
STUDIA UNIV. BABEŞ-BOLYAI, MATHEMAT1CA. XL. 3. 1995

OBJECT-ORIENTED SPECIFICATION
IN SOFTWARE DEVELOPMENT

Simona MOTOGNA’

Received: 2011.1995

AMS subject classification: 68NIS. SSN05

REZUMAT. - Specificarea obiect-orientatâ in dezvoltarea software. Specificarea formală
joacă un rol important Ui dezvoltarea de sisteme informatice largi şi complexe. Pe de altă
parte, programarea orientată obiect s-a dovedit în ultimii ani ca fiind un instrument cu beneficii
d a re In dezvoltarea de produse informatice. Scopul acestei studiu este de a propune o
metodă de specificaţie orientată obiect bazată pe descompunerea, abstractizarea şi
încapsularea sistemului, oferind şi posibilitatea reutilizării.

1. Introduction. We propose an object-oriented specification method which will

support widespread reuse and respects the following principles: a specification, in general,

must be formal, understandable, as well as abstract and implementation-independent. Reuse

of the software components is possible in the same problem or for other similar problems.

The design of a component influences its potential for reuse, but a good design is not

always sufficient. The expression of the design is equally important. The specification of a

component must be achieved such that the implementation and use of that component meet

the following conditions:

- understand easily, but exactly which is the component functionality;

- choose freely among multiple, efficient implementations;

- certify that an implementation satisfies the specification requirements.

"Ilabeş-llolyai" University, Faculty oj Mathematics ami Computer Scienci. A400 Cluj Napoca, Romania

S. M O TO G N A

2. Specification Features. Object-oriented features can be successfully used to

describe abstract entities, and this is exactly what a specification must do - to study the

abstract behavior without any constraints about computer architectures. That's why, object

oriented concepts like data abstraction and encapsulation (components will be considered

classes) will be used in this specification method, as well as inheritance and polymorphism

to support software reuse.

The idea of this method is based on Eiffel [4J. The principal reasons for choosing

Eiffel are:

- it is an object-oriented language, so it offers data abstraction, encapsulation,

inheritance and polymorphism;

- it has a set of assertions which can express the conditions that an operation has to

satisfy.

We shall shortly overview which are these assertions, which in this case will ha

specified in conditions.

- Preconditions will be specified through a requires clause and represent the

conditions under which the operation will function correctly.

- Postconditions will be specified through an ensures clause and represent the

conditions assured after performing the corresponding operation.

If the precondition of an operation holds before an operation is invoked, then the

postconditions will be guaranteed to hold when the operation completes, assuming a correct

implementation of the specification.

In addition we suppose that each parameter of an operation has one of the following

modes: conserves, uses, produces or modifies:

- the conserves mode indicates that the parameter value will remain unchanged during

the operation performing (like the invariant assertion in Eiffel);

82

OBJECT-ORIETED SPECIFICATION

- the uses mode indicates that a parameter value is used by the operation and that the

initial value is not modified;

• the produces mode indicates that the obtained value is relevant or that the parameters

has a value only after performing the operation;

- the modifies mode is used when a parameter has an input value that is modified and

returned by an operation.

These modes are only specification notations and should not be confused with

parameter passing mechanisms. They are included in the specification only to increase the

understandability of it.

The interface of a class describes what the component provides and these are the only

data and operations which are visible to other components.

The reuse of the component in defining other components of the same system is

achieved using inheritance, specified by an inherits clause. Reusing this component in another

system is easy to achieve since the specification of a component is encapsulated.

In order to understand this method of specification, the following example will be

considered:

Specification of a generic Stack

class Stack[Item]
Type content: sequence of Item

I
interface
init, empty, push, pop, top

end;

operation init
param eters:(produces cxontent

I
ensures c - (]

end.operation

operation empty

S. MOTOGNA

param eters:{conserves cxontent
produces b:Bool
)

ensures (b - c - (!)
end_operation

operation push
param eters:(modifies c:content

uses i:Item
I

ensures (not empty) A (c-c+[i])
end.operation

operation pop

param eters:{modifies cxontent
produces i:Item
)

requires (not empty)
ensures (c-c-[i])

end.operation

operation top
parameters:(conserves cxontent

produces i:Item
)

requires (not empty)
ensures (not empty)

end_ope ration

end class -class Stack

This example shows a way of specifying stacks regardless of the elements type. A

stack component must provide operations as creation (init), a test: is the stack empty?

(empty), the classical operations push, pop and top. Instead of defining these operations as

procedures or functions, the parameters and their mode are specified separately, between

braces. Then, the preconditions and postconditions are described.

In general, a specification of a component will be:

84

OBJECT-ORIETED SPECIFICATION

clan <class_name>
inherits <class_name> // the class from each

//inherits
Type ... II user defined types
interface II operations exported
<opl>,<op2>,...

end;

operation <name_op>
parameters:([conserves <var>:<type>,..]

[uses <var>:<type>,..]
[produces <var>:<type>,..]
[modifies <var>:<type>,..]

}
[requires (condl) [A (cond2)...]]
[ensures (condl) [A (cond2)...]]

end.operation
II the same format for each
II operation

end.class

The complete syntactic definition of the language is given in Appendix A.

It's easy to observe that this specification method is not intended to suggest any

implementation method. The purpose of specification is, on the contrary, to give more choices

of implementation.

3. Conclusions. The specification method described above meets the criteria regarding

formal specification, and also offers flexibility and security. The idea of this specification was

found in [2], but lacks in information regarding the operations specification. The model

proposed has added some techniques in order to give a more clear specification for each

operation included in a class.

The purpose of it is to fit between the object-oriented analysis and design and an

object-oriented implementation.

This study represents more an idea which can be applied with fruitful results,

8 5

S. MOTOGNA

especially in reusing software components.

The specification method is implementation independent. Any object-oriented

programming language can be used for implementation, but this is not a requirement: this

kind of specification can be used for any other language without object oriented features,

transforming these class definitions in user defined types and the operations in procedures and

functions. The dezadvantage of such a language is that properties like inheritance,

polymorphism and encapsulation are not available and the programmer has to find a way to

"translate" the given specification using the language facilities.

Appendix A: Syntactic Definition

The syntactic definition is given in extended BNF (Backus-Naur Form). The following
notational conventions are used:

- the keywords are bold;
- <> item enclosed in angle brackets are required
- [] item enclosed in square brackets are optional
- {} items enclosed in braces may be repeated zero or more times
- // everything that follows up to the end of line denotes comment

<clasa_descri.ption> ii« class <class_name> [(<formal_type_parameters>]J
<lnheritance_dec1aration>
Type <type_definitlon>
< i nter face_dec1aration>
«speratlon_deecription>

. end_class

<class_name> it» < identifier»
<formal_type_parameters> ti« <identifier_list>
<identifier_list> i i » <identifier» {, <identicier>>

<inheritance_declaration> ii- inherits <class_list>
<class_list> i i « <class_name> {, <class_name>>

<type_definition> »t« < identifier» i <type>

8 6

OBJECT-ORIETED SPECIFICATION

<type> Ii■ Int«gir | Bool | 8«qu«nc« of <identifier> |...#

<interface_declaration> ti* interface <op_name> {, <op_name>>
end

<0P_name> »*■ <identifior>

<operation_description> is* <operation_itera> {, <operation_item>}
<operation_item> ii- operation <op_name>

paraMttrit {[conservas <var_decl_list>]
[uses <var_decl_list>]
[produces <var_decl_list>]
[Modifies <var_decl_list>]

>
(requires <condition_list>]
(ensures <condition_list>)
end_operation

<var_decl_list> 1 i- <var_list> i <type>
<var_list> «1 - <var_name> {, <var_name>)
<var_name> 1 1 - <identifier>
<condition_list> n * <condition> { A <condition:»}
<condition> 1 i- <bool_exp> | not <bool_exp> |

<bool_exp> V <bool_exp> |<bool_exp> A <bool_exp>
<bool_exp> t 1 - <exp> <rel_operator> <exp> I <op_name>*#
<rel_operator> 1 1 ■ < | > | ■ | <> | <■ | >■
<exp> 1 1 ■ <var_name> | <constant> | <exp> <operator> <exp>
<operator> 1 t■ ♦ | - | * | /
<constant> it* <number>
<number> it* <digit>{<digit>>
<digit> i i* 1 | 2 | 3 | 4 ! 5 | 6 ! 7 | 8 ! 9 | 0

II can be completed with other types, when it is necessary

Note that an operation which returns a boolean value can be considered an txx>lean expression

87

S M O TO G N A

R E F E R E N C E S

(1] L. Cardelli, P. Wegner - On understanding types, data abstraction and polymorphism, Computing
Surveys, 17(4), pp.471-522.

(2] Y Chcon, G. T. Leavens - The LarctySmalltalk Interface Specification Language, ACM Transactions
on Software Engineering and Methodology, July 1994, vol. 3 no.3, pp. 221-253.

(3] B. Meyer - Object-Oriented Software Development, Prentice-Hall, 1988
[41 P. Wegner - Concepts and Paradigms of Object-Oriented Programming, OOPSLA'89 Keynote Talk,

OOPS Messenger, vol. l,no. 1, pp. 7-87, 1990

/

88

