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Global nonexistence of solution for coupled
nonlinear Klein-Gordon with degenerate
damping and source terms
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Abstract. In this article we consider a coupled system of nonlinear Klein-Gordon
equations with degenerate damping and source terms. We prove, with positive
initial energy, the global nonexistence of solutions by concavity method.
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1. Introduction

We consider the following system

utt −∆ut − div
(
|∇u|α−2∇u

)
− div

(
|∇ut|β1−2∇ut

)
+a1 |ut|m−2

ut +m2
1u = f1 (u, v) ,

vtt −∆vt − div
(
|∇v|α−2∇v

)
− div

(
|∇vt|β2−2∇vt

)
+a2 |vt|r−2

vt +m2
2v = f2 (u, v) ,

(1.1)

where u = u (t, x) , v = v (t, x) , x ∈ Ω, a bounded domain of RN (N ≥ 1) with a
smooth boundary ∂Ω, t > 0 and a1, a2, b1, b2, m1, m2 > 0 and β1, β2, m, r ≥ 2,
α > 2, and the two functions f1 (u, v) and f2 (u, v) given by

f1(u, v) = b1|u+ v|2(ρ+1)(u+ v) + b2|u|ρu|v|(ρ+2)

f2(u, v) = b1|u+ v|2(ρ+1)(u+ v) + b2|u|(ρ+2)|v|ρv.
(1.2)
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The system (1.1) is supplemented by the following initial and boundary conditions{
(u(0), v(0)) = (u0, v0), (ut(0), vt(0)) = (u1, v1), x ∈ Ω
u(x) = v(x) = 0 x ∈ ∂Ω.

(1.3)

Originally the interaction between the source term and the damping term in the wave
equation is given by

utt −∆u+ a |ut|m−2
ut = b |u|p−2

u, in Ω× (0, T ) , (1.4)

where Ω is a bounded domain of RN , N ≥ 1 with a smooth boundary ∂Ω, has an
exciting history. It has been shown that the existence and the asymptotic behavior of
solutions depend on a crucial way on the parameters m, p and on the nature of the
initial data. More precisely, it is well known that in the absence of the source term
|u|p−2

u then a uniform estimate of the form

‖ut (t)‖2 + ‖∇u (t)‖2 ≤ C, (1.5)

holds for any initial data (u0, u1) = (u(0), ut(0)) in the energy space H1
0 (Ω)×L2 (Ω) ,

where C is a positive constant independent of t. The estimate (1.5) shows that any
local solution u of problem (1.4) can be continued in time as long as (1.5) is verified.
This result has been proved by several authors. See for example [2, 5, 7, 15, 20, 3]. On

the other hand in the absence of the damping term |ut|m−2
ut, the solution of (1.4)

ceases to exist and there exists a finite value T ∗ such that

lim
t→T∗

‖u (t)‖p = +∞, (1.6)

the reader is refereed to Ball [1] and Kalantarov & Ladyzhenskaya [6] for more details.
When both terms are present in equation (1.4), the situation is more delicate. This
case has been considered by Levine in [8, 9], where he investigated problem (1.4) in
the linear damping case (m = 2) and showed that any local solution u of (1.4) cannot
be continued in (0,∞)×Ω whenever the initial data are large enough (negative initial
energy). The main tool used in [8] and [9] is the ”concavity method”. This method
has been a widely applicable tool to prove the blow up of solutions in finite time of
some evolution equations. The basic idea of this method is to construct a positive
functional θ (t) depending on certain norms of the solution and show that for some
γ > 0, the function θ−γ (t) is a positive concave function of t. Thus there exists T ∗

such that lim
t→T∗

θ−γ (t) = 0. Since then, the concavity method became a powerful and

simple tool to prove blow up in finite time for other related problems. Unfortunately,
this method is limited to the case of a linear damping. Georgiev and Todorova [4]
extended Levine’s result to the nonlinear damping case (m > 2). In their work, the
authors considered the problem (1.4) and introduced a method different from the one
known as the concavity method. They showed that solutions with negative energy
continue to exist globally ’in time’ if the damping term dominates the source term
(i.e.m ≥ p) and blow up in finite time in the other case (i.e.p > m) if the initial energy
is sufficiently negative. Their method is based on the construction of an auxiliary
function L which is a perturbation of the total energy of the system and satisfies the
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differential inequality
dL (t)

dt
≥ ξL1+ν (t) (1.7)

In [0,∞) , where ν > 0. Inequality (1.7) leads to a blow up of the solutions in finite

tim t ≥ L (0)
−ν
ξ−1ν−1, provided that L (0) > 0. However the blow up result in

[4] was not optimal in terms of the initial data causing the finite time blow up of
solutions. Thus several improvement have been made to the result in [4] (see for
example [10, 11, 12, 18]. In particular, Vitillaro in [18] combined the arguments in [4]
and [11] to extend the result in [4] to situations where the damping is nonlinear and
the solution has positive initial energy.
In [19], Yang, studied the problem

utt −∆ut − div
(
|∇u|α−2∇u

)
− div

(
|∇ut|β−2∇ut

)
+a |ut|m−2

ut = b|u|p−2u,
(1.8)

in (0, T ) × Ω with initial conditions and boundary condition of Dirichlet type. He
showed that solutions blow up in finite time T ∗ under the condition p > max {α,m} ,
α > β, and the initial energy is sufficiently negative (see condition (ii) in [19][Theorem
2.1]). In fact this condition made it clear that there exists a certain relation between
the blow-up time and |Ω|. ([19], [Remark 2]).
Messaoudi and Said-Houari [13] improved the result in [19] and showed that the blow
up of solutions of problem (1.8) takes place for negative initial data only regardless
of the size of Ω.
The absence of the terms m1u

2 and m2v
2, equations (1.1) take the form:

utt −∆ut − div
(
|∇u|α−2∇u

)
− div

(
|∇ut|β1−2∇ut

)
+a1 |ut|m−2

ut = f1 (u, v) ,

vtt −∆vt − div
(
|∇v|α−2∇v

)
− div

(
|∇vt|β2−2∇vt

)
+a2 |vt|r−2

vt = f2 (u, v) ,

In [16] Rahmoun. A and Ouchenane. D proved the global nonexistence result, Under
an appropriate assumptions on the initial data and under some restrictions on the
parameter ; β1;β2; m; r and on the nonlinear functions f1 and f2.

2. Preliminaries

In this section, we introduce some notations and some technical lemmas to be
used throughout this paper. By ‖.‖q, we denote the usual Lq(Ω)-norm. The constants
C, c, c1, c2, . . . , used throughout this paper are positive generic constants, which may
be different in various occurrences. We define

F (u, v) =
1

2 (ρ+ 2)

[
b1 |u+ v|2(ρ+2)

+ 2b2 |uv|ρ+2
]
.

Then, it is clear that, from (1.2), we have

uf1 (u, v) + vf2 (u, v) = 2 (ρ+ 2)F (u, v) . (2.1)
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The following lemma was introduced and proved in [14]

Lemma 2.1. There exist two positive constants c0 and c1 such that

c0
2 (ρ+ 2)

(
|u|2(ρ+2)

+ |v|2(ρ+2)
)
≤ F (u, v) ≤ c1

2 (ρ+ 2)

(
|u|2(ρ+2)

+ |v|2(ρ+2)
)
. (2.2)

The energy functional is given by

E (t) =
1

2

(
‖ut‖22 + ‖vt‖22

)
+

1

α
(‖∇u‖αα + ‖∇v‖αα)

+m2
1 ‖u‖

2
2 +m2

2 ‖v‖
2
2 −

∫
Ω

F (u, v) dx. (2.3)

Let us define the constant rα as follows

rα =
Nα

N − α
, if N > α, rα > α if N = α, and rα =∞ if N < α. (2.4)

The inequality below is the key to prove the global nonexistence of solution. A similar
version of this lemma was first introduced in [17]

Lemma 2.2. Suppose that α > 2, and 2 < 2(ρ+ 2) < rα. Then there exists η > 0 such
that the inequality

‖u+ v‖2(ρ+2)
2(ρ+2) + 2‖uv‖ρ+2

ρ+2 ≤ η (‖∇u‖αα + ‖∇v‖αα)
2(ρ+2)

α , (2.5)

holds.

Proof. It is clear that by using the Minkowski’s inequality, we get

‖u+ v‖22(ρ+2) ≤ 2(‖u‖22(ρ+2) + ‖v‖22(ρ+2)),

the embedding W 1,α
0 ↪→ L2(ρ+2) (Ω) gives

‖u‖22(ρ+2) ≤ C‖∇u‖
2
α ≤ C(‖∇u‖αα)

2
α ≤ C(‖∇u‖αα + ‖∇v‖αα)

2
α ,

and similary, we have

‖v‖22(ρ+2) ≤ C‖∇u‖
α
α + ‖∇v‖αα)

2
α .

Thus, we deduce from the above estimates that

‖u+ v‖22(ρ+2) ≤ C(‖∇u‖αα + ‖∇v‖αα)
2
α , (2.6)

also, Hölder and Young’s inequalities give

‖uv‖(ρ+2) ≤ ‖u‖2(ρ+2)‖v‖2(ρ+2)

≤ C(‖∇u‖22(ρ+2) + ‖∇v‖22(ρ+2))

≤ C(‖∇u‖αα + ‖∇v‖αα)
2
α . (2.7)

Collecting the estimates (2.6) and (2.7), then (2.5) holds. This completes the proof of
Lemma 2.2 �
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Lemma 2.3. Let v > 0 be a real positive number and L be a solution of the ordinary
differential inequality

dL (t)

dt
≥ ξL1+v (t) , (2.8)

defined in [0,∞) .

If L (0) > 0, then the solution ceacesto exist for t ≥ L (0)
−v
ξ−1v−1.

Proof. Direct integration of (2.8) gives

L−v (0)− L−v (t) ≥ ξvt.

Thus we obtain the following estimate

Lv (t) ≥
[
L−v (0)− ξvt

]−1
. (2.9)

It is clear that the right-hand side of (2.9) is unbounded when

ξvt = L−v (0) .

This completes the proof. �

In the following lemma, we show that the total energy of our system is a nonin-
creasing function of t.

Lemma 2.4. Let (u, v) be the solution of system (1.1)-(1.3), then the energy functional
is a non-increasing function for all t ≥ 0

dE (t)

dt
= −‖∇ut‖22 − ‖∇vt‖22 − ‖∇ut‖

β1

β1
− ‖∇vt‖β2

β2

−a1‖ut‖mm − a2‖vt‖rr −m2
1 ‖u‖

2
2 −m

2
2 ‖v‖

2
2 . (2.10)

Proof. We multiply the first equation in (1.1) by ut and second equation by vt and
integrate over Ω, using integration by parts, we obtain (2.10). �

3. Global nonexistence result

In this section, we prove that, under some restrictions on the initial data and
under som restrictions on the parameter α, β1, β2,m, r, then the lifespan of solution
of problem (1.1)- (1.3) is finite

Theorem 3.1. Suppose that β1, β2, m, r ≥ 2, α > 2, ρ > −1 such that β1, β2 < α, and
max {m, r} < 2(ρ + 2) < rα, where rα is the Sobolev critical exponent of W 1,α

0 (Ω) .
defined in (2.4). Assume further that

E (0) < E1, (‖∇u0‖αα + ‖∇v0‖αα)
1
α +m2

1 ‖u0‖22 +m2
2 ‖v0‖22 > ζ1.

Then, any weak solutions of (1.1)-(1.3) cannot exist for all time. Here the constants
E1 and ζ1 are defined in (3.1).
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In order to prove our result and for the sake of simplicity, we take b1 = b2 = 1
and introduce the following

B = η
1

2(ρ+2) , ζ1 = B
−2(ρ+2)

2(ρ+2)−α , E1 =

(
1

α
− 1

2 (ρ+ 2)

)
ζα1 , (3.1)

where η is the optimal constant in (2.5).
The following lemma allows us to prove a blow up result for a large class of initial
data. This lemma is similar to the one in [17] and has its origin in [18]

Lemma 3.2. Let (u, v) be a solution of (1.1)-(1.3). Assume that α > 2,
ρ > −1. Assume further that E (0) < E1 and

(‖∇u0‖αα + ‖∇v0‖αα)
1
α +m2

1 ‖u0‖22 +m2
2 ‖v0‖22 > ζ1. (3.2)

Then there exists a constant ζ2 > ζ1 such that

(‖∇u‖αα + ‖∇v‖αα)
1
α +m2

1 ‖u‖
2
2 +m2

2 ‖v‖
2
2 > ζ2, (3.3)

and [
‖u+ v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2

] 1
2(ρ+2) ≥ Bζ2, ∀t ≥ 0. (3.4)

Proof. We first note, by (2.3) and the definition of B, that

E (t) ≥ 1

α
(‖∇u‖αα + ‖∇v‖αα) +m2

1 ‖u‖
2
2 +m2

2 ‖v‖
2
2

− 1

2 (ρ+ 2)

[
|u+ v|2(ρ+2)

+ 2 |uv|ρ+2
]

≥ 1

α
(‖∇u‖αα + ‖∇v‖αα) +m2

1 ‖u‖
2
2 +m2

2 ‖v‖
2
2

− η

2 (ρ+ 2)
(‖∇u‖αα + ‖∇v‖αα)

2(ρ+2)
α

≥ 1

α
ζα − η

2 (ρ+ 2)
ζ2(ρ+2), (3.5)

where ζ =
[
‖∇u‖αα + ‖∇v‖αα +m2

1 ‖u‖
α
α +m2

2 ‖v‖
α
α

] 1
α . It is not hard to verify that g

is increasing for 0 < ζ < ζ1, decreasing for ζ > ζ1, g (ζ)→ −∞ as ζ → +∞, and

g (ζ1) =
1

α
ζα1 −

B2(ρ+2)

2 (ρ+ 2)
ζ

2(ρ+2)
1 = E1,

where ζ1 is given in (3.1). Therefore, since E (0) < E1, there exists ζ2 > ζ1 such that
g (ζ2) = E (0) .

If we set ζ0 = [‖∇u (0) ‖αα + ‖∇v (0) ‖αα]
1
α + m2

1 ‖u (0)‖22 + m2
2 ‖v (0)‖22 , then by (3.5)

we have g (ζ0) ≤ E (0) = g (ζ2) , which implies that ζ0 ≥ ζ2.
Now, establish (3.3), we suppose by contradiction that

(‖∇u0‖αα + ‖∇v0‖αα)
1
α +m2

1 ‖u0‖22 +m2
2 ‖v0‖22 < ζ2,
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for some t0 > 0; by the continuity of ‖∇u (.)‖αα+‖∇v (.) ‖αα+m2
1 ‖u (.)‖22 +m2

2 ‖v (.)‖22
we can choose t0 such that

(‖∇u (t0) ‖αα + ‖∇v (t0) ‖αα)
1
α +m2

1 ‖u (t0)‖22 +m2
2 ‖v (t0)‖22 > ζ1.

Again, the use of (3.5) leads to

E (t0) ≥ g (‖∇u (t0) ‖αα + ‖∇v (t0) ‖αα) +m2
1 ‖u (t0)‖22 +m2

2 ‖v (t0)‖22 > g (ζ2) = E (0) .

This is impossible since E (t) ≤ E (0) , for all t ∈ [0, T ) . Hence, (3.3) is established.
To prove (3.4), we make use of (2.3) to get

1

α
(‖∇u0‖αα + ‖∇v0‖αα) +m2

1 ‖u0‖22 +m2
2 ‖v0‖22

≤ E (0) +
1

2 (ρ+ 2)

[
‖u+ v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2

]
.

Consequently, (3.3) yields

1

2 (ρ+ 2)

[
‖u+ v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2

]
≥ 1

α
(‖∇u‖αα + ‖∇v‖αα)− E (0)

≥ 1

α
ζα2 − E (0)

≥ 1

α
ζα2 − g (ζ2) (3.6)

=
B2(ρ+2)

2 (ρ+ 2)
ζ

2(ρ+2)
2 .

Therefore, (3.6) and (3.1) yield the desired result. �

Proof. (of Theorem 3.1). We suppose that the solution exists for all time and set

H (t) = E1 − E (t) . (3.7)

By using (2.3) and (3.7) we get

H
′
(t) = ‖∇ut‖22 + ‖∇vt‖22 + ‖∇ut‖β1

β1
+ ‖∇vt‖β2

β2

+a1‖ut‖mm + a2‖vt‖rr +m2
1 ‖u‖

2
2 +m2

2 ‖v‖
2
2 .

From (2.10), It is clear that for all t ≥ 0, H
′
(t) > 0. Therefore, we have

0 < H (0) ≤ H (t) = E1 −
1

2

(
‖ut‖22 + ‖vt‖22 +m2

1 ‖u‖
2
2 +m2

2 ‖v‖
2
2

)
− 1

α
(‖∇u‖αα + ‖∇v‖αα)

+
1

2 (ρ+ 2)

[
‖u+ v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2

]
. (3.8)

From (2.3) and (3.3), we obtain, for all t ≥ 0,

E1 −
1

2

(
‖ut‖22 + ‖vt‖22 +m2

1 ‖u‖
2
2 +m2

2 ‖v‖
2
2

)
− 1

α
(‖∇u‖αα + ‖∇v‖αα)

< E1 −
1

α
ζα1 = − 1

2 (ρ+ 2)
ζα1 < 0.
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Hence,

0 < H (0) ≤ H (t) ≤ 1

2 (ρ+ 2)

[
‖u+ v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2

]
, ∀t ≥ 0.

Then by (2.2), we have

0 < H (0) ≤ H (t) ≤ c1
2 (ρ+ 2)

[
‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2)

]
, ∀t ≥ 0. (3.9)

We then define

L (t) = H1−σ (t) + ε

∫
Ω

(uut + vvt))dx, (3.10)

for ε small to be chosen later and

0 < σ ≤ min

{
1

2
,

α−m
2 (ρ+ 2) (m− 1)

,
α− r

2 (ρ+ 2) (r − 1)
,

(α− 2)

2 (ρ+ 2)
,

α− β1

2 (ρ+ 2) (β1 − 1)
,

α− β2

2 (ρ+ 2) (β2 − 1)

}
. (3.11)

Our goal is to show that L (t) satisfies the differential inequality (1.7). Indeed, taking
the derivative of (3.10), using (1.1) and adding subtracting εkH(t), we obtain

L
′
(t) = (1− σ)H−σ (t)H

′
(t) + εkH (t)

+ε

(
1 +

k

2

)(
‖ut‖22 + ‖vt‖22 +m2

1 ‖u‖
2
2 +m2

2 ‖v‖
2
2

)
+ε (1− k)

∫
Ω

F (u, v)− εkE1 (3.12)

−ε
∫

Ω

∇u∇utdx− ε
∫

Ω

∇v∇vtdx

+ε

(
k

α
− 1

)
(‖∇u‖αα + ‖∇v‖αα)

−ε
∫

Ω

|∇ut|β1−2∇ut∇udx− ε
∫

Ω

|∇vt|β2−2∇vt∇vdx

−εa1

∫
Ω

|ut|m−2
utudx− εa2

∫
Ω

|vt|r−2
vtvdx.

We then exploit Young’s inequality to get for µi, λi, δi > 0 i = 1, 2∫
Ω

∇u∇utdx ≤
1

4µ1
‖∇u‖22 + µ1 ‖∇ut‖22 ,∫

Ω

∇v∇vtdx ≤
1

4µ2
‖∇v‖22 + µ2 ‖∇vt‖22 , (3.13)

and ∫
Ω

|∇ut|β1−1∇udx ≤ λβ1

1

β1
‖∇u‖β1

β1
+
β1 − 1

β1
λ
−β1/(β1−1)
1 ‖∇ut‖β1

β1
,∫

Ω

|∇vt|β2−1∇vdx ≤ λβ2

2

β2
‖∇v‖β2

β2
+
β2 − 1

β2
λ
−β2/(β2−1)
2 ‖∇vt‖β1

β1
, (3.14)
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and also ∫
Ω

|ut|m−2
utudx ≤

δm1
m
‖u‖mm +

m− 1

m
δ
−m/(m−1)
1 ‖ut‖mm ,∫

Ω

|vt|r−2
vtvdx ≤

δr2
r
‖v‖rr +

r − 1

r
δ
−r/(r−1)
2 ‖vt‖rr . (3.15)

A substitution of (3.13)-(3.15)) in (3.12) and using (2.2) yields

L
′
(t) ≥ (1− σ)H−σ (t)H

′
(t) + εkH (t)

+ε

(
1 +

k

2

)(
‖ut‖22 + ‖vt‖22 +m2

1 ‖u‖
2
2 +m2

2 ‖v‖
2
2

)
+ε

(
c0

2 (ρ+ 2)
− kc1

2 (ρ+ 2)

)(
‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2)

)
− εkE1

− ε

4µ1
‖∇u‖22 − µ1ε ‖∇ut‖22 −

ε

4µ2
‖∇v‖22 − εµ2 ‖∇vt‖22

+ε

(
k

α
− 1

)
(‖∇u‖αα + ‖∇v‖αα)

−ελ
β1

1

β1
‖∇u‖β1

β1
− εβ1 − 1

β1
λ
−β1/(β1−1)
1 ‖∇ut‖β1

β1

−ελ
β2

2

β2
‖∇v‖β2

β2
− εβ2 − 1

β2
λ
−β2/(β2−1)
2 ‖∇vt‖β1

β1

−a1ε
δm1
m
‖u‖mm − a1ε

m− 1

m
δ
−m/(m−1)
1 ‖ut‖mm

−a2ε
δr2
r
‖v‖rr − a2ε

r − 1

r
δ
−r/(r−1)
2 ‖vt‖mm . (3.16)

Let us choose δ1, δ2, µ1, µ2, λ1, and λ2 such that

δ
−m/(m−1)
1 = M1H

−σ (t)

δ
−r/(r−1)
2 = M2H

−σ (t)

µ1 = M3H
−σ (t)

µ2 = M4H
−σ (t)

λ
−β1/(β1−1)
1 = M5H

−σ (t)

λ
−β2/(β2−1)
2 = M6H

−σ (t) ,

(3.17)

for M1, M2, M3, M4, M5 and M6 large constants to be fixed later. Thus, by using
(3.17), and for

M = M3 +M4 + (β1 − 1)M5/β1 + (β2 − 1)M6/β2 + (m− 1)M1/m+ (r − 1)M2/r,
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then, inequality (3.16) takes the form

L
′
(t) ≥ ((1− σ)− εM)H−σ (t)H

′
(t) + εkH (t)

+ε

(
1 +

k

2

)(
‖ut‖22 + ‖vt‖22 +m2

1 ‖u‖
2
2 +m2

2 ‖v‖
2
2

)
+ε

(
c0

2 (ρ+ 2)
− kc1

2 (ρ+ 2)

)(
‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2)

)
−εkE1 + ε

(
k

α
− 1

)
(‖∇u‖αα + ‖∇v‖αα)

− ε

4M3
Hσ (t) ‖∇u‖22 −

ε

4M4
Hσ (t) ‖∇v‖22

−a1ε

m
M
−(m−1)
1 Hσ(m−1) (t) ‖u‖mm

−a2ε

r
M
−(r−1)
2 Hσ(r−1) (t) ‖v‖rr

−εM
−(β1−1)
5

β1
Hσ(β1−1) (t) ‖∇u‖β1

β1

−εM
−(β2−1)
6

β2
Hσ(β2−1) (t) ‖∇u‖β2

β2
. (3.18)

We then use the two embedding

L2(ρ+2) (Ω) ↪→ Lm (Ω) ,W 1,α
0 ↪→ L2(ρ+2) (Ω) ,

and (3.9) to get

Hσ(m−1) (t) ‖u‖mm ≤ c2(‖u‖2σ(m−1)(ρ+2)+m
2(ρ+2)

+ ‖v‖2σ(m−1)(ρ+2)
2(ρ+2) ‖u‖m2(ρ+2))

≤ c2(‖∇u‖2σ(m−1)(ρ+2)+m
α

+ ‖∇v‖2σ(m−1)(ρ+2)
α ‖∇u‖mα ). (3.19)

Similarly, the embedding L2(ρ+2) (Ω) ↪→ Lr (Ω) , W 1,α
0 ↪→ L2(ρ+2) (Ω) and (3.9) give

Hσ(r−1) (t) ‖v‖rr ≤ c3(‖v‖2σ(r−1)(ρ+2)+r
2(ρ+2)

+ ‖u‖2σ(r−1)(ρ+2)
2(ρ+2) ‖v‖r2(ρ+2))

≤ c3(‖∇v‖2σ(r−1)(ρ+2)+r
α

+ ‖∇u‖2σ(r−1)(ρ+2)
α ‖∇v‖rα). (3.20)

Furthermore, the two embedding W 1,α
0 ↪→ L2(ρ+2) (Ω) , Lα(Ω) ↪→ L2(Ω), yields

Hσ (t) ‖∇u‖22 ≤ c4

(
‖u‖2σ(ρ+2)

2(ρ+2) ‖∇u‖
2
2 + ‖v‖2σ(ρ+2)

2(ρ+2) ‖∇u‖
2
2

)
≤ c4

(
‖∇u‖2σ(ρ+2)+2

α + ‖∇v‖2σ(ρ+2)
α ‖∇u‖2α

)
, (3.21)
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and

Hσ (t) ‖∇v‖22 ≤ c5

(
‖∇u‖2σ(ρ+2)

α ‖∇v‖2α + ‖∇v‖2σ(ρ+2)
α ‖∇v‖2α

)
(3.22)

= c5

(
‖∇u‖2σ(ρ+2)

α ‖∇v‖2α + ‖∇v‖2σ(ρ+2)+2
α

)
.

Since max(β1, β2) < α then we have

Hσ(β1−1) (t) ‖∇u‖β1

β1
≤ c6(‖∇u‖2σ(β1−1)(ρ+2)

α ‖∇u‖β1

α

+ ‖∇v‖2σ(β1−1)(ρ+2)
α ‖∇u‖β1

α )

= c6(‖∇u‖2σ(β1−1)(ρ+2)+β1

α

+ ‖∇v‖2σ(β1−1)(ρ+2)
α ‖∇u‖β1

α ), (3.23)

and

Hσ(β2−1) (t) ‖∇v‖β2

β2
≤ c7(‖∇u‖2σ(β2−1)(ρ+2)

α ‖∇v‖β2

α

+ ‖∇v‖2σ(β2−1)(ρ+2)
α ‖∇v‖β2

α )

= c7(‖∇u‖2σ(β2−1)(ρ+2)
α ‖∇v‖β2

α

+ ‖∇v‖2σ(β2−1)(ρ+2)+β2

α ), (3.24)

for some positive constants c2, c3, c4, c5, c6 and c7. By using (3.11) and the algebraic
inequality

zν ≤ (z + 1) ≤
(
1 + 1

a

)
(z + a) , ∀z ≥ 0, 0 < ν ≤ 1, a ≥ 0. (3.25)

We have, for all t ≥ 0,

‖∇u‖2σ(m−1)(ρ+2)+m
α ≤ d (‖∇u‖αα +H (0)) ≤ d (‖∇u‖αα +H (t))

‖∇v‖2σ(r−1)(ρ+2)+r
α ≤ d (‖∇v‖αα +H (t))

‖∇u‖2σ(ρ+2)+2
α ≤ d (‖∇u‖αα +H (t))

‖∇v‖2σ(ρ+2)+2
α ≤ d (‖∇v‖αα +H (t))

‖∇u‖2σ(β1−1)(ρ+2)+β1

α ≤ d (‖∇u‖αα +H (t))

‖∇v‖2σ(β2−1)(ρ+2)+β2

α ≤ d (‖∇v‖αα +H (t)) ,

(3.26)

where d = 1 + 1/H (0).
Also keeping in mind the fact that max(m, r) < α, using Yong’s inequality, the
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inequality (3.25) togrther withe (3.11), we conclude

‖∇v‖2σ(m−1)(ρ+2)
α ‖∇u‖mα ≤ C (‖∇v‖αα + ‖∇u‖αα)

‖∇u‖2σ(r−1)(ρ+2)
α ‖∇v‖rα ≤ C (‖∇u‖αα + ‖∇v‖αα)

‖∇v‖2σ(ρ+2)
α ‖∇u‖2α ≤ C (‖∇v‖αα + ‖∇u‖αα)

‖∇u‖2σ(ρ+2)
α ‖∇v‖2α ≤ C (‖∇u‖αα + ‖∇v‖αα)

‖∇v‖2σ(β1−1)(ρ+2)
α ‖∇u‖β1

α ≤ C (‖∇v‖αα + ‖∇u‖αα)

‖∇u‖2σ(β2−1)(ρ+2)
α ‖∇v‖β2

α ≤ C (‖∇u‖αα + ‖∇v‖αα) ,

(3.27)

where C is a generic positive constant. Taking into account (3.19)- (3.27), then (3.18)
takes the form

L
′
(t) ≥ ((1− σ)− εM)H−σ (t)H

′
(t)

+ε

(
1 +

k

2

)(
‖ut‖22 + ‖vt‖22 +m2

1 ‖u‖
2
2 +m2

2 ‖v‖
2
2

)
+ε(

[
k/α− 1− kE1ζ

−a
2

]
− CM−(m−1)

1 − CM−(r−1)
2

−C
4
M−1

3 − C

4
M−1

4 − CM−(β1−1)
5

−CM−(β2−1)
6 − 1) (‖∇u‖αα + ‖∇v‖αα)

+ε

(
k − CM−(m−1)

1 − CM−(r−1)
2 − C

4
M−1

3 − C

4
M−1

4

−CM−(β1−1)
5 − CM−(β2−1)

6

)
H (t)

+ε

(
c0

2 (ρ+ 2)
− kc1

2 (ρ+ 2)

)(
‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2)

)
, (3.28)

for some constant k. Using k = c0/c1, we arrive at

L
′
(t) ≥ ((1− σ)− εM)H−σ (t)H

′
(t)

+ε

(
1 +

c0
2c1

)(
‖ut‖22 + ‖vt‖22 +m2

1 ‖u‖
2
2 +m2

2 ‖v‖
2
2

)
+ε

(
c− CM−(m−1)

1 − CM−(r−1)
2 − C

4
M−1

3 − C

4
M−1

4

−CM−(β1−1)
5 − CM−(β2−1)

6 − 1
)

(‖∇u‖αα + ‖∇v‖αα)

+ε

(
c0/c1 − CM−(m−1)

1 − CM−(r−1)
2 − C

4
M−1

3 − C

4
M−1

4

−CM−(β1−1)
5 − CM−(β2−1)

6

)
H (t) , (3.29)
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where c = k/α− 1− kE1ζ
−2
2 = c0/ (c1α)− 1− (c0/c1)E1ζ

−2
2 > 0 since ζ2 > ζ1.

At this point, and for large values of M1, M2, M3, M4, M5 and M6, we can find
positive constants Λ1 and Λ2 such that (3.29) becomes

L
′
(t) ≥ ((1− σ)−Mε)H−σ (t)H

′
(t)

+ε

(
1 +

c0
2c1

)(
‖ut‖22 + ‖vt‖22 +m2

1 ‖u‖
2
2 +m2

2 ‖v‖
2
2

)
+εΛ1 (‖∇u‖αα + ‖∇v‖αα) + εΛ2H (t) . (3.30)

Once M1, M2, M3, M4, M5 and M6 are fixed (hence, Λ1 and Λ2), we pick ε small
enough so that ((1− σ)−Mε) ≥ 0 and

L (0) = H1−σ (0) +

∫
Ω

[u0.ut + v0.vt] dx > 0.

From these and (3.30) becomes

L
′
(t) ≥ εΓ(H (t) + ‖ut‖22 + ‖vt‖22 +m2

1 ‖u‖
2
2 +m2

2 ‖v‖
2
2

+ ‖∇u‖αα + ‖∇v‖αα). (3.31)

Thus, we have L (t) ≥ L (0) > 0, for all t ≥ 0. Next, by Holder’s and Young’s
inequalities, we estimate(∫

Ω

u.ut (x, t) dx+

∫
Ω

v.vt (x, t) dx

) 1
1−σ

≤ C

(
‖u‖

τ
1−σ
2(ρ+2) + ‖ut‖

s
1−σ
2 + ‖v‖

τ
1−σ
2(ρ+2) + ‖vt‖

s
1−σ
2

)
≤ C

(
‖∇u‖

τ
1−σ
α + ‖ut‖

s
1−σ
2 + ‖∇v‖

τ
1−σ
α + ‖vt‖

s
1−σ
2

)
, (3.32)

for
1

τ
+

1

s
= 1. We take s = 2 (1− σ) , to get

τ

1− σ
=

2

1− 2σ
.

By using (3.11) and (3.25) we get

‖∇u‖

2

(1− 2σ)
α ≤ d (‖∇u‖αα +H (t)) ,

and

‖∇v‖

2

(1− 2σ)
α ≤ d (‖∇v‖αα +H (t)) , ∀t ≥ 0.

Therefore, (3.32) becomes(∫
Ω

u.ut (x, t) dx+

∫
Ω

v.vt (x, t) dx

) 1
1−σ

≤ C(‖∇u‖αα + ‖∇v‖αα + ‖ut‖22 + ‖vt‖22
+m2

1 ‖u‖
2
2 +m2

2 ‖v‖
2
2 +H (t)),∀t ≥ 0. (3.33)
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Also, since

L
1

1−σ (t) =

(
H1−σ (t) + ε

∫
Ω

(u.ut + v.vt) (x, t) dx

) 1
(1−σ)

≤ C

H (t) +

∣∣∣∣∫
Ω

(u.ut (x, t) + v.vt (x, t)) dx

∣∣∣∣
1

(1−σ)


≤ C[H (t) + ‖∇u‖αα + ‖∇v‖αα + ‖ut‖22 + ‖vt‖22

+m2
1 ‖u‖

2
2 +m2

2 ‖v‖
2
2], ∀t ≥ 0. (3.34)

Combining withe (3.34) and (3.31), we arrive at

L
′
(t) ≥ a0L

1
1−σ (t) , ∀t ≥ 0. (3.35)

Finally, a simple integration of (3.35) gives the desired result.This completes the proof
of Theorem (3.1) �
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