
STUDIA UN IV. B A B E Ş -B O L Y A I, M A T H E M A T IC A . XL. .*. 1995

COLLECTIVE COMMUNICATION
- A SOLUTION FOR RELIABLE NETWORK MANAGEMENT

Marius IUKIAN"

famed: September. 4, IW.S

IMS subject classification: M M It). M Q ltl

Rezumat. • Comunicaţiile de grup - o soluţie pentru o gestiune a reţelelor cu grad ridicat
de siguranţă. Lucrarea de fa|ă prezintă o soluţie pentru construirea unor aplica|ii de
monitorizare $i gestituie a reţelelor de calculatoare care să fie tolerante la erori, cu un grad
ridicat de siguranţă. Pentru aceasta se propune utilizarea comunicaţiilor de grup, intr-o variantă
derivată din modelul folosit de sistemul ISIS.

I. Introduction. The Simple Network Management Protocol (SNMP) helps network

managers locate and correct problems in a TCP/IP network. Managers run a SNMP client on

iheir local workstation and use the client to contact one or more SNMP servers that are

Dinning on remote machines. Implicit in the SNMP architectural model is a collection of

network management stations and network elements. Network management stations execute

management applications which monitor and control network elements. Network elements

lie devices such as hosts, gateways, terminal servers, and the like, which have management

agents responsible for performing the network management functions requested by the

network management stations. The Simple Network Management Protocol (SNMP) is used

to communicate management information between the network management stations and the

agents in the network elements.

All implementations of the SNMP must support the next five operations:

GetRequestPDU
Get Next Request PDU
GetResponsePDU
SetRequestPDU

Fetch a value from a specific variable
Fetch a value without knowing its exact name
Reply to a fetch operation
Store a value in a specific variable

""Babeş-Bolyai" U n iversity , F acu lty o f M ath em atics a n d C o m p u ter S cience, 3 4 0 0 C luj-
Supucu, Romania

M. IUR1AN

TrapPDU Reply triggered by an event.

The first four operations are used to obtain or to set the value of the variables

maintained by the SNMP servers and, in general, are less critical in time. For the Trap

operation the time is very important because this operation is triggered by the occurrence of

some specific event (for example a network card stopped functioning at time T). In fact the

Protocol Data Unit (PDU) for the Trap operation contains a field that indicate the time of the

event's occurrence.

The implementations of SNMP - servers or clients - are based on UDP (User

Datagram Protocol) as a transport protocol. UDP provides connectionless communication

among application programs. This make the protocol simpler and therefore with a greater

performance as speed in comparison with a connection oriented protocol (like TCP -

Transmission Control Protocol). The greatest disadvantage of UDP is that it is unreliable: it

is possible to loose datagrams or these can arrive out of order or just after a great amount

of time.

For these reasons we consider that the first four operations of SNMP can be

implemented very well using UDP but an UDP based implementation of the Trap operation

can be very inefficient and unreliable.

Other problems that should be mentioned here are the crash of the network

management application or of the site which is running this application or the failure of the

underlying network. These problems affect the availability of the network management

service.

Another aspect that we want to mention before trying to evaluate different solutions

is that the configurations of the sites that are being monitored and that are emitting SNMP

Traps are sometimes difficult to modify. For example, a Novell Netware server running a

SNMP server have only the possibility to send traps to a specified IP address, it cannot send

this trap to a group of sites and cannot be modified very easy to do that (that modification

implies the rewriting of the entire SNMP.NLM provided with the system, and this is nota

trivial task).

60

C O L L E C T IV E C O M M U N IC A T IO N

2. Different solutions. The User Datagram Protocol (UDP) is unreliable if we

consider an internetwork environment, but works very well in a local network environment

(that is the principal reason for choosing UDP as transport protocol for the implementation

of NFS - Network File System). This thing suggests the use of a proxy - a site which is in

the same local area network as the monitored server. So, instead of instructing the server to

send traps to a network management station, possibly situated outside the server's LAN, the

server should send all the traps to this special site named proxy. The name was chosen

because there is a great similarity with the proxies used by SNMP for the network objects that

doesn't support directly SNMP (see lStallingsl993)).

Now that the traps sent by the servers arrived at the proxy, it is its responsibility to

deliver the traps to the management station. A first approach can be to use a reliable

transport mechanism (like TCP) to deliver the traps but this solution is still unable to

overcome errors like site crashes and network failures. To achieve availability the network

management station must be replicated. It is still possible to have the proxy responsible for

sending copies of the trap to each of the network management station replica but it is

important to remember that the ordering in time of such traps is very important. Also, the

contents of the group of replicated management stations can vary in time (because of site

crashes or network partitioning).

These are the reasons for choosing a model for collective communications in the

implementations of the proxies and the management stations.

3. The proposed Model. The system is composed by a set of processes P * | p , ,

Pj, p„ I each one having a disjoint memory space. The processes represent the proxies and

the network management stations. It is presumed that this set contains all the processes

needed and it is known in advance. The processes failures follows the model fail-stop, which

means that after the apparition of a failure the process stops all its activity (that means, more

precisely, that in case of a failure a process stops immediately sending or receiving messages).

The network can be partitioned due to link failures, messages can be lost, delayed, duplicated

61

M . IU R IA N

or delivered out of order. The processes are structured in a set of process groups G - { g„

g2, g,n Each process group has a name, a set of component processes and a unique

special process x which is named proxy (so each group is composed by a proxy, a number

of network management stations and all their replicas) :

V & 6 G, & - I p,„ pi2, p,k } c P.

V g, e G, 3! p € gj, p will be denoted proxy(g,)

X = I x e P ! 3g e G s.t x=proxy(g)) c P the set of proxies .

Any process can join or leave a group in any moment. A process take notice of a

change in the contents of a group (to which it belongs) by using the notion of view. A view

of a group is the list of its members. A view-sequence for a group g is an array: view0(g),

view, (g), ..., view„ (g) with the following properties:

view0 (g) » 0,

Vi: view, (g) c P,

view, (g) and view,., (g) differs by exact a process.

A process take notice of a failure of some processes in the same group just by using

this view-sequence. This model suppose that there always exist the possibility of direct

communication between two processes. The transport level can offer two types of

communications: multicast messages and point-to-point messages.

It is defined further the relation in time between different events (like sending and

receiving messages) using the model proposed by L. Lamport in its very important paper

"Time, clocks, and the ordering of events in a distributed system" (see [Lamport 19781).

DEFINITION 1 : The process execution is a partially ordered sequence of events, each

event corresponding to an atomic action. By " -p " it will be denoted the acyclic order

between two events that occur in process p.

The following notations will be used further in this paper:

send,, (in) the event o f sending the message m by the process p to one or more

processes globally designed by dests(m).

62

CO LLECTIVE COM MUNICATION

rcVp (m) the event of receiving the message m by process p.
rcVp (vieWj (g)) the event by which process p take notice about the group g contents

(group g including process p).
deliverp (m) the event of delivering the message m received before by process p.

If a process is a member of multiple groups then it must be indicated also the group

to which a message is sent, received or delivered. The notation deliverp (m,g) means the

delivering of message m to process p as a member of group g.

DEFINITION 2: The transitive closure of the relation "-p" will be denoted and

it will be an ordering relation having the following properties:

If 3 pe P so that e "-p" e' then e - e'.

Vm: sendp(m) - rcvq(m).

Two distinct events a and b are concurrent if and only if we don't have neither a -

bnor b - a. For the messages m and m' the notation m - m' will have the significance of

send(m)- send(m').

Many models represent the relation - using timestamp vectors.

DEFINITION 3: Let VT(pj) be the timestamp vector for a process p ̂ an array of

length n (where n - 1 P j) indexed by the process identifier. The rules for computing the

timestamp vector are the following four:

VT(pj) is initialized with 0 when the process pj starts.

For every event send(m) from pk to p4 the component VT(pk)[i] is incremented by 1.

Every message sent by process p4 in multicast mode will contain the updated

timestamp vector.

When a process pk deliver a message m received from process p t which contains the

timestamp vector VT(m), will modify its own timestamp vector following the

next rule:

V je U , 2, ..., n}: VT(pk)[jl :- max (VT(pk)[jl, VT(m)[jI).

So, the timestamp vector contained in a message counts the number of messages,

calculated relative to each sending process, that causally precedes the message m. The

6 3

M IURIAN

timestamp vectors are compared using the following rules:

VT, ̂ VT2 if and only if Vi: VT, |i| s VT2 (i|

VT, < VT2 if VT, <; VT2 and 3i: VT, [i| < VT2 |i|

It can be easily proven that m - m' if and only if VT(m) < VT(m').

The systems that implement group communication usually support three types of

events ordering:

Causal ordering - which is the order defined before and represented using timestamp

vectors.

Forced ordering - which means that a given sequence of events is occurring in the

same order at every member of the group.

Immediate ordering - which means that every event is occurring in the same order at

every member of the group, relative to every other event in the system.

It is obvious that the second order is stronger than the first and the third order is

stronger than the second (and, of course, the second and the third orders are more difficult

to implement, requiring more message exchanges between the processes).

ISIS system [Birman 19911 supports all the three operations through three types of

protocols: CBCAST, ABCAST and GBCAST and also the model proposed by Ladin-Liskov

[Ladinl992| supports causal, forced and immediate operations. For our purpose it is

sufficient the causal ordering and a protocol very similar to CBCAST protocol. In the fourth

section we will indicate how this solution can be implemented using ISIS system version 2.1.

The protocol implements the following causal order:

(1) V m, m', x e X: sendx(m) - sendx(m') - V p e dests(m) n dests(m'):

deliver(m) -p deliver(m').

The protocol for implementing causal ordering (given in formula (1)) in our case is

described by the following rules:

Before sending the message m, the process Xj e X is incrementing VT(Xj)[i| and

insert the updated timestamp vector in message m.

The process pk * x, (pk £ X) which receives the message m sent by the process Xj

containing the timestamp vector VT(m), delays the deliver of m until the

following condition become true: V j e |I , 2....... n) VT(m)[j| ■

64

COLLECTIVE COMMUNICATION

VT(pk)lj] + l i f j - i and VT(m)U) s VT(pk)lj] otherwise.
When a message m is delivered the timestamp vector VT(pk) is updated according to

the rules mentioned in definition 3.
Theorem: The protocol described before is correct - that means it respect the two

properties of safely (it respect the causal order) and liveness (it will not infinitely postponing
the deliver of any message).

Proqf: Because the processes sending messages are members of X (the set of proxies)
ind the processes receiving messages are from P \ X it result that messages sent by different
proxies are not causally related. That means that for two distinct messages tn, and m2 sent
by a process X| (in this order) and arrived at process pk will have the timestamp vectors in
the following relation: VT(m,) < VT(ma). Applying the second rule of the protocol we will
have that message mt will be delivered only after the deliverance of the message m, and so
the safety is proved.

For the proof of liveness let suppose that it exist a message m sent by the process x,
and that it cannot be delivered to process pk. From the rule 2 of the protocol we will have
one of the following relations true:(2) VT(m)(ll # VTXMU ♦ 1.

(3) 3 J e l l , 2, ...,n) VT(m)|JJ > VT(pk)UI where j * i.
The relation (2) means that m is not the next message to be delivered from x, to pk.

Because the number of messages preceding m is finite results that exist a message m' sent by
Xt, received by pk and not yet delivered which the next message to be delivered (so m'
satisfies the negation of (2)). If m' is also delayed we will obtain a contradiction.

Let consider now the relation (3) as being true. Let n - VT(m)[j). The n-th
transmission from process x, must be a message m' which satisfy m '- m and which was
either not received by pk or it has been received and delayed. We can now repeat this
reasoning for m' and because the number of messages transmitted before m' is finite and the
relation - is acyclic it will result a contradiction.

4. Final remarks. The model proposed solve the raised problem in all its aspects
offering a reliable solution for network management using SNMP Traps.

65

M . IU R IA N

First of all it does not require any modifications on the monitored servers due to the
use of proxies. The groups includes only the proxies and the network
management stations

The replication of the network management stations and the use of a special protocol
for collective communication make the solution reliable and performant.

For implementing the proxies and the network management applications it is possible
to use ISIS the toolkit for distributed programming developed at Cornell University by a team
lead by K. Birman (Birman 1990). The advantages of ISIS are the different types of groups
organizations (peer-to-peer, client-server, diffusion and hierarchical) and the variety of
protocols for group communication (Bhutan1993]. The presented model can be implemented
using the diffusion type of group organization and the CBCAST protocol.

R E P B R B N C B S

(Birman 1990]

|Blrmanl99l]

(Birman 1993]

(Ladinl992]

(Lamport 1971]

(Stallings 1993]

K. BIRMAN, R. COOPER, T. JOSEPH, K. MARZULLO "The ISIS
System M anual", 1990.
K. BIRMAN, A. SCHIPBR, P. STEPHENSON "Lightweight Causal
and Atomic Group M ulticast", ACM TOCS, Vol. 9, No. 3, 1991, pp.
272-315.
K. BIRMAN "The Process Group Approach to Reliable D istributed
Computing", CACM, Vol. 36. No. 12. 1993, pp 36-54.
R. LADIN, B. LISKOV "Prodding High Availability Using Liny
Replication’, ACM TOCS, Vol. 10, No. 4, 1992, pp. 360-392.
L. LAMPORT "Time, Clocks, and the Ordering o f Events in a
Distributed System s", CACM, Vol. 21, No. 7, I97S, pp. 551-565.
W. STALLINOS "SNMP, SNMPvT and CMIP. The practical guide to
Network-M anagement Standards", Prentlce-Hsll, 1993.

66

