
STUDIA UNIV. BABEŞ-BOLYAI, MATHEMATICA, XL, 3, 1995

OPTIMALITY CONDITIONS FOR 
MULTIOBJECTIVE SYMMETRIC CONVEX PROGRAMMING

Ştefan ŢIGAN*

Receiv'd: 3U0.I995
AàiS subject classification: 90CI3. 90C39

REZUM AT. - Condiţii optimale pentru  program area neliniarâ multiobicctiv cu funcţii 
obiectiv peeudo-monotone şi simetric diferenţiahilc. In această lucrare se prezintă condiţii 
de optim de tip Weber pentru o clasă de probleme de programare neliniară multiobiectiv cu 
funcţii pseudo-monotone şi simetric diferenţiabile, precum şi o condiţie de optim şi o teoremă 
de dualitate slabă pentru o problemă de max-min cu funcţii obiectiv simetric pseudo-convexe 
şi restricţii simetric quasiconvexe.

1. Introduction. In this paper for a class of nonlinear multiobjective programming 

problems with symmetrically differentiable pseudo-monotonic objective functions we present 

optimality conditions of Weber type [24].

We establish also a sufficient optimality condition and a weak duality theorem for a 

max-min problem involving symmetric pseudo-convex objective functions and symmetric 

quasi-convex constraints. In this aim, we transpose some of the results of Weir and Mond 

[25] to this symmetric pseudo-convex max-min problem.

2. Symmetric (generalized) convex functions. In this section we will briefly 

summarize some basic definitions and properties of symmetrically differentiable functions. 

Beyond this, some results concerning the so called symmetric pseudo and quasi-concave 

(convex) functions are considered. These classes of functions are generally nonlinear 

nonconcave and nondifferentiable. For further details we refer Minch [12]. Various properties 

of the usual pseudo and quasi-concave (or pseudo and quasi-convex ) differentiable functions 

have been presented by Mangasarian [10], Martos (11), among others. Interesting results was
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obtained in the pseudo-monotonie case, from which we refer a Dantzig-Wolfe decomposition 

method for quasimonotonic programming [15], linearization procedures for pseudomonotonic 

programming [1], [2], [13], [16], optimality and duality properties [9], [19], [20], [22]. Some 

applications of these classes of functions in the max-min programming are given in [17], [18].

Another extensions of the quasi-convex and pseudo-convex functions are given by R. 

Pini and S. Schaible [25], and S. Komlosi [7], by using the generalized monotonicity. Also, 

G. Giorgi, A. Guerraggio [5], G. Giorgi and E. Molho [7] and G. Giorgi and S. Mititelu [6], 

present several observations on generalized invex functions and their relationships with other 

classes of generalized convex functions including the quasi-convex and pseudo-convex 

functions.

In [23], we considered symmetric invex functions and we extended some of the Giorgi 

and Molho [7] results for this more general class of generalized convex functions.

First we recall that for a real function f of one real variable the symmetric derivative 

of f at x is defined as:

f*(x) -  lim (f(x+h) - f(x-h))/ 2h, 
h~>0

provided this limit exists (see, e.g. [12]).

This idea was extended by Minch [12] to functions of several variables.

DEFINITION 2.1 (Minch [12]) Let x be an element in an open domain A in R* and 

let f:A --> R. If there exists a linear operator P(x) from R“ to R, called the symmetric 

derivative of f at x, such that for sufficiently small h in R"

f(x+h)-f(x-h) -  2 P(x) h + u(x,h) i jhi ] ,

where u(x,h) is in R and u(x,h) —> 0 as j |h{ ! —> 0, then f is said to be symmetrically 

differentiable at x. If f has a symmetric derivative at each point x in A , then f is 

symmetrically differentiable on A.
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The notions of symmetric gradient and symmetric derivative are analogous those of 

ordinary gradient and directional derivative. For convenience we shall denote the symmetric 

gradient of a symmetrically differentiable function f at x by P(x).

Minch [12] shown that f  is symmetrically differentiable at x in A , then symmetric 

gradient is of the form:

P(x) -  (D*f(x;e‘).....D*f(x;e»)),

where e‘,...,e" is the natural basis for R“ and D*f(x;h) denote the symmetric derivative of f at 

x (in A) in the direction h (in R"), that is :

f(x+th) - f(x-th)
(2.1) D*f(x;h) -  l i m ------------------ .

t—>0 2 t

Let f:A~>R and g:A-->R be symmetrically differentiable functions at xlA. From 

Definition 2.1, it follows easily, that:

i) f+g is symmetrically differentiable at x and

(2.2) (f+g)*(x) -  P(x) + g’(x);

ii) if f  and g are continuous at x and g(x) is not equal with zero, then f/g is 

symmetrically differentiable at x and

f*(x) g(x) - f(x) g*(x)
(2.3) (f/g)*(x)-------------------------------- .

g2(x)

The following definition generalizes the pseudo-convexity concept.

DEFINITION 2.2 (Minch [12]) Let B be a subset of A and x' a point in A. The 

function f  is said to be symmetrically pseudo-convex or s-pseudo-convex at x' (with respect 

to B) if f  is symmetrically differentiable at x' and for all x in B,

P(x') (x-x') > 0 implies f(x) > f(x').

The function f is s-pseudo-convex on A if it is s-pseudo-convex at each point of A.
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The function f is s-pseudo-concave if -f is s-pseudo-convex .

Analogous to the ordinary notion of differentiable quasi-convexity it can be considered 

the notion of symmetrically quasi-convex function.

DEFINITION 2.3 (Minch [12]) Let B be a subset of A and x' a point in A. The 

function f is said to be symmetrically quasi-convex or s-quasi-convex at x' (with respect to 

B) if f is symmetrically differentiable at x' and for all x in B , 

f(x) < f(x') implies that f*(x') (x-x') < 0.

The function f is s-quasi-convex on A if it is s-quasi-convex at each point of A. Also the 

function f is s-quasi-concave if -f is s-quasi-convex.

Examples:

1. The function f:R—>R defined by 

f(x) = x , for x < 1,

f(x) -  1 , for x I [1,2], 

f(x) * x-1 , for x > 2,

is a s-quasi-convex function but it is not s-pseudo-convex.

2. The function f,:R—>R defined by 

f,(x) -  x , for x < 1,

f,(x) -  0.5 (x+1) , for x i  [1,3], 

f,(x) * x-1 , for x > 3,

is both s-pseudo-convex and s-quasi-convex but it is not pseudo-convex.

3. The function f2:R—>R defined by 

f2(x) * x , for x < 1,

f2(x) -  0 , for x =* 1,

f2(x) = 0.5 (x+1) , for x i ( l ,3 |,
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f2(x) -  X-l , for X > 3,

is s-pseudo-convex but it is not s-quasiconvex.

Next, it will be assumed that s-pseudo-convexity ( or s-quasi-convexity) at a point is 

with respect to the definition domain of the function unless otherwise stated.

DEFINITION 2.4 (Minch [12]) Let B be a subset of A and let x' be a point in A. The 

function f  is said to be s-pseudo-monotonic (s-quasi-monotonic) at x' (with respect to B) if 

is symmetrically differentiable at x' and both s-pseudo-convex and s-pseudo-concave ( s-quasi­

convex and s-quasi-concave).

Since , if f  has an ordinary derivative at x , then f has a symmetric derivative at x and 

they are equal, the following property holds.

PROPOSITION 2.1 (i) If f is pseudo-convex (pseudo-concave) then f is s-pseudo- 

convex (s-pseudo-concave).

(ii) If f  is differentiable quasi-convex (quasi-concave) then f is s-quasi-convex (s- 

quasi-concave).

(iii) If f  is pseudo-monotonic (differentiable quasi-monotonic) then f is s-pseudo- 

monotonic (s-quasi-monotonic).

It is easy to see that the converse assertions of those stated in Proposition 2.1 are not 

true.
n

Next we give some useful properties of the symmetrically quasi and pseudo-convex 

functions.

PROPOSITION 2.2 (Tigan [22]) Let f be a symmetrically differentiable and 

continuous function. If f  is a s-quasi-convex function on a convex subset B of A, then f is 

quasi-convex on B.

PROPOSITION 2.3 If f is s-pseudo-convex and continuous on a convex subset B of
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A, then f is quasi-convex on B.

PROOF. Let x',x" be two points in B such that f(x') < f(x"). Suppose there exists x‘ 

in the interval (x',x") such that f(x*)>f(x"). Then, since f is continuous, there exists 

x°= t'x'+(l-t')x" , 0  < t' < 1, 

such that

f(x°) « max { f(x) j x I [x'X] ).

Therefore, by s-pseudo-convexity of f, because f(x')<f(x°) it follows that 

(x'-xH) f(x°) < 0, 

so, we have

(2.4) (l-t')(x'-x") P(x°) < 0.

Also, the inequality f(x") < f(x°) implies that

(2.5) (x"-x°) P(x°) = - t'(x'-x") P(x°) < 0.

But t.2.4) contradicts (2.5). Tlierefore f is quasi-convex on B.n

CONJECTURE 2.3.1 If f is s-pseudo-convex and continuous on a convex subset B 

of A, then f is s-quasi-convex on B.

3. Multiobjective symmetric pseudo-monotonic programming. Let fk ( k I I -

{l,2,...,p| ) be arbitrary objective functions defined on the open subset D of R" and let X be 

a nonempty subset of D. Then we consider the following multiobjective programming 

problem:

VP. Find

(3.1) Vmax (f,(x),...,fp(x)) 

subject to x I X.

If fk (k I I) are s-pseudomonotonic objective functions then VP is said to be a 

symmetric pseudomonotonic multiobjective program. In (9.1), "Vmax" means that efficient
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points are regarded as optimal solutions to VP.

DEFINITION 3.1 A point x* I X is said to be efficient solution for VP if and only if 

there does not exist another point x'î X such that : 

fk(x') > fk(x*>, for all k 11 and 

f*(x') > fk.(x*> for at least one k' î  I.

The set of all efficient solutions to VP is denoted by E(X).

DEFINITION 3.2 A point x* I X is said to be weakly efficient solution for VP if and 

only if there does not exist another point x'l X such that : 

fk(x') > fk(x*), for all k 1 1.

Clearly, every efficient point for a multiobjective program VP is weakly efficient but 

not conversely

As it is done e.g. by Bitran and Magnanti |3] (see, also [24]) we will relate the 

problem VP under the assumption of symmetric differentiability to a linear approximation at 

a point x°tX of that problem, namely 

P(x°). Find

Vmax ( f,‘(x°) x,..., fp»(x°) ), 

subject to x l X .

The following Theorem 3.1 gives a fully symmetric relation between VP and P(x°). 

A similar result has shown to be true by Weber [24], who, however, restricted to the 

differentiable pseudomonotonic case, and which generalized a result obtained by Tigan [21] 

for the linear fractional multiobjective programming.

THEOREM 3.1 Let fk (k î  I) be s-pseudomonotonic and continuous functions. A point 

x* l  X is efficient for the symmetric pseudomonotonic program VP if and only if x* is 

efficient for P(x*).

PROOF. First, let x’ î  X be efficient for VP. Then, there is no x ' Î X  such that:

115



Şt. ŢIGAN

fk(x') > fk(x’), for all k 1 1 and 

fk(x') > fk(x") for at least one k' 1 1.

Let suppose there is x' I X, such that

(3.2) fk*(x') > fkKx*), for all k 11 and

(3.3) fk5(x') > fk.»(x*) for at least one k* 11.

But since fk (k 11) is s-pseudoconvex and hence it is s-quasi-convex, it results from

(3.2) and (3.3) that

fk(x') > fk(x*), for all k 11 and 

ffc-(x') > fk(x‘) for at least one k' 11.

But this contradicts the fact that x* is an efficient solution for P(x“).

Conversely, let x' î  X be efficient for P(x*). Then there is no x' in X such that

(3.4) fk*(x') > fkKx‘), for all k 11 and

(3.5) fkKx') > fk.s(x’) for at least one k' 11.

By s-pseudo-concavity of fk (k 11), from (3.4) and (3.5), we conclude that there is no 

x' in X such that

fk(x') > fk(x*), for all k 11 and 

fk(x') > fk.(x*) for at least one k* 11, 

i.e. x* is efficient for VP.n

THEOREM 3.2 Let fk (k 11) be s-pseudo-monotonic and continuous functions. A point 

x* t  X is weakly efficient for the symmetric pseudo-monotonic multiobjective program VP 

if and only if x* is weakly efficient for P(x*).

PROOF. The proof of this theorem is similar to that of Theorem 3.1 .n

4. Optimality conditions for symmetric pseudoconvex minimax problems. In this

section, we consider the following minimax problem:
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MR Find

Min Max (f((x).....f,(x)}
x

subject to

g (x )< 0 .

where f|:R“ —>R, (i-l,2,...,r) and g:R" —>R"are symmetric differentiable functions (see, e.g.

[11]).

The principal purpose of this section is to establish a sufficient optimality condition for 

problem MP involving symmetric pseudo-convex objective functions and symmetric 

quasiconvex constraints. We also define a dual problem to MP and establish a weak duality 

theorem. In this aim, we transpose some of the results of Weir and Mond [25] to the 

symmetric pseudo-convex maximin problem MP.

If the general minimax problem MP has a finite optimal value, then it may be 

expressed as following equivalent problem:

EP. Find 

min q 

subject to

f(x) < q *  

g (x )< 0 .

where

f(x) -  (f,(x),...,ft(x))\ g(x) -  (g,(x),...,gB1(x))', 

e -  (1,1,....1) } R* and q t  R.

The main result of this section is:

THEOREM 4.1: Let f( (i*l,2,...,r) be s-pseudoconvex and g s-quasiconvex. If exist 

x* e R \  q* 6 R, v* e R ' , u* e R” , such that :
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(4.1) v* P(x*) + u* g*(x*) -  O,

(4.2) v* ( f(x‘) - q* e ) -  O,

(4.3) u* g(x‘) -  O,

(4.4) v* > O, v* e -  1, u* > O,

where f  ~ (f„...,ff) and e “  (1,1,...,1) I R', then x* is an estimai solution for problem MP. 

In this theorem P denotes the symmetric gradient of the function f.

This theorem generalizes a similar result obtained by Weir and Mond [23] in the case of 

pseudo-convex objective functions and quasiconvex constraints.

PROOF. Suppose that (x\q*) is not optimal solution for EP. Then there exists an 

feasible solution (x,q) for EP with q<q\ Thus 

fi(x) < q < q* , i-1,2,....r 

and hence

v*, f|(x) < v*, q* , i-l,2,...,r

with at least one strict inequality, since by (4.4), v* is not the nul vector. Hence, by (4.2), 

v*i ft(x) < v*t f,(x‘) , i-l,2 ,...,r 

with at least one strict inequality.

Since f, is assumed s-pseudo-convex, then, for each i-l,2 ,...,r and v, > 0, v/, is t- 

pseudo-convex and r

(x-x*)' (v*, P,(x*)) < 0 , i -U ,. . .^  

with at least one strict inequality.

Hence

(x-x*)1 (v*1 P(x*)) < 0.

Then it follows from (4.1) that

(4.5) (x-x*)1 (u*‘ g»(x*)) > 0.

From (4.3), since x is feasible for EP, it results
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u*, g,(x) - u*j gi(x*) < 0, i-l,2,...,m.

But symmetric quasiconvexity of g implies 
(x-x*)' (u*, g,*(x‘)) < 0, i-l,2,...,m

and hence
(x-x*)' (u*' g’(x*)) < 0 

which contradicts (4.5).
Thus (x\q‘) is optimal for EP and x* is optimal for MP.n
In relation to MP, which is equivalent to EP, we consider the following dual program: 

DMP. Find
max z

subject to
(4.6) v, (f|(y)-z) > 0, i-l,2,...,r

(4.7) v* P(y) + u' g*(y) -  0
(4.8) u* g(y) > o
(4.10) v > 0, v* e -  1, u > 0, z

THEOREM 4.2 (Weak Duality) Let (q,x) be a feasible solution for EP and let (y,v,u,z) 
be a feasible solution for DMP. If f is s-pseudo-convex and, for all feasible (q,x,y,v,u,z) the 
function u'g is s-quasiconvex then q > z.

PROOF. Suppose q < z. Then 
f,(x) < v, i-l,2,...,r

and, therefore
v, ( f,(x) - z ) < 0, i-1,2,.../

with at least one strict inequality, since by (4.10), v is not the nul vector. From (4.6)
Vj f,(x) < v, fj(y), i-l,2,...,r 

with at least one strict inequality.
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Since each fj is s-pseudo-convex, it follows 

(x-y)' (Vj P j(y »  < 0, i - lX -  .r 
with at least one strict inequality.

Therefore
(x-y)' (v' P(y)) < 0

and from (4.7)
(4.11) (x-y)' (u‘ g5(y)) > 0.

From feasibility of x for EP and from (4.8) and (4.9) 

u' g(x) - u' g(y) < 0 
and since u'g is s-quasi-convex

(x-y)' (u‘ g’(y)) < 0 
which contradicts (4.11).n

5. Conclusions. For a class of multiobjective programming problems with 

symmetrically differentiable objective functions we present optimality conditions of Weber 

type.
We generalize also some results of Weir and Mond [25], establishing a sufficient 

optimality condition and a weak duality theorem for a max-min problem involving symmetric 
pseudo-convex functions and symmetric quasi-convex constraints.

Finally, we note that some of Weber's results [24] concerning the linearization 
techniques for finding efficient solutions of pseudo-monotonic multiobjective programming 
with linear constraints can be extended to the symmetrically pseudo-monotonic case.
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