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REZUM AT. - O ptim izarea funcţiilor d-convexe pe re(ele. In acest articol sunt introduse şi 
studiate funcţiile d-convexe definite pe spaţiul metric al unei re|ele. Sunt discutate unele 
proprietifi ale acestui tip de funcţii şi o metodă de rezolvare a problemei:
P: f(z) -  min,
unde f: N -  R este o funcţie d-convexi.

1. Introduction. The actual period in the development of metric convexity is 

connected with investigations of discrete structures and of some extreme problems on them 

([2]. [14], [15], [13], [10], [22]). At the same time a considerable part of the results on 

convexity in discrete spaces is concentrated around metric convexity in graphs ([12], [16], 

[18], [20], [21]). It is interesting to mention that notions like convex set and convex function 

in graphs appeared previously in connection with some location problems ([3], [4], [5], [9], 

[23]). Another concept which was the direct result of location problems is the network (see 

[4], [5], [9]). In this article we deal with metric convexity (see [6], [7]) in networks and our 

aim is to define and study convex functions for these kind of spaces. We also give a method 

to solve the minimization of d-convex functions on networks. As we shall see, networks are 

closely related to graph, although they are not discrete metric spaces.

For convenience, we define here networks as metric spaces and some necessary 

notions related to them. Notice that we adopt definitions used in [3], [4], [5], [6], [7], [9].
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We start with a undirected, connected graph G-(W,A), without loops or multiple 

edges. To^each vertex i in W -{l,...,n ) we associate a point Vi from X. Thus yields a finite 

subset V-{v,,...,vB} of X, called the vertex set of the network. We also associate to each edge 

(ij) in A a rectifiable arc [v,,vj] cX, called edge of the network. Let assume that [v,,vj] has the 

positive length ey and denote by U the set of all edges. We define the network N-(V,U) by 

the union /»/ = U [v-,v ]. It is obvious now that N is a geometric image of G, which follows
( i J ) G A  '  1

naturally from an embedding of G in X. Let us suppose that for each [vt,Vj] in U there exists 

a continuous one-one mapping Q^K.Vj]—►[0,1] with Qy(v,)-0, Qy(Vj)-l, Qy([v(,Vj])-[0,l] and 

if x,ye[v,,Vj] such that xe[v,,y) then Qy(x)<Q#(y). It is obvious that to each point x from [v,,Vj] 

corresponds a unique point, namely Qy(x), in [0,1]. Any connected and closed subset of an 

edge bounded by two points x and y of [v„Vj] is called a closed subedge and is denoted by 

[x,y]. If one or both of x,y miss we say that the subedge is open in x (or in y ) or is open and 

we denote this by [x,y) or (x,y] or (x,y), respectively. Using Qy, it is possible to compute the 

length of [x,y] as e([x,y])« |Qij(x)-Qtt(y) |e(j. Particularly we have e ^ v ^D -ey , e([v„x])-Qy(x)ey 

and e([x,vJ])-(l-Q iJ(x))ey.

By analogy with graphs we introduce the notions:

The degree gN(v) of veV in N is the number of closed edges in N which contain v.

A path D(x,y) linking two points x and y in N is a sequence of edges and at most two 

subedges at extremities. If x -y  then the path is called cycle. The length of a  path (cycle) is 

the lengths sum of all its component edges and subedges and will be denoted by e(D(x,y)). 

If a path (cycle) contains only distinct vertices then we call it elementary.

A network N is connected if for any points x,y in N there exists a path D(x,y)cN.

An edge [ v „ V j ]  in U is called isthmus if N\(v„Vj) isn't connected.

Any connected subset N'cN is called subnetwork of N. Any network N'(V')“ (V',U'), 

where V'cV and U' is the set of all edges from U having the extremities in V', is an induced
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network.

A connected network without cycles is called tree.

Let D‘(x,y) be the shortest path between the points x,y in N. We define a distance on 

N as follows: d(x,y)-e(D*(x,y)) for any x,y in N. It is obvious that (N,d) is a metric space. 

The metric segment between the points x.yeN is the set

It is clear that the metric segment <x,y> coincides with the union of all the shortest paths 

between x and y.

A set McN is d-convex ([11]) if for any two points x,y in M we have <x,y>cM. 

By neighborhood of the point xeN with radius r we mean the set

We also use as neighborhoods the sets BM(x,r)-(zeM  |d(x,z)<r] , where xeM and M is some 

connected subset of N.

2. d-Convex Functions Our purpose in this section is to introduce the class of d- 

convex functions defined on the metric space (N,d) of a network N-(V,U). This approach was 

inspired by the papers [12], [17], [20], [21].

Let us consider a connected network N and a real valued function f:N—>R.

Definition 2.1. ([16]) f  is called d-convex on N if for any points x,yçN and any 

ze<x,y> the inequality

One can state the following simple properties of d-convex functions on N. Note that 

this results was already proved for the more general case of metric spaces ([17], theorems 

M ).

<x,y>- [ z eN |d(x,z)+d(z,y)-d(x,y) ].

B (x /)- [zeN|d(x,z)<r].

holds.
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Theorem 22. 1) For any d-convex functions f,g and any real number XzO, the 

functions f+g and A.f are also d-convex.

2) Hie pointwise supremum of any family of d-convex functions is also a d-convex function.

3) The limit of any punctually convergent sequence of d-convex functions is also a d-convex 

function.

4) For any d-convex function f  and any real number X, the sets (zeN|f(z)sX) and 

{zeN|f(z)<X} are d-convex.

It will be needed the following preliminary results, which will establish links between 

d-convex functions and constants. Further on we denote by d-C and I the family of d-convex 

and respectively constant functions on N.

Lemma 2 3 . If CcN is an elementary cycle, then any d-convex function, f:N—► R, is 

constant on C.

Proof. Let us consider the d-convex function f:C—» R. What we have to prove is that 

for any x,y€C, f(x)-f(y). It is easy to see that there exists the points z , , . . . ^ ^ ,  nz5, 

satisfying the properties:

1. Z|6<Zj.|,Zj,1>, i-2,...,n, where z ^ -z , .

2. z ,-x  and there exists k e 2 ,...ji , such that zk-y.

Let us assume that f(zp)-max(f(zi)|i-l,...,n}. From the d-convexity of f  results

/ u p
</( z p.i, -rp
d( zp - 1* z p *I

/ u , . , > +
d{z

d{ V
>1»

I» z p*  i )
/ ( ^ , )  *

z p*I» ^p)
d ( z p-1, z p.i)

+ d( Zp-jt Zp)
à ( z p.v  z pA) f(Zp) = / ( * , ) .

This leads to f(zp)“ f(zp.l)“ f(zp„). By iterating this method we obtain f(z ,)-...-f(zJ, thus 

f(x)-f(y). Since x,yeC were arbitrarily chosen, we conclude that f  is constant on C. ■

The following definition refers to a class of networks, closely connected with d-convex

functions.
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Definition 2.4. A connected network N-(V,U), is called quasitree if there exists at 

least one vertex veV such that g(v)-l.

We mention below some simple properties regarding quasitrees that will be of use

later.

Lemma 2.5. If N“ (V,U) is a quasitree with at least a cycle, then there is a connected 

subnetwork R«(V',U')cN, V'cV, U'cU, maximal with respect to inclusion, such that any 

vertex veV' has gR(v)*2 and all cycles in N are contained in R.

P roof. Let us consider the set

v  = v" u ( u ( A( v, v )  r\v) ) ,
v, v 'O'"

where V" is the set of all vertices in V, which lie on some cycle of N. The subnetwork 

generated by V', R-N(V') is that one we are looking for. Indeed, from the way we define V', 

any veV' has gR(v)^2. Consider now a cycle C in N. Then his vertices will be in V" and 

hence CcN(V')“R. Now, let us prove that R is maximal. We assume that there exists a 

subnetwork R |-(  V\% u[)cN, having the same properties as R and RcR'. Consequently 

|V/\V '|*1. We consider veV ^V  and V|,v2eV'. From the way we define R it follows that 

there exists a path D(v,,v2)cR. On the other hand, since R' is connected, we deduce that there 

exists the paths D(v,v,) and D(v,v2), which are not contained in R.

It follows that the union D(vl,v2)uD(v2,v)uD(v,v1) is a cycle of N not contained in R, 

which is a contradiction. ■

Remark. 1) Further on we refer to R as the root of the quasitree N.

2) If N does not contains any cycle, then any point from N can be viewed as R.

Lemma 2.6. The closure of N\R, cl(N\R) is a not empty forest and each tree T from 

this forest satisfies |T n R |- l  and TnRcV.

Proof. This is the direct consequence of the previous lemma. Indeed cl(N\R) is a not 

necessarily connected network, without cycles, that is, a forest. From the definition of 

quasitrees results that N\R contains at least the vertex v of degree 1 and the edge incident to
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v, and therefore is not empty.

The fact that for any TcN\R holds |T nR |*l is also clear, since |TnR |*2 implies the 

existence of a cycle not included in R. ■

Lemma 2.7. If N*(V,U) is a quasitree and fed-C, then f is constant on the root R.

Proof. Considering Lemma 2.3 we can affirm that f is constant on any cycle in N. 

Consequently if two cycles C„ C2 have at least one common point then f is constant on 

C,uC2. Taking into account the way we define the root of a quasitree and Lemma 2.5 it is 

clear that any two cycles in R either has notempty intersection or there exists a linking path 

between them. Our aim is to show that in this last case any fed-C is constant on the union 

of this two cycles with the linking path. In order to get this consider two cycles Q .Q  and a 

path D(x,y) such that xeC„ y eQ , D(x,y)nC,«{x}, D(x,y)nC2*{y}. If there exists another path 

D(x',y') linking C, and C, then C1uD(x,y)uD(x',y')uC2 will form a sequence of three or more 

cycles that can be ordered such that each two consecutive cycles have notempty intersection.

This provides us that f  is constant on C1uD(x,y)uD(x',y')uC2.

Suppose now that D(x,y) is the unique path between C, and C2. Then D(x,y)-<x,y>. 

Assume that f(z )-a„  for all zeC,, f (z )-a 2, for all zeC2 and a ,> a 2. Then by d-convexity of

f for any zeD(x,y)\{x,y} we have

/ u )  s  ^ 4 / 0 )  * # 4 / < * >  ■ * « , * 4  < « ,</(*. >) d ( x , y ) j y  2 d ( x , y )  d ( x , y ) 1
On the other hand, for r>0, small enough, the set cl(B(x/)) is a d-convex star. Let us consider

z,eC,ncl(B(x,r))\{x}) and z2eD(x,y)ncl(B(x,r))\{x}). Obviously xe<z,,z2> and f(zj)<a,. We 

have

« .= / ( * ) £ d(x> z i)
d ( z i, z 2) / ( z 2)

+ d ( x , z 2) 
d ( z i f z 2) / ( z . )  =

d( x ,  Zi)
d ( z u z 2) f ( z 2) * a ,

d( x ,  z 2) 
d(  z i. z 2)

< a  d(<x ' z ») 
‘ d ( z l t z 2) +ai

d( x ,  z 2) 
d ( z l t z 2) “ •

=av

which is impossible. The same conclusion can be drawn for a ,< a 2- Thus a ^ a ^ f U ) ,  for any

50



OPTIMIZATION OF d-CONVEX FUNCTIONS

zeD(x,y). Thus fed-C is constant on R. ■

Summing up the above lemmas we conclude this part with 

Theorem 2.8. d -O I  if and only if N is a quasitree.

Proof. Consider a quasitree N=(V,U) and denote by R its root. Then any function 

f:N—>R, f(x)“ 0t+d(x,R), with a  eR, is d-convex and obviously not constant. Let us prove that 

f is d-convex. We consider the points x.yeN. The proof falls naturally in three parts.

1) x,yeR. From Lemma 2.7 we have f(z)-a , for any zeR and the inequality in Definition 2.1 

holds.

2) xeR and yeN\R. Then for any ze<x,y> we have

If zeR, then the previous inequality is true. If zeN\R, then because z and y lies on the 

same tree T from cl(N\R) and TnR-{ v) (see Lemma 2.6) we have

d(y,R)*d(y,z)+d(z,R), d(x,z)«d(z,R)+d(v,x).

Therefore

-  d ( z ,  R) £d(x,  z )  =d(z,  R) +d(z,  x ) ,

which is obvious.

3) x,yeN\R. Then for any ze<x,y> we have
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fi Z) * °ULlLf(y)+£UllLf(X) -  
nz) s  d(x,y)ny) d(x,y)TKX)

a+d(z,/D ^^^.(a*d(y,^)*^^.(a^d(x, X»  ~

( o

At this point we have to analyze two cases:

i. <x,y>nR-0 . Then x,y lies on the same tree from cl(N\R). There exists te<x,y> such that 

for all ze<x,y>, d(z,R)-d(z,t)+d(t,R).

Using this relation in (1) we have the sequence of equivalencies

( 1 )  ~  d ( z , t ) + d ( t , K )

! )♦< ((! ,  * ) )  -

~  d ( z
d(*>X)  '

, t ) d ( x ,  y ) d ( x , y )

d(x,y)d(z,t) sd(x,z)d(y,t)+d(y,z)d(x,t) (2)

Now we have to consider the possibilities:

a) t*x(t-y): (2) is equivalent with d(x,y)d(z,t)s d(x,y)d(z,t);

b) ze<x,t>: (2) is equivalent with 2d(x,z)d(y,z) * 0;

c) ze<t,y>: (2) is equivalent with 2d(y,z)d(t,x) z 0.

All these inequalities are true.

ii. <x,y>oR»‘0 . For any ze<x,y> we have

(3 )

Since x and y lie on different trees from cl(N\R), the following relations hold:

If zeR, then d(z,R)-0 and (3) is true.

If z lies on the same tree with x (respectively y) then d(x,R)-d(x,z)+d(z,R)

(d(y,R)=d(y,z)+d(z,R)) and therefore
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( 3 )  - d U . * >  -

-  d(x,z)d(z,R)s d(x,z)(d(y,R)+d(y,z)) -  

~  d(x,z)(d(y,R)+d(y,z)-d(z,R)) * 0, 

which is true, because d(z,y) * d(z,R).

In order to prove the reverse implication we start by assuming that N is not a 

quasitree. Then all vertices in N are of degree at least 2. This allows us to affirm that any 

vertex is either on a cycle or on some path linking two cycles. But any d-convex function is 

constant on this kind of networks (see proof of Lemma 2.7) and hence d -O I. ■

3. Optimization of d-convex functions

In this section we give a method to solve the problem of minimization without 

constraints, of a d-convex not constant function on a network. Many concrete problems are 

of this type. This becomes obvious if we refer to important location problems as the 

determination of centers and medians in networks (see (91). On the other hand there are many 

problems where the constraints either do not influence the solution or are equalities and 

therefore can be reduced to problems or sequences of problems without constraints.

First we have to introduce two basic notions.

Definition 3.1. We said that a function f:N—>R has a global minimum on N at the 

point zeN if for any point yeN we have f(z)sf(y).

Definition 3.2. We said that a function f:N—>R has a local minimum at the point zeN 

if there exists a number r>0 such that f(z)sf(y), for any point yeB(z,r).

Let us recall (see [24]), that a metric space X is called A-convex, where Ac[0,l], if 

for every x,yeX and every AeA, there exists a point zeX such that d(x,z)-A.d(x,y) and 

d(z,y)“ (l-A)d(x,y). The following theorem is proved in [1] (also see [17], theorem 10).

Theorem 3.3. Let the space X be A-convex and k e A. If a d-convex function f:X—.R
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has a local minimum on the d-convex set AcX, this minimum is also global.

It is easily seen that a network is a A-convex space and therefore Theorem 3.3 stands 

also for d-convex functions on networks.

On the other hand, because of Theorem 2.8 we have to consider only the case of 

quasitree, since this type of network is the only one which could be domain for a not constant 

d-convex function. Considering also the fact that any fed-C is constant on the root of a 

quasitree (see Lemma 2.7) we can state the following

Lemma 3.4. If N is a quasitree containing at least one cycle and f:N—>R is d-convex, 

then any point from the root is a global minimum on N.

Proof. If N contains a contains a cycle then the root of N contains this cycle and 

therefore at least three edges. Taking in account Theorem 2.8, we can assume that f (z ) -a , for 

any zeR.

Suppose now that there exists a point xeN\R such that f(x)<a. We denote by T that 

tree from cl(N\R), which contains x. We also consider an interior point z, of some edge 

included in R. If {v} -<x,z>nRncl(N\R) then by the d-convexity of f  we have

« ./• (  v) z ) .  § i - 4 / <  *> - « ^ 4  */< x) <*■v 7 d(x, z) ' d(x, z) ' d(x,z) '  ' d(x,z)
which is impossible. ■

It is easy to see that any minimization of a d-convex function f, on a quasitree, can 

be reduced to the minimization of a function f  on the tree obtained from N by contracting 

the root R into a single point Zr. The function f  has the same values as f  on the points from 

N\R and f(zR)-a -f(z ) , where zeR. Then if S is the set of solutions for f(z)—.min and S' is 

the set of solutions for f(z)—.min then clearly S'uR\{zr}-S. It is also important to observe 

that f  is also d-convex.

Thus we can conclude that it will be enough to find a method to solve the problem 

f(z)—.min, when N is a tree. In order to get such a method we need the following result

Theorem 3.5. If N is a tree, f:N—.R is d-convex and S is the set of solutions for the
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problem

P: f(z)—>min

then S contains either a single point, or S is a subtree of N.

Proof. Let us assume that |S|>1 and consider two points x,yeS. Then 

a -min {f(z) |zeN} *f(x)»f(y).

On the other hand from the d-convexity of f, for any ze<x,y> we have

f(<z) 25 I (x 7 ^ /(;y ) + rf(x !y)/ ( *)ïS*'
It follows that f(z )-a , for any ze<x,y> and thus <x,y>cS. Clearly, for any two points from 

S the metric segment between them is also contained in S. Thus S is a connected d-convex 

set of N, namely a subtree. ■

Remark. If we recall the previous proof it follows that the global minimum points set 

of is d-convex. Thus we recover a basic property of convex functions.

We are now able to give an algorithm to solve P.

Algorithm 3.6.

Step 1. Determine the set VM-min{f(v)|veVl. Let S=o and a=f(v), where veVM. 

Step 2. Determine the set UM- {[v,v'J eU | v eVM} and if | UM | -k , denote the elements

from UM by UM-{u„...,uk).

Step 3. For j - 1 to k perform Step 4.

Step 4. Solve the problem:

Pj: min { / (  TUj( x) ) | x ^ O ,  1 ] } ,

where TMj =Q, ' . Let oij =min { / (  Tu ( x )  ) | 0, 1 ] } and Sj be the set of solutions forP)-
If a>Oj then a:-O j, S: =TUj( Sy) and go to Step 5.

If a-otJ then & =S U TUj( Sy) .

Step 5. End algorithm with a as minimal value of f and S set of solutions for P. 

Remark. 1) The problem Pj from Step 4, in the previous algorithm is a classic
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minimization problem of a convex function mi [0,1]. Indeed for any Ae(0,l) and any

x,ye[0,l] we have

/ < V * * +< l - X ) y ) = / ( z A) d ( z x, z y) f ( z y) , d ( z y, z t )  
<t(zx, z y) / ( * , )  =

( Q,J( z ^ - Q tJ( z x) ) e ( u j ) 
(Q. / ( y ) - Q, J( x ) ) e ( u j ) ) f ( T ( y ) ) ( 0 , / Z y )  -Q, j ( zx) ) e ( u j ) ■f ( T( x)  =

Xx
y - x

= ( l - X ) f ( T Ui( y ) ) + V ( T aj( x ) ) .

Taking also into account the analytic expression of f  °TXj, we can use an appropriate 

technique of one dimensional minimization (see [8], p. 117-130).

2) The complexity of Algorithm 3.6. is 0(nOi), where O, is the complexity of the 

method used to solve Pj.

3) There are situations when the difficulty of the problem will be increased by the 

determination of f  0TU), or this determination is technically impossible. In this case we 

propose the substitution of Step 4 with

Step 4*. Solve the problem:

P/.  min { / (  z) ) \ z Q i j ) .

Let ay=min { / (  z )  \ zEuj )  and S/ be the set of solutions for P/.

If a> a j  then a : - a j( S:-S/ and go to Step 5.

If a-ctj then S:«*SuS/.

For solving P/ we propose the following approximation algorithm.

First we make the assumptions that Uj“ [vj,vi'], f(vj)sf(yl') and e«e(uj)/pt where p is 

fixed in order to obtain a satisfactory diminution of the error e in finding the solution.

Algorithm 3.7.

Step 1. Set x:“ Vj, y:«v/; xold:-x; yold:-y; S /i-o ; z is the middle point of Uj. If
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f(x)-f(y)-f(z) then S/:-Uj and go to Step 6.

Step 2. Repeat:

If f(z)>f(x) then yold:-y and y:-z.

Otherwise, if f(z)<f(x) then perform Step 3 and if f(z)-f(x) 

then perform Step 4.

until ((d(x^cold)se) and (d(y,yold)s€)) or (d(x,y)se).

Go to Step 5.

Step 3. z':-z; z":-z;

Repeat:

Assign the middle point of [x,z'] to z' and the middle point 

of [y,z"] to z",

until (f(z>f(z)) and (f(z")>f(z)). 

xold:-x; x:-z'; yold:-y; y:«z".

Step 4. Assign the middle point of [x,z] to z'.

If f(zO“ f(z) then Sj':-Sj'u[x,z]; xold:-x; x:-z.

Otherwise yold:-y; y:-z.

Step 5. S/:-Sj'u[x,y];

Step 6. Stop algorithm.

Remark. The previous algorithm is a combination of the bisection method and 

Fibonacci's technique.
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