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REZUMAT. - O  abordare axiomatica a asanibloarclor. Scopul principal al asambloarelor 
este de a atribui valori simbolurilor din program. Programul obiect se asamblează din aceste 
valori. Se studiază procesul de atribuire a valorilor, valoarea simbolurilor se generează pe baza 
numărului de treceri şi a gradului de postdcfinitate. Se determina numărul exact al trecerilor 
necesare traducerii programului de asamblare.

Abstract. - The main purpose of assemblers is to assign values to the symbols of an 

assembly program. The target program is assembled from these values. The process of 

assigning values is studied, the values of the symbols are generated depending on the number 

of passes and the degree of postdefinity. The exact number of passes needed to translate an 

assembly program is determined.

1. Introduction. The assembler creates the target program and the list from the 

assembly language program. The assembly language program is a series of symbols, during 

the translation the assembler assigns values to these symbols, and the target program and the 

list are composed from these values.

Emphasizing the common characteristics of assembly languages [ 11, [2], [7] [ 11 ] firstly 

we define a grammar and the assembly language examined is generated by this grammar. The
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symbols of the assembly language programs are classified depending on their positions. The 

syntactic error-free assembly language programs will be given by axioms, and The 

Fundamental Axiom of Assemblers [12] will be stated. In order to study the process of 

assigning values, the values of symbols are defined precisely and the classes of pre- and post- 

definit symbols are determined.

The degree of postdefinity [4] is introduced, and the relation between the value and 

the degree of postdefinity is studied to determine the minimal number of passes needs to 

translate the assembly program [3]. The result of this study is summarized in The 

Fundamental Theorem of Assemblers [5].

2. The assembly language. To study the assembly languages we define a simple 

context-free grammar G, and the assembly language program is a sentence of language Ufi) 

generated by grammar G. We give only the first few productions:

(1) <program> -  <line> £ol |
<program><line> gol

(2) <line> -  <symb> -  <expr> \
<stmt>

(3) <stmt> -  <symb> : <stmt> |
<mnem> | 
<mnem><opnd>

(4) <opnd> -  <expr> |
<opnd> , <expr>

(5) <mnem> -  ADD|MOV|...

From the above productions it is obvious that the unit of the assembly language 

program is the line, and that the line can be decomposed into three fields: label, instruction 

and operand field. The instruction field contains either a directive (e.g.=) or a mnemonic (e.g. 

ADD, MOV).

We complete the line w;th the serial number field. Thus, the k-th line of the assembly
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language program has the following structure:

(0) (1)
label

(2)
statement

J3)_____

operand

With the production (3), it is possible to give labels in the program, and it can be seen 

that it is possible to have more labels for one mnemonic: 

symbi : symb2 :... symbm : mnemonic operand gol

The assembler assigns the actual value of the current location counter to the label. Marking

this counter by $, we transform the above line into the following form:

symbi -  $ eol
symb2 "  $ eol

symbm -  $ eol
mnemonic operand eol

After the transformation the assembly language program P consists of rows of the next types:

Let a(k), m(k) and u(k) denote the set of symbols in the field (1), field (2) and field (3) of the 

i-th line, respectively, and let \P\ -  max k. Now we define the set of symbols:

DEFINITION 2.1 LetA(0) -  {$), A(k) -  A(k-\) ua(Jfc) (1 s k <; \P\ \andA  ->4(|l*|).

Set A is called the parameter set o f program P. 

We note that $ $ a(k) (1 z k z |P |).
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Those a € A parameters which appear in the label fields in the line

(0) (1) (2) (3)

are called labels, and let us denote by b(k) the label of the Jt-th line: 

b(k) -  (a(*) I m(k) -  {-} A u(k) -  {$)»

The set of labels is the following:

DEFINITION 2.2 Let B(0) -  0, fl(k) -  u  b(k) (l s k s. |P |), and B -  B(|P|). 

Set B is called the label set o f program P.

In the assembly language program the labels need to be unique, that is a label cannot 

appear in other label fields of the program. This is stated by the following axiom.

Axiom  I b(k) (  B(k-l), 1 s k s |P |

If a label does not satisfy this axiom, thon the assembler reports a "multiple defined 

symbol" error on every occurence of this label.

In the instruction fields there are directives or mnemonics:

DEFINITION 2.3 Let M(0) -  0 , M(k) -  M(k-1) u m(k) (1 * k i  |P |), and M -  

A/(|P|). Set M is called the instruction symbol set of program P.

Into the instruction field only an element of a previously given set M  can be written. 

The set is called the instruction set o f the assembly language. The requirements for this 

set are stated by the following axioms:

Axiom  II M 

Axiom  III A n  M  -  0

The symbols found in the operand fields are given in the following way: 

DEFINITION 2.4 Let 1/(0) -  0 , U(k) -  U(k-1} u u(k) (1 s .k i. |P |), and U -  l/(|P|).

Set U is called the operand symbol set of the program P.
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The u(k) consists constants and operators, too, denote uc(k) and ujik) the set of 

constants and the set of operators in the Jt-th line, and let Ua U0  denote the set of constants 

and the set of operators of program P.

Similarly to the instructions, the elements of Ua can only be elements of a previously 

given set €, and the restrictions for these sets are stated by the following axioms:

Axiom IV U0  c  ff

Axiom \ U o n A m 0 A U o n M m e>, and 

Uc n A m 0 / \ Uc n M m 0

The non-operator and non-constant symbols found in the operand field must be defined 

in the label field, that is if

UA -  IA(1/C u  U0),

then every element of UA must be a parameter. This is stated in the fundamental axiom of 

assemblers.

Axiom VI (The Fundamental Axiom of Assemblers) Ua C A

Let uA(k) -  u(k)\(U(j(k) u  u^Jk)) (1 i  k s |P|). If for a symbol s e uA(k) the above 

axiom does not hold, then the assembler in the k-th line gives an "unknown symbol" error 

message for the ymbol s.

3. The values of symbols. We will now examine what kind of values the assembler 

assigns to the elements of the previously defined sets of symbols. Let val(s,k) denote the 

value of symbol s  in line k. If the assembler cannot determine this value, then let it be 

val(s,k) -  e.

Axiom VII For every symbol s e Uc u M, 1 s k i  \P\the inequality val(?,&) * e, and 

for every l i  k, l a \P\ the equality val(s,Jt) -  val(s,/) is valid.
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The above axiom states that the values of constants are determined unambiguously, 

and these values are independent from the lines. On the basis of the axiom the same is true 

for the mnemonic, that is the machine code assigned to the statement is independent from the 

program.

We only have to deal with the elements of sets A and Uq. As $ e A, we examine the 

value of this symbol first.

DEFINITION 3.1 Let val($,l) -  0, and for k * 2 let 

val($,*) -  val($,*-l) + f(m(k-l),u(k-l)),

where fljn,u) is a non-negative integer function which gives the length o f the machine code, 

its value for every m(k-l) c  M and for every «(Jfc-l) c  U is previously given, even in the case 

o f s e  u(k-1), val(s,Jt-l) ■ e.

According to the definition the value of the current location counter is zero in the first 

line, and the value of the increase is determined by the mnemonic and the symbols of the 

operand field, and not by the values of these symbols.

Let A ' = A  I $ 1, L/a = £/,\ ( $ ) , and let

UA(k)
Ujfk)  if $ € Ujfk)
u ^ k )  \ {$ I if $ e  uj,  k)

In the following we deal with the symbols of A'. We can see that if s  e  A'  is in the 

field (1), then in the operand field (3) only one expression can appear:

(0) (1) (2) (3) ______

rz expr

The directive -  means the assigning value, and for this reason we first give the value 

of the expresion.

We say that for an expression expr the inequality val(expr,k) * e is valid if
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u'jik) = 0 or if for all s €  ua( k)  the value of symbol s is known. Then 

val ( expr , k) = * val ( s , k ) ,

where 5 €  u £ k )  u  Uff k)  and x means the execution of operations in uQ(k).

If in the expression expr the uÂ( k)  = 0, then val(expr,k) * e, as the expression at 

the very most can only contain symbol $, constants and operators. The value of $ according 

to Definition 3.1, the values of constants according to the Axiom VII are known.

A symbol s  can occur in the label and operand field of the same line:

(0)

E
( 1) (2) (3)

s + 1

and from this it can be seen that the value of the ymbol s  in the two fields will not be the 

same. Let val ( s ,  k ^ ^ )  denote the value of symbol s in field j  of the Jfc-th line.

If s € a(k), then let val ( s ,  - val ( expr , k ) .  We note if uh(k)  = 0,

then val ( s ,  k ^ )  # * .  If val(expr,k) -  e, then val(s,ltl>) -  e.

As a symbol can appear in the label fields of different lines, we define the scope of 

symbols.

DEFINITION 3 .2 ( fs  s E a ( k 2) ........... s a m / l s i . c * ,

<... < km & |P |, then let the scope o f symbol s (s e a(k,)) be

B is ,  k j)  = { ( k ,  + 1 ) (3), ( k j  *2 ) (3), . . . ,  */»,>}. i f  i * m, and

* s , k j  = {1(5), 2<3>, . . . .  k f 3\  ( k a+l)<3>.......... | ^ r > ) .

We note that for s e b(k) according to Axiom I 

B is ,  k )  = {1<«, 2<J>, . . . .  | />p>).

When we assign values to symbols, a very important property is the pre and 

postdefinity of symbols.

DEFINITION 3.3 I f s e a(k) and P* e E(s,k), then symbol s in field P  in the case of
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k < l is said to be predefinite, in the case o f k z l is said to be postdefinite symbol.

If s E a ( k t) ,  s E a ( k 2) ,  s E a ( k m) ,  then symbol s  in fields

/  (3), 2<J), . . . , k { 3) is a postdefinite, and in fields ( k t + 1 ) (3), . . . ,  |P|<3) is a 

postdefinite, and in fields (Jfc,+1)(3), . . . ,  |P p )  is a predefinite symbol. Similarly, if label 

s e b(k), then label s in fields 1(3), 2 (3), . . . ,  Jfc(3) is a postdefinite, and in fields 

( k* 1 ) ( 3), . . . , |/*|(3) is a predefinite symbol.

From the last example, in which symbol 5 is in the label and the operand field, it is 

obvious that the value of the symbol s is depending on not only the fields but the passes, too. 

We extend the definition of values for passes, let val ( ' ) ( * ,  k V ))  denote the value of 

symbol s at pass i, in field j  of the k-th line of the program.

For symbol $ let

val (/) ( $ , Ar(3) ) =  val {%, k) ( 1 £  £  £  |/*|) 

where val($Jc) is the value given in Definition 3.1. At the begining of translation the value 

of symbol s e A' is unknown, that is for all s e A  

val ( s , 1(3) ) = e ,

and symbol s  can only get value in such a first line, where in the label field appears: 

DEFINITION 3.4 I f symbol s e a(k) and i * 1, then,

val (i) ( s , A:(,) )

e i f  3 /  E u j, k ) ,
and val ( i) ( . r .  Ar<3)) = «

* val ( I ) ( j , A:<3)) otherwise
U0(«

where q e uA(k) u uc(k), and x means the execution of operation in ujjk) c  Up.

If we determine the value of a symbol, then the value in all of predefinite references 

is equal to this value, and the postdefinite references only get their values in the next pass. 

DEFINITION 3.5 IfsEa(k), s Eu^J)  , 1 (î) E  £( y , k) and i i 1, then
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val (,) ( s ,  / (î) ) = val (,) ( s , k (l) ) , i f  k  < / ,  and 

val ( , *,) ( s ,  1 (3)) = val ( , ) ( s , lr( , ) ) ,  i f  k  i  1 .

From these definitions unfortunately it can not be seen that the value of a symbol is 

determined in which pass. This is why we introduce the degree of postdefinity, and the 

relation between the value and the degree of postdefinity will be investigated.

4. The degree of postdefinity. The value of a parameter in the label field is undefined 

if in the operand field of the same line there is a symbol with undefined value. It is possible 

that the assembler gives a value to this symbol of the operand field in one of passes, and 

therefore in this pass and in the next passes the value of the parameter in the label field can 

be determined.

DEFINITION 4.1 I f  s ç  a(k), then the degree of postdefinity of symbol s in ttl) let 

0 / /  u'jik) = 0
p d ( $ ,  * ( l ) ) = max p d ( r ,  k (3) ) otherwise

According to the definition the symbol in the label field takes the highest degree of 

postdefinity from the operand field.

DEFINITION 4.2 I f  s e o(k), s G « j( / ) and l {3) G E(s  , k ) , then the degree 

of postdefinity o f symbol s in P* let

pd ( s  /<»>) = ( p d U *  * ! ” > i f  1  > k
P®1 * ’ J \ p d  ( f , *<•>) + 1  i f  1  s f
The definition says that in postdefinite references the degree of postdefinity is one 

greater than in the line of its definition, and in predefinite refences the degree of postdefinity 

does not change.

If s e b(k), then pd(s,tfl)) -  0, that is the degree of postdefinity in the label field of 

its definition line is zero, and according to the definitions, the degree of postdefinity in the 

predinite references equals zero and in the postdefinite references it equals one.
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THEOREM 4.1 I fs  e a(k), then pd(s,kl)) * 0.

Proof. The statement is a consequence of Definition 4.1 and 4.2. □

COROLLARY 4.1 From Theorem 4.1 and Definition 4.2 it follows that pd(s,lO))>0 

for all symbols s  G uÂ( 1) •

THEOREM 4.2 I f pd ( s  , l } 3)) * p d ( s ,  / 2(3)) ,  where 1 £ / ,  < / 2 £  |P |, 

then 3 k, for which /, z k < l2 and s e a(k).

Proof If l / 3), / 2(3) e £ ( j ,  i t ) , where s e  a(k), then the theorem is a consequence 

of Definitions 4.1 and 4.2.

If / 1(3) €  E ( s , i t , ) ,  a n d / 2(3) E E ( s ,  k 2) ,  where s  € a ( i t , ) ,  s G a ( k 2) and 

it, # then Jt„Jtj can not be elements of neither set £ , -  {1, / , - ! } .  nor set £ , -  (/„  .... 

1}, nor set Ej » {l2, .... |P |)  at the same time, otherwise the inequality 

p d ( s t 1 1<3>) * p d ( s ,  y2(})) is not hold. Similarly, the case of le, e £ , and it, e  is not 

hold. If it, e  £ , and it] e Ej, or it, e  E, and it, e £,, then the statement is true, since in the 

first case let it -  it,, and in the second case let it -  it,. □

Clearly not every symbol has a finite degree of postdefinity. For example, if symbol 

s  only appears in the line

(0) (1) (2) (3)

L± s +  1

then according to Definitions 4.1 and 4.2

p d { s , k ( l ) ) = p d ( s ,  k (3)) = p d ( s ,  k ( t ) ) + 1, 

and we can state the following theorem:

THEOREM4.3. f f s  G i ^ J t )  and k <3> € £ ( ; ,  i t) ,  then p d ( s ,  *<*)) = «a 

If s E m^ ( 1 ) ,  then Corollary 4.1 shows that pd ( s , 1(3)) 2 l .  If 

p d ( s , l (î) ) < «s then according to Theorem 4.3 it * 1 is true in the case of 10> e £(s,Jt),
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that is 3* (1 < k s. |P |) , for which 10) e E(s,k). Thus, using Definition 4.2, we can state the 

following corollary:

COROLLARY 4.2 I f s €  «^(1) and pd(s, l*3*) = n < » ,  then in the case o f 1® e 

E(s,k) it is true that k * 1 and pd(s,kn) -  n-1.

There is an obvious generalization of Theorem 4.3:

THEOREM 4.4 I f  for symbols 

st € a(k t) , sî  e  u'A{k,), i f*  e  

5, e a ( k 2) , j j  e  u ! lk 2) ,  k i 3) € ^ $ 3, k 3) t 

• ••

sm e a ( k j ,  j , 6 # i ( U ,  *£3) € £ ( $ , ,  * , ) ,  

t he np d ( s { , i = » ( 1  sSi £m).

Proof The theorem follows from Definitions 4.1 and 4.2. □

We note that the infinite degree of postdefinity is based on a 'circle' in the declarations 

of symbols.

The next theorem states that if in the assembly language program there is a symbol 

with finite degree of postdefinity, then there is a symbol with zero degree of postdefinity too.

THBOREM 4.5 I f  s € a ( i t )  and p d ( s ,  < «s then 3 r e  A' and 3/ (1 s

I i  \P \),for which r e  a(t) and pd(r,/®) -  0.

Proof. Let pd  ( s , k (1) ) = i , according to Theorem 4.1 0 s  i s «. We prove the 

theorem by induction.

If i ■ 0, then let r  -  j ,  and l -  k. Let us now suppose that the statement is true for 

every j  * i-1, and we prove that the statement is true for j  -  i, too.

If p d ( s ,k ^ )  = i, then Definition 4.1 shows that 3 r , €E u^( k ) , for which 

pd{rx, I ^ )  = 4 and if r, e  o(it|), then it0’ e £(r,Jfc,). According to Theorem 4.3 Jfc, # k. If Jt,
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> k, then according to Definition 4.2 pd ( r  j , k { ) = i -1 , and due to the hypothesis of 

the induction the statement is true.

If Jfc, < k, then by Definition 4.1 it follows that 3r 2 G uÂ(kx) , for which 

pd(r2, kf3*) - i, and if r, e a(kj, then t / 3) G E( r 2, k 2) ■ As Jfc, * Jt,, in the case of A* > 

Jfc, the hypothesis of the induction is applicable, and if Jfcj < Jfc„ then 3 r } G i*Â(k2) ,  fa 

which p d ( r 3, k j 3)) = /'.

It can be seen that either we reach a symbol with degree of postdefinity i-1, or there

exist

k  > k x >. . . > k a

and r ml G uÂ( k m) , p d ( r ml , k £3) ) = i . As Jt. i  1, in the worst case km -  1. In this 

case however, due to Corollary 4.2, pd ( r ml , / (•> ) = i -1 , and therefore the hypothesis 

of the induction is applicable. □

From the above proof it can be also seen that if there is a symbol for which the value 

of the degree of postdefinity is equal to n (0 < n < »), then there are symbols with degree of 

postdefinity 0 ,1,...^i-l:

COROLLARY 4.3 I f  s 6 a(k) and pdfs,#0) -  n, where 0 < « < « # ,  then 

3 r , ,  r 2, . . . , G A 1, and 3 / , ,  l l t  , / a_„ forwhich 1 s /y s |P |,  rf  e a ty , 

and pd ( r Jt j j l ) ) = j  ( 1  * j  i / r - 1) .

5. The relation between the value and the degree of postdefinity. We will now 

examine the relation between the value and the degree of postdefinity, and we will show that 

the degree of postdefinity of a symbol determines in which pass this symbol gets its value. 

Moreover, we prove that if this value was assigned in one of passes, then the value does not 

change in the following passes.
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THEOREM S.l (The Fundamental Theorem of Assemblers)

I f  s E u ^ ( l )  and pd ( s , / (3)) = n < «s then val , / <3>) * e .

Proof. We prove the theorem by induction. In the case of n -  0 the method of proof 

of Theorem 4.5 can be used, and it will not be presented here. Suppose that for every symbol 

S j E u j l k , )  in the case of p d ( s it  Jt/3)) = j  -1 the statement is true, that is 

val < » (s /t k j y) )

We prove that if s E u Â ( l ) ,  p d (  s ,  l <3>) = j  is hold, then

val s, /<*>) #e.

If s  e  a(k) and 6 E(s,k), then according to Theorem 4.3 k * /. If k > /, then using 

Definition 4.2 pd  ( s , Jt( l ) ) =j -1 ,  and on the ground of the hypothesis of the induction 

val k ( , ) ) * s .  Definition 3.5 states that val ^ ll)( s , / (3)) = vaP(s, kf1*), thus

the statement of the theorem is valid in the case of k> l

If k < /, then by Definition 3.5 it follows that the equality

val s , /<*>) = »«/ lr(,) ) is hold. As according to Definition 4.2

p d ( s , = y ,  and Definition 4.1 shows that 3 s ,  for which

p d ( s x, k i3)) = y .  For this symbol s, 3Jt„ where s , = 0 ( 4 , ) ,  i t (3> € £ ( s , ,  i t , ) . If 

it, > k, then we have finished, according to Definitions 3.5 and 4.2 

val k i3)) = val <y)( s , ,  k f n ) ,  and p d ( s , ,  k ţ l ) ) = j - 1.

If 4, < it, then repeating the above procedure for s  and it, either we reach a symbol 

with degree of postdefinity j - 1, or we get series s ,  s , ,  s 2, . . . ,  s n and

k> k v > k 2 . . .  > k a. In the worst case it. “ 1, and composeing the next element s .„  of the 

series, we find that pd ( s 1 (3) ) = j  . According to the Definitions 3.5, using Corollary

4 . 2 ,  i n  t h e  c a s e  o f  s B+, 6 a ( t , „ )  p d ( s Htl, *J+V) = j  -1 ,  a n d

val (^ (  s fl, , , k„}\ ) = val 1(3)) .  This value on the ground of the hypothesis
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of the induction * e, which completes the proof. □

Now we prove that if we assign a value to a symbol in the n+l-st pass, then this value 

does not change in the following passes.

THEOREM 5.2 Let s E u Â ( l ) .  If p d ( s ,  l <3>) = n < «* then for all 

n x, n 2 £ / t + l  the equality val (n,* ( s ,  / (3*) = val (0j* ( s ,  / <3))  is valid

Proof We shall prove that val (m)( s  , / <3)) = val , / <3> ) for every m

i  n+1, from this the statement of the theorem follows.

Suppose that the statement is not valid, that is the inequality 

val (I* ( s , / (3)) *  val <a>,)( j , 7 (3)) is true. We prove that from this condition it 

follows that there exists at least one symbol sx, for which in the case of s , G a ( k x) , 

p d (  s x, k [ '* ) S / i  - 1 ,  and the values of symbol 5, are different in two different passes. 

Lets  G a ( i t ) ,  l O) e  £($  , k ) , then our condition is true according to Definition

3.5, if

1. in the case of it >1 val (m' 1)( s ,  i t(1))  *val (m* ( s , it*1) ) ,  but using Definition

4.2, pd  ( s , it < *) ) = n - 1, so we have found a symbol which has different values 

in different passes, and its value of degree of postdefinity equals to n-1. Let s, ■ s  and 

it, -  k.

2. in the case of it <1 val ("* (s ,  it*1))  *  val (*‘1> (s , it*1*) ,  and according to 

Definition 4.2, pd ( s  , i t (1) ) = n. Using Definitions 3.4,4.1 and 4.2, in the worst 

case more times repeating the above line of reasoning and by Corollary 4.2 it follows 

that we surely reach a symbol which has different values in different passes, an its 

value of degree of postdefinity equals to n-1.

Therefore 3 s ,  G u'A( k x) , for which val 5 p i t /3*) *  val ^ ( s  lt i t / 3*) 

and p d ( s x, k x3) ) ^  n - 1 in the case of m-1 z n.
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Using this method, we can produce a series of symbols s ,, s 2, ■■■ , s t o and a series 

of lines k t , k 2, . . . ,  k io, for which p d ( s ti)t Jfc/0l ) ) = 0, and va/ k ^ )  *

val */<” )• It is obvious that for the symbol s , #, with postdefmity degree zero,

the above inequality is false, and thus we have proved the theorem. □

DEFINITION 5.1 Let pd(P) denote the degree o f postdefinity o f program P

p d ( ^ )  -
0 i f  = 0

max max pd ( s , k (3) ) otherwise

The following theorem states that if the degree of postdefinity of a program is equal 

to n, then the program P can be translated by an n+l-pass assembler.

THEOREM 5.3 For all symbols s  G UÂ o f program P in the case o f s  €  uÂ( l ) 

val Cp-CP)*t>(^, ] ( J ) )

Proof. The statement is the consequence of Definitions 3.1, 3.4 and 3.5, as well as 

Theorems 5.1 and 5.2. □

As u'A c  A, according to the Definition 4.2 the statement of the above theorem is 

valid for every symbol s € A.

COROLLARY 5.1 For all symbols s e A of program P in the case o f s e a(k) 

val < *<»♦»>(,,  *<•>) # « .

We have dealt with values of all symbols of an assembly program. We note that 

pd(s,kil)) = 0 in the case of s e b(k), and for / G E ( s ,  k) pd(s,l<3>) s i ,  

the translation of labels can be done with a two-pass assembler, and this is the reason, that 

the most of assemblers has two passes. Thus, the most of assemblers unables to solve the 

translation of symbols of higher degree of postdefmity [6], and it is the programmers' 

responsibility to reduce the degree of postdefinity to 1, using modifications to the assembly 

language program, or simply with rearranging of lines.
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