) @)
-_—m

® e =t 5i(2,) ’
.. (Zo,)szk(Zo)(Zo)‘

t, R -1),
® If.(z,,%:lf(zou ke f(z) =mm=1)
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where 1, 2 0 for eachkand Y, t,=1;
14 = 1E)

(i) 1Df(z,) ()1 = s1/(z)1.

Proof. Let us denote & = f(z,), then according the condition (3.1) we can
assume that b = 0. Because (€, I'll) is normed space, Hahn Banach Theorem
guarantees that there exists A a continuous linear function from C” into C such
that A(b) = |||l and |A(u)| < llull, for all u € C". But, it is well known that A
can be written under the form A(z) = Y, tkﬂzk, for all z € C", where

b lbl=1 b,

z=|..|,b=|..|wheret, =0 foreachkand Y 1, =1
z b [6,] =160

n n

Now, if we consider the complex function g, defined in the unit disc U

by the formula
8L) = Ao f(Tzlzl"), T E U,
then g satisfy g(0) = 0 and |g(%,)| = max {g(T)|: [T| = |G|}, where g, =
liz,ll. So, from Lemma 2.1 we conclude that there exists a real number m, with
m = 1, such that the condition (i) and (ii) are satisfied. On the other hand, the
first equality can be rewritten as follows
A(DS(2,)(z,) = mlf(z)l,

and using the inequality |A(w)| < |lul, for each u € C’, then we deduce that

there exists a real number s, with s =2 m = 1 and such that the last equality is
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satisfied.
Let us consider M be a positive number and let D be a domain in C*” such

0
Let M,= U M, (M),where M,’(M)={(u, YEC™: ul =M, |v]=sM} and

szl

0
that (0,0)€D, where 0 = [] .

suppose that M, C D. Also let G (D,M) = {h: D — C': h continuous in D,
1A(0,0)I < M, h(uv)l = M for all (u,v) € M,}.

Using thgse classes and from the result of Theorem 3.1, we obtain the
following result:

THEOREM 3.2. Let D C € be a domain, let f € H(U,") with £0) =0
and fz) # 0, z € U,". Suppose that there exists a mapping h € G (D, M) such
that

(/(2),Df(2)(2)) € D
and
Ih(f(2), Df (@) @I < M,
forall z € U". Then | f(2)l <M, z € U,".

P_roof. If we suppose that there exists z, € (7,", re (0,1) with

1@l = M = max {If(2)I: z € U}, then using Theorem 3.1 we conclude

that there exists a real number s, with s = 1 and such that
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IDf(z,) ()l = sll f(z,)I. Hence, if we denote by u=£(z,) andv=Df(z,)(z,),
then (u,v)EM, (M) and because hEG,(D, M), we deduce that||h(u, v)|=M,
but this is a contradiction with the hypothesis. So, | f(z)l < M, forall z € U,",
Remark 3.1. It iS interesting that this result can be used to show that some
first order partial differential equations in € have bounded solution.
COROLLARY 3.1. Let F € H(U,") with F(0) = 0 and |F(z)Il < M, for
all z € U Lgt h € G (D, M) such that (he differential equation
hf(2),Df(2)(2) = F(z), f(0) = 0,
has a holomorphic solution f Then | f(2)| < M, for all z € U,".
DEFINITION 3.1. Let f and g be holomorphic mappings on the unit
polydisc U,”. We say that f'is subordinate to g (written f < g or f(z) < g(2)) if
there exists weEH(U,") with w(0)=0, |w(z)ll < 1, for all zEU,” and f = g O w.
Remark 3.2. If fis subordinate to g, then f0) = g(0) andf(U,") C g(U,").
But, if g is biholomorphic in U,”, then easily we show that f < g if and only if
0) = g(0) and f(U,") € g(U,").
Now applying the result of Theorem 3.1, we obtain the following result.
THEOREM 3.3. Let f € H(U,"), g be a biholomorphic in U", for some

p > 1, with f0) = g(0). Suppose that f is not subordinate to g, then there exist

STAECA FAQY[ 2SS
\Q>\ \\) L 7.[}./
CLUJ-NAPIGA
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an ry, € (0,1), the points z, € U, Izl s r,, ¢, € oU," and m, s be reul

numbers such that s =z m =z 1 and at z = z, the following relations are satisfied

) fz,) = &%), f(U") € gU");
- 5 o DB DG
Il =1 %
gw,) Q
where w,=gT), g'\wy) =| .. |.G=|-| and t, = 0 for each k
g,wy) ok

=1
%l =1

(iii) sIIDEEII'I™ s 1Df(z,) ()l s sIDg(C)I.

Proof. Since f'is not subordinate to g and £0)=g(0) thens(U,") ¢ g(U/,"),
hence we can get r, € (0,1) and the points z,€ U,", z,E (7:' L,E )", with
f(z,) =8(,) and f(U")Cg(U,"). On the other hand, if we consider the
mapping h(z)=(g '0f)(2), zEU,:', then hEH(U-::), h(0)=0 and 1=[lA(z,)l =
max {|h2)l: zE (7,:' }. Using the result of Theorem 3.1 and the properties of the
norm of a linear operator from C”, a straightforward calculation shows our result.

Now, we are able to define t‘he concept of "admissible class" in the ciase

of several variables. This concept is given in the following definition.

DEFINITION 3.2. Let D and L2 be domains from €” and C*, respectively.

52



PARTIAL DIFFERENTIAL SUBORDINATIONS

Let g be a biholomorphic in U,” for some p > 1, §, € aU," and m, t, positive

numbers, for each k, with m = 1, and ) ¢, = 1.
=1

Let us H,"(g) ={(u, ) EC": u=g(C), E tkan ,
ol =1 ?;'5'
8,(w,) %

where w =g, g '(w))=| .. |and T,=|...|. Also, let
g,(wy) o
H(g)= |J H,(g), and suppose that H(g) C Q and (g(0), 0) € L,
mal
respecti%gl;j.'n The admissible class (D, Q,g) consist of those continuous
mappings ¢ : Q x U," — € which satisfy
,(g(0),0;0) € D
and
Y (u,v;z) & D,
for all (u,v) € H(g) and z € U,".
Using this definition and from Theorem 3.3 we obtain the following
result.
THEOREM 3.4. Let f € H(U,"), g be a biholomorphic in U," for some

p > 1 and f(0) = g(0). Suppose that there exists € ,(D,Q,g) such that

(f(2), Df(2) (2)) € Q
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and
V,(f(2),Df(2) (2);2) € D,
for all z € U,". Then f is subordinate to g.

Proof. If we suppose that f is not subordinate to g, then from Theorem
3.3, we can get points z, € U,", § € aU,", and the real numbers ¢, = 0, for
each k, Y t, =1, m =1 suck that at z = z, the conditions (i) and (ii) are

Ical =1
satisfied. Let us u = f(z,) and v = Df(z,)(z,), then it is clear that
(u,v) € H,,;"(g) C H(g), hence using the Definition 3.2 we conclude that
Y (u,v;z,) &€ D, but this is a contradiction with the hypothesis. So, f is
subordinate to g.

Furthermore we suppose that D is a special domain in €, such that there
exists 4 a biholomorphic mapping in U,”, with A(U,") = D. But, it is clear that
this assertion is not true for all domains in C".

We denote the class (D, Q, ) by Y, (h, 2, g) and following the resuit
of Theorem 3.4 we obtain:

COROLLARY 3.3. Let Q be a domain in C”, let gh biholomorphi:
mappings in U," for some p> 1 and let f € H(U,") with f0) = g(0). Suppos:
that there exists a holomorphic mapping §, € y,(h,RQ,8) such thu
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¥,(8(0),0;0) = A0).
If
(f(2), Df(2)(2)) € Q
and
v, (f(2),Df(2)(2);2) < h(z), z € Uy, (3-2)
then f(2) < g(2), z € U,".

Remark 3.3. The biholomorphic mapping g is said to be a dominant of the
differential subordination (3.2) if fz) < g(z) for all f{z) satisfying (3.2). If g is
a dominant of (3.2) and g(z) < g(z) for all dominants g of (3.2), then g is said
to be the best dominant of (3.2).

The following result gives a sufficient condition that g to be the best
dominant of the subordination (3.2).

THEOREM 3.5. Let Q be a domain in €, let g h biholomorphic
mappings in U, for some p > 1 and let f € H(U,") such that f0) = g(0).
Suppose that there exists a holomorphic mapping ¥ € Y, (h,Q, g) such that
y,(8(0),0,0) = h(0) and g is a so{ution of differential equation

¥,(8(2), Dg(2) (2);2) = h(2), z € U)" (3.3)
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If
Y, (f(2), Df(2)(2);2) < h(2),
then f(z) < g(2), z € U," and g is the best dominant.
Proof. Using Corollary 3.3, we conclude that f is subordinate to g and
because g is a solution of differential equation (3.3), then from Remark 3.3

easily-we deduce that g is the best dominant of (3.2).

4. Examples. Finally we obtain some applications which point out the
usefulness of the above results.

If M is a positive number, let g: U,” — C, given by g(z) = Mz, for all
z € U,", then g is biholomorphic in U,” and is easy to show that in this case
the class H,"(g) consist of those (x,v) € C*, with u = MC,, u, = Me “ for
Ik =1, Yy tkvke_'e' = mM, where T, € 0U", 1, 20, 6, €R for all &,

Il =1
Y t,=1andm=1Let H(0) = |J H,(g), with g(z) =Mz, z € U,". Le

(el =1 mz1

U," .
D and Q be domains in C" and C*, re%f)gctlvely and suppose that H,(0) C Q. Let
us ,(0) the class of those continuous mappings ,; Q x U,” = €' such that
Y, (0,0;0) € D and y,(u,v;z) & D, for all (u,v) € H(0)and z € (/,".

An immediate application of Theorem 3.4 is given in the next result:
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THEOREM 4.1. Let f € (U,") with f0) = 0 and suppose that there exists
a mapping ¢, € y,(0) such that
(f(2),Df(2) (2)) € Q
and
Vv, (f(2),Df(2) (2);2) € D, z € U,"
Then | f(2)l <M, z € U,".
The following theorem consists a direct application of Theorem 4.1.
THEOREM 4.2. Let M, N be positive real numbers, let a and b functions
defined in U," which satisfy
o) + mb @] = -
forallm =1andz € U". Let f € H(U,") such that £0) =0 and
la) f(z) + b)Df(2) @I < N, z € U/,
then | f(2)l < M, z € U,".
COROLLARY 4.1. Let o be a function defined in U,”, which satisfies
Re ?:z_)] > —%, 2.€ U, Let f€ H(U,") with f0) = 0 and suppose that
I f(z) + a(z)Df(z) @I <1,ze U,
then | f(l <1,z € U
For a(z) = 0 in Theorem 4.2, we deduce:
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COROLLARY 4.2. Let M, N be positive real numbers, let b: U," — C be
a function which satisfies in U," the following condition |b(z)| = A—}\/J[’ z e U
Let f € H(U,") such that f0) = 0 and

16@z)Df(2) @I < N, z € Uy,
then | f(2l <M, z € U,

The final result is as follows:

THEOREM 4.3. Let f€ H(U,") and let g be a biholomorphic convex inU,"
with f(0) =g(0) =0 and Dg(0)=1. Let B, C be holomorphic functions inlJ,"
and E € HU,"), E(0) =0, which satisfy

Re B(z) = |C(2)-1 | -Re [C(2)-1] +allE(2)|l, z€E U,",
where o is a positive real number, with o. > 4. Suppose that
B(2) Dz)(z) + C@2)f(2) + E(2) < 8(2), zE U, (4.1
then f < g.

The proof is based on the following T.J. Suffridge’s result [10].

LEMMA 4.1. Suppose that h: U" — C' is a convex biholomorphi.
mapping, with h(0) =0, then there exists a nonsingular mapping T € L(C") ur.u
analytic convex univalent functions f,, j € {1, ..., n} of one variahle suc:;

fi(@) z)
that W(z)=T| .. |, forall z=|..|€U,".

'/;I(z") zn
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Proof of Theorem 4.3. Using Lemma 4.1 by easily computation we
deduce that there exists analytic and convex functions g; , j&{1, ..., n} of one

variable such that gj/(O) = 1, j&{l1, ..., n} and

g(z)) 2
gz =| .. |,z=|..|€U.
8.z, z,
. . _ (1+r,)
Since a > 4, there exists r, € (0,1) such that a = and
r

. 0
\2
a>_(l_+'_)_>4,forr0<r<1.

P
If we set f7(z) = f(rz) and g "(z) = g(rz), for ry<r <1, then from (4.1)
we obtain that
B(2)Df"(2)(2) + C'(2)f"(2) + E"(2) < g"(2), z € U’ (4.2)
and ry<r<1.
If we suppose that /" is not subordinate to g” for some r € (r,,1), then
there exists an integer k{1, ..., n} such that £, (U,")& g, (U). Using Lemma 2.2,
we can get points z, € U,”, T, € oU, and a real number m, = 1 such that
K@) = &) and [DE)Y @) = mEel @),
If we denote by Y (2)=B"(2)[Df,(2)) @ +C ") f, @ +E/(2), z €U}

= w"(z")—__gk ©) , henReA, =m, ReB "(z,) +Re{[C (z,)-1] &%)

and A - —
Yot el @) t, 8/ (C)
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E k’(z 0 )
t.&r (©)

+Re

=mReB(z,) +Re[C"(z,) - 1] - |C(z,) - 1| - 4|E/(z))| = 0,

using the inequalfty from the hypothesis and also, from very known relations for
convex univalent functions in the unit disc U :
/
zg, (z
O o> — L seu
8@ | 2 (1+ |z])
Now, using the fact that T, g,,'l(Ck) is the outward normal to the boundary

Re

of the convex domain g, (U), we obtain that y(z,) & g, (U), but this is a
contradiction with (4.2). So, we must have /™ subordinate to g’, for all r, < r <
1, hence letting » — 17, we deduce f subordinate to g.

If n=1 in Theorem 4.3, then this result was obtained by S.S. Miller and
P.T. Mocanu [8].

If C(z) = 1 in Theorem 4.3, we obtain

COROLLARY 4.3. Let f € H(U,") and let g be a biholomorphic convex
in U," with £0) = g(0) = 0 and Dg(0) = L. Let B be holomorphic function inJ,"
and E € H(U,") with E(0) = 0 and suppose that

ReB(z) = a|EQ@)|, z € U/,

where o is a positive number, with o > 4.
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I

B(z) Df(z) (2) + f(2) + E(2) < g(2), z € Uy,

then f< g.

10.
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