
STUDIA UNIV. BABEŞ-BOL Y AI, MATHEMATICA, XL, 3, 1995

PERTURBATION METHODS WITH LIE SERIES

Alin BLAGA*

Rtcdved: 3.09.1995

AléS subject classification: 68Q25, 68Q40. 6SY25

REZUM AT. - Metode de perturbaţle cu serii Lie. Puterea programării pe obiecte, facilităţile
de paralelism ale calculatoarelor modeme cât şi cele ale produselor program de calcul simbolic
sunt instrumentele perfecte pentru algoritmii folosiţi In teoria hamiltoniană a perturba pilor,
pentru prezicerea traiectoriilor sateliţilor atrificiali. Este vorba, aici, despre metodele cu serii
Lie, datorate lui Hori, Deprit şi Kamel. A se nota că formalismul Lie a fost introdus de
Grôboer şi poate fi găsit in Nayfeh, sau Giacaglia.

1. Introduction. In celestian mechanics the methods used to predict the artificial

satellites trajectories with a big accuracy were changed from time to time, become more

eficient, more precise. Thus, we find important names in this field such Poincaré.

In Hamiltonian Theory of Perturbations the ice was broken by introducing Lie series

and transforms, according to Hori (1966), Garrido (1968) and Deprit (1969). The Lie

formalism can be found in Nayfeh (1973) and Giacaglia (1972). The basic idea is to find the

solution of perturbation problems using power series. The problem is of the type:

^ 7 - = * <(' > yj) 1 « / < (' . yj)-
This is a differential equations system with unknown functions y , (t) and with perturbed

terms e f i (t , y j) , where e is a small parameter showing that the perturbing terms are

small with respect to the principal terms of x,. When e is zero the system is reduced to the

unperturbed system:

dt = *i(t> y j) -

In real problems the perturbing functions are more sophisticated, so it is too difficult

HBabeş-Bolyai " University, Faculty o f Mathematics and Computer Science, 3400 Cluj-Napoca, Romania

A. BLAGA

to solve them by classical Runge-Kutta methods, the error propagation is too high in such a

problem. But we find particular problems solved in this way, using also refined numerical

methods (see [16]). Steifel introduces the Fourier expansion as a good reason to approximate

the solution.

Transformation of variables expanded in power of a small parameter plays an

important role in the theory of perturbation. Hori (1966) and Deprit (1967) have proposed two

methods to build canonical transformations, depending on a small parameter and based on the

consideration of Lie series and transforms.

This paper tries to use the Lie transforms technology developed by Kamel (1969),

combined with approximation methods of orthogonal Chebyshev polynomials. A big

advantage of this technology is that it allows parallelism.

This method has been implemented in Maple V, but for high solution accuracy it was

too hard to handle it, because of many symbolical differeniation and ordering, and

impossibility of parallelization; and out of run-time and out of memory space appeared. It has

been also implemented in MACSYMA and SPASM (see [2]), but there were the same

problems of run-time and exhaustive memory needs. First, we have:

Ta(x , y) = f i i* * y) + Y , (y) , S j (x , y) \ +

+ Q -1 Kj a_j (x , y)) , where

^ = H T r) ,

K = p(Tr) ,

3 . / = [K‘ > SJ) ~ E ■*/]•nF\
\f,g] is Poisson bracket operator, defined as:

[/ . 8] (P> Q

We also have here:
& U < a dp, dp, dQ j

« ' (/) = [oyf (P> 8) d q i

p(f) = f - i (/)] d q y, where the Hamiltonian:

1 2

PERTURBATION METHODS

F(P, <?. «) = g f f ^ (P , Q .

To avoid Poisson brackets, Kamel developed an algorithm based on Lie transforms,

where

ţ . i -

LmK(x) = / / J x) Jf(x).
This short table shows the run-time for the sequential algorithm (C++, PA C++) and

for the parallel (Athapascan) algorithm. Hie default values are n - 100 for matrix dimension

and m for matrices:

m - sequential/ PAC++ PAC++ Athapascan
processors - sequential sequential parallel
parallel double floating point Rational double floating point

(sec) (sec) (sec)
4 31.66 44.16 28.44
5 42.53 88.33 36.23
30 492.12 4057.3 402.32
100 2328.8 51021 2331.9

In this paper we do not try to increase the Hamiltonian's order, but increase the

accuracy with a given precision 30) according to speed. With such accuracy we can find

a more powerful approximation of Lie transform, we have maximum run-time speed, by its

parallelism and no more exhausted workspace. It is amazing what we can do using power

orthogonal series, then aliate with symbolical calculus to make almost perfect the ideea that

the trajectory of an artificial satellite is more precise, more perfect even after hundred

revolutions.

Most of technologies of perturbation analysis can be introduced by a short study of

a sample algebraic equation. So, let us consider the following quadratic:

jt2 + ex - 1 = 0 (1)

Here e plays a perturbing role for the solution. This quadratic has exact solutions:

If we expand them using Taylor series, for a small e, we find:

13

A. BLAGA

The most important

terms. Let see for e

*1 = 1 I s ♦ I s * -
2 8*
1

1 s* *

= -1 - 4-e - i s 2
128♦ _ ! _ * «
128A2 2 ' 8 ’

thing is that we have a very good approximation, even for a few given

■ 0.1 what is going on:

x, * 1

* 0.95

» 0.95125

* 0.95124921

x, - 0.951249219 ...

Let us have the new quadratic:

ex* + x - 1 - 0. (2)

Here e plays a perturbing role for the solution. For e ■ 0 we have only one root, x ■ 1 and

for e * 0 we find two roots. This is the most, easies example of that we call singular

perturbation problem. The problems that are not singular are regular. In reality, most of the

problems are singular and those are the most interesting.

Performing a Taylor series expansion for those two roots, for a small e, we have:

x , (e) = 1 - e + 2 e 2 - 5g3 + . . . (3)

x 2(e) = - I - l + e - 2*2 + 5$3 + . . . (4)

But the power series for x2 starts with an e« instead of the usual e-», so a very good

ideea is to make a coordinate transformation, thus the singular equation becomes a regular

one. That is the mechanism of Lie transforms, to regularise the singular problem and more,

to reduce the finding of solution to a standard power series expansion form problem.

For example let us rescale:

We now have the regular equation:

y 2 + y - e =0.

* = (5)
14

PERTURBATION METHODS

2. General theory of the algorithm

DEFINITION. Let G c C be an open set and p, : G" -*C, i = 1 , n holomorphic

functions. If z = (Zj . z 2, • • • . z„) G C , then

D - «)

is the Lie differential operator.

Notation. Let be the open set G c C and f , p, : G" -*C, i = 1 , n , holomorphics.

Then

D °/ = / , (8)

D"*1/ = D(Dnf) . (9)

DEFINITION. A power series of type

£ j r D n / (z) = / (z) + t t d / (z) + i r D 2 / (z) + • • •
where / : G" -*C is an holomorphic function, G c C is an open set, t > 0, is called Lie

power series. Formally

« ' ? (*) = * > " / (0 - (10)

THEOREM. G c C is an open set. Any x-dependent, holomorphic and indefinitely

differentiable vector F(x,e) o f the form

F(*> «) = ^ F. (*) .

where e Aar a perturbing role, can be expressed in the form o f another holomorphic and
P nindefinitely differentiable vector o f power series, using x = y + — F„(je) transform,
n •

where f M: G -* C

Proof. Let be the indefinitely differentiable vector F (jc,e) developed in power series

of the form

F (x , e) = F*(X) > With (ID

Fn(x) = — F(x , e)Ac n v /
0 8 Je "0

(12)

15

A. BLAGA

If x = x(y>e), then the vector has the power series form such as

F(x , e) = £ j r F< » M » where

— F (x , e)
cte" v ’ «■0, x «y

(13)

(14)

The relation between —F(^ t e.) . and
ôte

differentiation formula:

d f f x , e)
de was established using obsolete

dF_ = dF + dF dx_ ««
de de dx d e ’ '

It is obvious that if x is y independent, F„ is expressed using partialy differentiation, else

totaly differentiations required, such as in (14).

At the next step we need to make the transform

* = ~ f f n (y) > where (16)

f 0(y) - y, according to Lie transform by the known generating functions (12). Thus, for the

x - y and known F„ functions we can express F<„ . This powerful mechanism can reduce a

singular system of differential equations to a regular one.

We may now differentiate equation (16), and we find

de = 5 "1
w c «

which has no solitary y. Let be H(x , e) = 2Jb=0 f n+i(y) an<l / 3 W we have the

simple formula

H(*. O = 5 J ^ f rç. i(y)- (17)

(17) is called a Lie Transform. This is just a power series, but it has the most important role

to perform the final Kamel Transform.

Combining (15) with (17) we obtain

4F.l t ’.*.) = df(x e) + ^ e) ag ^ .f) .. (18)
de de K ' dx

Let us make the notation L^F(x , e) s H(x , e) 6)_ whjch is the Lie derivative.

Applied to (18) it will have a more compact form

16

PERTURBATION METHODS

É f L j x J l = à F (x ^ b) + L w F { x > s)

Let substitute F in (19) by (H) and W also in (19) but for this time in (17)

d F (x , €) y g*

Sorting terms of (19) we have for e«

1 1 dF0 (x)
n! 0! dx

1 1 dFt(x)
(n -1) ! 1! dx

K M .

K *) .

(19)

(20)

X J_ dFn(X) w(x\
0! n! dx ^

Thus, one obtains

* ..< * >

Making the notation Fa> , (x) (x) , where

Lk n *) = ^ ^ r ç (x) ,

will have for (21)

Performing formal notation of F, by F. , and by induction, yields to

n
«X*) ~ ^«*1, »-l(*) + ^k*l BI ^ 1, « ^ 0.

(21)

(22)

(23)

(24)

17

A. BLAGA

Here, F„fi « F, and F0. * F<m>. QED, only if we show that is holomorphic. But we know

that

F ' . x (x) = Fmtl(x)
so it is obvious, according to F„ i i 0, that is an holomorphic function. Thus, using (24),

Fm, n * 0 are also holomorphic functions.

Remark. Hie recursive relation of (24) can be visualized in the forward triangle

■ F<o>
l
Ft - Fo.x ■ V

l l
F% - Fia i

?
1

F < u

l 1 1
F V - F, j - F»a

l 1 l l
Remark. The recursive relation of (24) is the same one found by Deprit, except to Z*

operators, substituting Poisson brackets, which is more eficient.

We introduce some theoretical fundaments of Chebyshev polynomials, now.

DEFINITION. We call Chebyshev polynomial of degree n, the function Tm: [-1,1] -

[-U],

Tm(x) ” cos n arccos x. (25)

LEMMA. I f Tm is the n degree Chebyshev polynomial, then

T ' . M = 2 x U x) - TH.t (x) , n i l . (26)

LEMMA. The n degree Chebyshev polynomial, Tm(x), has n zeros on [-1,1]

* * = 008 * = f f r 'r r (27)
and n+1 extremal points

x* = cos — , k = 0 , n. (28)n
THEOREM (of Orthogonality). 1°. Continuous case. Let be the scalar product

(/ . g) = (l f .(x) S (x) Then

18

PERTURBATION METHODS

0, if i * j
(T it T j) = ' W 2 if i r j * 0

it, if I = y = 0 .
2*. Discrete case. Let be the scalar product(/> 8) = S /(JC*)g(JC*) ’
where Xy, j = 0 , J7. are the zeros of Chebyshev polynomials o f m* 1 degree. Then

(T n T j) =
0, if i * j

if t - 1 * 0
m+1, if i = j = 0.

Remark. Fourier coefficients c<* for an orthogonal, system < «ft }T-o and continuous

function / a r e picked-up from the interpolating problem

(29)T , C j V j (X i) = / (* <) . 1 = 0 , m where
^ (/ . <ft)C| =

t a r
, i = U, m.

Remark. Fourier coefficients for Chebyshev polynomials are_ & / (* .)C n ~ m+1

C i - & ---------------- ï------------ » l' m+l 1, m

(30)

(31)

(32)

LEMMA. Let he c, the Chebyshev coefficients o f a continuous function f. [-1,1] - R

and c} the Chebyshev coefficients o f its derivative. Then

c /-i = c I *i + 2 (i -1) c,_„ i = m-1, 1, (33)

cL - c h = 0.

3. Sequential computing of Lie matrix. The computing scheme is obtained by

equations presented in last section

= * U . „ i (*) + g c X i ' V * . , , i (*) . m a r l , n * 0 , (34)

LkF(x) = M i L l r ç U) , k 2:1,

19

A. BLAGA

^n, 0 Fo.,

We find useful some complexity studies. We start here with the background algorithm:

INPUT. Matrix dimension N-n+1, where n is fixed;
Generating functions Fi(x), i*0,n;
Transform functions Wj(x), j*0,n;

ALGORITHM.
StepI• F(i,0) :» F(i), i»0,n;

{filling the first colum - initialisation step}
Step2• F(n,n-i) i■ F'(i), i*0,n-l;

{initialise the last row with derivatives
of the first column}

Step3. for*i»0,n do
for j»l,i+l do

Sum :» 0;
for k«0,i-j-l do

Sum !» Sum + C(i-j-l,k) *
W(k+1) * F(n-j,n-i+j+k+l);

{C(n,k) are binomial coefficients}
endf ;

endf ;
{complete upper triangle!}
F(i-j-l,j+l) :» F (i-j, j) + Sum;
{keeping the result before making modifications s}
if n-j-1 » 0 then 0(j+l) !» F(i-j-l,j+1);
endif;
{complete lower triangle with derivatives i}
F(n-j-l,n-i+j+l) !» F'(i-j-l/j+1);
{The main idea, for a best comprehensive algorithm
is that on generate indices pairs of the form,
keeping this order i

(0,1)
(1,1), (0,2)
(2.1) , (1,2), (0,3)
(3.1) , (2,2), (1,3), (0,4)

Corresponding indices are F(i,j) -» F(i-j-l,j+l)
F' (i, j) ■+ F(n-j,n-i).

}
OUTPUT. O(i),i*0,n;

20

PERTURBATION METHODS

We must note that the triangular matrix become a dense matrix by keeping also the

derivatives. Thus, the algorithm is more complex, but is more faster, according to the

complexity study at this stage. The computation scheme look like, at this moment:

■ F<o> - F .,. - F ,., -
t t t t
F, - F u “ Fi> - F u F w -
1 l t î
F - F „ F}2*F, 2» ■* F,.3 -
l 1 1 Î
F, - f 2. Fu - F>.j - Fj> -
l i l i

This is just the formal algorithm which is the basic form of MapleV used algorithm,

but for C++ or Athapascan languages it is not possible to make formal derivatives. These

languages, first for a sequential algorithm second for a parallel one, can increase the speed

of the algorithm and it is implemented by choosing Chebyshev approximation methods. This

idea make a faster algorithm and a more accurate computations according to Plauger studies

and implementation on C Standard Library. The algorithm is changing now:

INPUT* n for matrix dimensiona;
m is the number of Chebyshev coefficients;
Generating functions Fi(x), i**0,n;
Transform functions Wj(x), j»0,n;

ALGORITHM.
Stepl* for i«0,m-l do

FRes_i[j,0) I- c_i[F_jJ; j«0,n;
endfor;

Step2•

Step3.

for i»0,m-l do
Fres_i(n,n-i) x« diff (c_i[F__j]) ; j«0,n;

endfor;

for i«l,n do
for J*l,i do
for l*0,m-l do

21

A. BLAGA

compute c_l of FRes(i,j] function;
endfor;

Setting FRea(i,j];
{keeping the result t)
if i-j then O(i) FRes(i,i);
endif;
{complete lower triangle with derivatives i>
FRes(j,1) i- FRes(i,j);

One Lie matrix is rilled with Qiebyshev coefficients and thus, the function Fy is

represented by its c t (i , j) , k = 0 , m Chebyshev coefficients on each matrix. We may

see that it is an exhaustive memory consumption, but we win on run-time.

In the first step we must rill the first column functions of the forward triangle by

computing all their coefficients. And the same thing for the first row of derivatives.

In Stepl we compute all the (m-1) coefficients for each FJt j = 0 , n continuous

functions, using the common formula:

where xk are the Qiebyshev roots of the T, polynomial. Step2 was developed in purpose of

computing all derivatives of continuous functions F j, j = 0 , n , according to Qiebyshev

coefficients computed at the Stepl and to formula:

represented by c k , k = 0 , m-1.

The main loop needs to compute all c(ij) coefficients only by using (J-1)'* column and

? row of each matrix. For one c,(ij) element we have (see also the (25) formula):

OUTPUT. 0_l(i), 1*0,m-1; 1*0,n;

22

PERTURBATION METHODS

where CE is a function that evaluate one function by its Chebyshev coefficients.

The internal Chebyshev computations are done by using of trigonometric high

accuracy mathematical functions, that are more exact that the Standard C Library Math

trigonometric functions. Also, for the binomial coefficients we made a vector to keep all

values for all 1 to n degree. This method increase the algorithm run-time to very high speed

and the vector reach only LILLLIAJLI-IlL size.

3.1 Complexity by algorithm. Some changes in the computation triangle are required,

from this point of view.

If all values are recorded using triangle model shown in the 7'* page of this paper, the

algorithm complexity depends most of all in accessing and unaccessing direct matrix

transform and some high precision evaluations. So, let consider that the other subalgorithms,

wich are not shown in the background algorithm, have zero-complexity. Everyone can see that

these subalgorithms are low-level functions that performs that performs some computations

we do not need to know how, right now.

Dereferencing the classical forward triangle it leads to the upper triangle

F),o - - Foi Fol 1 1 J
Flfi - F ia - Fia1 1 1â.o - F»1 1
F »

1
But let follow the algorithm and rind its complexity. It is obvious that we may consider all

matrix accesings and the first study is done only by this point of view.

At the Step 1 on access only the first column to store generating known functions F„.

If we denote by a , the algorithm to this level, will have

23

A. BLÀGA

cplx (a ,) = (n + 1) 1 + J (n + l) j - (36)
Next, on Step 2, must initialize the last row of lower triangle by first column

derivatives. So, denoting by a 2 this algorithm, on leads to

The recursive equation access intensively the matrix, in Step 3, so we must split its

complexity in three parts. Anyway, the final result obtained here is

We don't need to wony about, because nothing will stop here. We must try another

method to store and compute triangle computations. On see that we begin with storing not in

the lower triangle, but in the upper side, wich is the natural ideea. But we access more

frequent derivatives stored in the lower triangle. So, the complexity increase at very high

order. Thus we must inverse storing. This leads to others formulae. First, the recursive

formula is changing.

Thus, if we denote by p the new algorithm complexity, we have

This was obtained by the algorithm steps Stepl, Step2 and Step3. It is obvious that cplx(P)

« cplx(a). For example, if n - 32 on have

cplx (a 2) = j (n 2 + 7n +4) + 1. (37)

cpbc (a) = ^ ♦ 2 n 4 + + 1 2 n 2 + ^ + 7.

cplx(a) - 6,476,781 and

cplx(p) - 1,044,242.

Thus

which means:

2 4

PERTURBATION METHODS

run-time a run-time p

(sec) (sec)

3600 580.27
1800 290.13
300 48.22
60 9.40
1.0 0.09

We can see its density and only one look make you think of its complexity. Even in

this case, the method leads to a more efficient algorithm. Until this reached point we have

made studies on the formal algorithm.

We discuss the P-version of the algorithm, because of its already studied performance.

So, let be n(t) the time need to access one vector element, tÇ), tC) the basic operations time

needings for a user or predefined specified operands and C(r) the time for Chebyshev

computations.

Remark If is the complexity to compute c(i,j) coefficients by using (35) then

the main loop complexity is

cpix (O - ă in i l lc\t) '(m+v'jr'jrcii . j; o-
On evaluating cplx(r) let crossing and fmd that

= (m*l) (i -j +2) i r (r) 4 3 (i -j +1) r (’) + r(*) + (j -j >2) C (r) =

= (y-y+2) t 4 a t) * / n i + r(*> - 3m . 08>

Thus the order of complexity will be of the form:

^ 0 = j a o + x , (‘) + T r (t) t '!!r 1T(f) ' (39)
Remark. Hie complexity of one trigonometric function has the order

t (t) = 12 [r (*) + r(*) 4 * < r)] .

25

A. BLAGA

4. Parallelization of the algorithm. An elementaiy task is defined as an indivisible

work unit, specified in terms of its external environment such as I/O, execution time and so

on. The parallel complexity study consists in splitting a part of the algorithm in elementary

tasks. Thus, to compute function we need m Chebyshev coefficients. Thus the m tasks are:

This leads to the well known precedence task graph, called PARBEGIN - PAREND graph,

introduced by Dijkstra. If we denote by t(Ţ,), the time to execute the task T„ i - 0 , m, then

the T, time need to execute the algorithm from point A(Ta) to point B(TA) will be:

T, = max { T , , I = 0 , m),

instead of sequential time

In (35) CE can be use unless all c / ') , / = U, rn are computed. We must note that

one computes for one function the all its coefficients into one FOR loop and these

computations are independent. Also one coefficient needs a lot of time for the computations

since this is dependent of mn* other coefficients. So this requires a small code for

paralellization. One may see that we describe the parallel algorithm here.

INPUT, n for matrix dimensions;
m is the number of Chebyshev coefficients;
Generating functions Fi(x), i«0,n;
Transform functions Wj(x), j«0,n;

(40)

We can write, using Dijkstra PARBEGIN - PAREND form, that

T{ : Ta ; PARBEGIN T0 ; | Tl ; |. . . | Tm; PAREND; T„.

26

PERTURBATION METHODS

ALGORITHM*
Stepl. for i«0,ro-l do

FRee_i[j,0] I» c_i[F_j); j«0,n;
endfor;

Step2. for 1-0,m-1 do
FRes_i[n,n-iJ diff(c_i[F_j]); j-0,n;

•ndfor;
StepB* for i-l,n do

for j-l,i do
BEGIN PARALLEL LOOP from 0 to m-1
compute c_l of FRes [i,j) function;

END PARALLEL LOOP;
Setting FRes[i,j];

{keeping the result t>
if i-j then O(i) I* FRes(i,i);
endif;
{complete lower triangle with derivatives : >
FRes(j , 1) i- Fres(i,j);

OUTPUT. 0_l(i), l-0,ra-l; i-0,n;

The c(i,j) element is computed by spawning all c /ij) , from /-0 to m-1. This means,

to this level, that on run with m parallel processes and at the end of all of them will have the

FRes(iJ) function expressed in terms of Chebyshev polynomials.

The slave, in parallel algorithm, compute one coefficient for the specified function,

so, if we want to obtain the maximum speed it will be preferable to set the numbers of slaves

to the number of Chebyshev coefficients. The result is collected when all of the slaves done

Parallelizing the algorithm leads to maximize relation (38) for i = TŢ n and

j - 1 , / . It is obvious that the order of cplxi is from now:

their work.

So, getting the results from (39) and (40) on have

27

A. BLAGA

On 3D graphical representation by array dimensions and number of coefficients we can get

the evaluating continuous time of all operations described here. We can see how time-smooth

is the parallel computing behind the sequential computations. The smoothness can be also

visualized according to (40).

R E F E R E N C E S

1. Blaga A., Lie series and transforms for applications in celestial mechanics, Institut 1MAG, LMC
Grenoble, France, 1995.

2. Char B., McNamara B., Adiabatic invariants o f simple Hamiltonian systems via the Lie transforms,
MACSYMA Users Conference, Washington DC, 1979.

3. Christaller M., Athapascan-Oa sur PVM 3, définition el mode d'emploi, IMA Grenoble, 1994.
4. Dahlquist G., Bjorck A., Numerical Methods, Prentice Hall, New Jersey, 1974.
5. Deprit A., Canonical transformations depending on a small parameter, Celestial Mechanics, volume

1, 1969.
6. Gautier T , Roch J.L., Villard G., PAC++ v2.0, User and Developer Guide, IMAG, Grenoble, 1994.
7. Grobner W., Die Lie-Reihen und ihre Anwerdungen, Springer Verlag, Berlin, 1960.
8. Hamming R.W., Numerical methods for scientists and engineers, McGraw-Hill Book Company, New

York, 1962.
9. Henrard J., On a perturlxition theory using Lie Transforms, Celestial Mechanics, volume 2, 1970.
10. Kamel A.A., Exjxmsion formulae in canonical transformations depending on a small parameter,

Celestial Mechanics, Volume 1, 1969.
11. Kamel A. A., Lie Transforms and the Hamiltonization o f non Hamiltonian systems, Celestian Mechanics,

volume 4, 1971.
12. Kamel A . A., Perturbation method in the theory o f nonlinear oscillations, Celestial Mechanics, volume

3, 1970.
13. Kinoshita H., Third-orde r solution o f an artificial-satellite theory, Smithsonian Institution, Astrophisical

Ol>servatory, Cambridge, Massachusets, 1977.
14. Mersman W.A., A new algorithm for the Lie Transformation, Celestial Mechanics, volume 3, 1970.
15. Plauger P.J., The Standard C Library, Prentice Hall, New Jersey, 1992.
16. Stiefel P.J., Scheifele G., Linear an Regular Celestial Mecltanics, Springer Verlag, New York, 1971.

2 8

