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REZUMAT. - Asupra perioadei mişcării cvasicirculare într-un câmp 
gravitaţional post-newtonian sferic. Utilizându-se' teona clasică a 
perturbaţiilor, se studiază evoluţia perioadei nodale în raport cu perioada 
kepleriană corespunzătoare în mişcarea cvasicirculară a unei particule de probă 
într-un câmp gravitaţional post-newtonian sferic (caracterizat de parametri a , 
P, y). Se deduc analitic (cu o precizie de ordinul întâi în excentricitate) 
perturbaţiile relativiste de ordinele întâi şi al doilea ale perioadei nodale. 
Considerându-se cazul câmpului post-newtonian sferic al lui Einstein (P = y =
1), se discută evoluţia perioadei nodale pentru trei valori ale parametrului a , 
atât în cazul general, cât şi în două cazuri particulare. Se discută, de asemenea, 
influenţa aceluiaşi câmp Einstein asupra mişcării circulare, în trei sisteme de 
coordonate diferite.

Introduction. One of the oldest methods intended to study the motion in 

a post-Newtonian (not necessarily relativistic) field used the classic theory of 

perturbations. According to this method, the force acting on a test particle in 

such a field is written as a sum of two terms: the Newtonian attraction and a 

post-Newtonian perturbing force, while the deviations of the orbit from a 

Keplerian orbit are regarded as perturbations (e g. [2]).

Such a method was used by different authors (e g. [3-5]) to determine first
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order relativistic changes of some Keplerian orbital parameters over one 

anomalistic period. First and second order perturbations in orbital elements over 

one nodal period were determined in [1, 9, 10] for different relativistic and 

nonrelativistic post-Newtonian fields.

Few authors dealt with the nodal period behaviour in such a field. An 

approximate formula for the nodal period as functio. of the orbital elements was 

given in [5], for,the Schwarzschild field, but without expressing the variation of 

this period. The first and second order changes of the nodal pen jd were 

obtained in [10,11] for the Mücket-Treder field, in [1,7] for the Schwarzschild 

- de Sitter field, and in [9] for Fock’s field.

In this paper we shall treat perturbatively the quasi-circular motion of a 

test particle in a spherical post-Newtonian gravitational field. We shall determine 

the first and second order relativistic perturbations of the nodal period.

Notice that the orbits are in fact unperturbed in the considered field, but 

we shall hereafter use, by abuse of language, a perturbation theory terminology.

2. Starting equations. Let a central body of mass M  be the source which 

generates a spherical post-Newtonian gravitational field, and let p = G M  be its
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gravitational parameter (G. = gravitational constant). Consider a test particle 

orbiting M  under the action of this field. The relative motion of the test particle 

can be described in coordinates (t, x) in the form [12]

dV Idt  * - p x /r 3 + aPN. (1)

The left-hand side of the above equation is the total acceleration of the test 

particle. The first term in the right-hand side is nothing but the Newtoniar. 

attraction per unit mass (r = radial coordinate), while aPN is the virtual 

perturbing post-Newtonian acceleration, which has the expression (e.g. [12]; see 

also [13])

aPN= (p /c 2)(2 (P  + y - 2 a ) p x /r 4 -  (y + a )(J '* /r3)x  +

+ 3 a ( x - V f x / r 3 + 2(y + 1 -  a ) ( x ‘ V ) V / r 3), (2)
\

where c = speed of light; a  = gauge parameter [3]; (3, y are the Eddington- 

Robertson parameters [14]: (3 = post-Newtonian parameter describing the amout 

of nonlinearity of the gravitational field, y = post-Newtonian parameter 

describing the space curvature.

Choose a reference frame originated in the mass centre of the body M\ 
and feature the motion of the test particle with respect to this frame throung the 

Keplerian orbital parameters (y E Y; u},  all time-dependent, where
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Y = { p ,  q -  ecosco, k = esinco, £2, /} (3)

and p  = semilatus rectum, e = eccentricity, co = argument of pericentre, Q = 

longitude of ascending note, / = inclination, u = argument of latitude.

For our purposes we shall use the definition relation of the nodal period

and Newton-Euler equations written with respect to in the form(e.g. [1 ,9 ,10])

dp I du -  2(Z/p) r 3r,

dq/du = (Z/p)(r3kB C W /(p D )  + r 2T(r(q  + A )lp  + A) + r 2B. ), 

dk/du = (Z /p)(~r3q B C W /(p D )  + r 2T(r(k  + B)/p + B) -  r 2A S ) ,

where Z = (1 -  r 2CÙ/(\ip)my \  A  = cos u, B = sinu, C = co s/, D  = sin/, 

S, T, W = radial, transverse, and binormal components of the perturbing 

acceleration, respectively.

The change of y  E Y between the initial (t/0) and current (u) positions, 

which will be used below, is

2n
Ta = Udt!du)du (4)

dQ/du = CZI\i)r3B W I ( p J ), (5)

dit du = (Z/\ï)r3AW/p,

dt/du -  Z r2(pp)'1/2,

w

(6 )

104



ON A PERIOD OF QUASI-CIRCULAR MOTION

with the integrands given by (5). The integrals are estimated by successive 

approximations, with Z «  1.

3. Perturbing acceleration and corresponding equations of motion. The

components of the perturbing acceleration aPN have the following expressions

[12]

S  = (p /c2)(p /(a 3(l - e 2)3) ) ( l  +ecosv)2((2|5 +y - 3 a )  +

+ (v + 2 ) e 2 + 2 (P -2 a )e c o s v  -  ( 2 y + 2 - a ) e 2cos2v), (7)

T « 2 (p /c2)(p /(a 3(l - e 2)3)) ( l  +ecosv)3(Y + l -a ) e s in v ,

W = 0,

with a = semimajor axis, v = true anomaly.

Replacing in (7) the well-known formulae

P = a{ 1 - e 2), (8)

u = o> + v, (9)

the definition expression of q and k, and the orbit equation in polar coordinates

r = p/( 1 + ecosv), (10)

then retaining only terms to first order in q and k (because we deal with quasi- 

circular orbits), the components of the perturbing acceleration reduce to
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S  = ( ii2/(c2p r 2))(Ll + L 2A q + L 2B k \

T -  (\t?/(c2r 3))L3(Bq -  Ak), (11)

W = 0,

where we abbreviated

L, = 20 + y -  3a,

Z,2 = 2 ( 0 - 2a), (12)

L, = 2(Y + l - a ) .

Focus now our attention to equations (5). It is easy to observ», by the

fourth and the sixth equations (5) and by the expression of Z, that Z = 1

(because W = 0). Substituting (11) in (5), using (1 /) in the equivalent form

r = p!{\ + A q  + Bk), (13)

and performing all necessary calculations, the equations of motion become

dpi du = 2 (\i/c2) L 3(Bq -  Ak),

dqldu = p/(c2/>))(£ ,£  -  (L2 + I L J A B q  + (L2B 2-  2L3A 2)k), 
dk/du = ~(pl(c2p )){ L xA  + (L2A 2 -  2L 3B 2)q + (L2 + 2L3) A B k \  (14)

dQIdu  = 0, 

di/du -  0,

dtldu = /?(p/g)l/2(l + + 5  A:)*2.

1 0 6
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4. Variations of orbital elements. Let us now perform the integrals (6) 

with the integrands provided by the first five equations (14). We use the 

successive approximations method, limiting the process to the first order 

approximation. Accordingly, we consider y  = y0 = A uo)> y ^ Y ,  in the right-hand 

side of equations (14), and integrate these ones separately. Performing the 

integrations, and denoting

* = p /(c2p0) (15)

and

bx = L3 = 2(y + 1 -  a ) ,

b2 - L x -  2 p + Y - 3 « ,  (16,

b3 = (L2 + 2L3)I2 = p + 2y + 2 -  4 a , 

b4 -  (L2 -  2L3)i2 -  p - 2y -  2, 

we get the first order (in x) relativistic changes

AP  = 2xp0bi( - A q 0 -  Bk0 + A 0q0 + B0k0\

Aq -  x ( - b 2A + b3B 2q0 -  (b3A B  -  b4u)k0 +

+ Mû * MoV + (Mo50 - M0)M
AJt = x ( -6 2Æ -  (6.^15 + b4u)q0 -  635 2fc0 + (17)

+ Mo + (MofiC + bAUo)% + W O W
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AQ = 0,

a 4 - o,

where, obviously, A 0 = A(u0), B0 = B(u0).

Observe that, due to the post-Newtonian conservation of the angular 

momentum, the motion is restricted to a fixed plane (see the last two 

expressions (17)).

Although this is not the goal of our paper, let us examine briefly what 

changes ubdergoes the orbit over one nodal period (that is, lettin; u vary 

between 0 and 2ji). Putting u0 = 0, u = 2n in (17), the first three expressions 

become

A p  = 0,

A q = 2 n xb 4k0, (18)

A k = - 2 n x b 4q0.

Observing that for quasi-circular orbits p  - a , using the definitions of q and k, 
and taking into account the last notation (16), relations (18) lead easily to

A a = 0,

Ae = 0, ( i '■.

Ate = - 2 nx(fi -  2y -  2).

1 0 8
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This means that the only first order relativistic effect in the considered field 

consists o f a rotation of the orbit in its plane (apsidat motion). If we 

particularize the field to the spherical Einstein post-Newtonian gravitational field 

(P = Y -  1). then, taking into account (15), the last formula (19) reads

that is, the well-known expression for the relativistic shift of pericentre.

5. Nodal period. Now, let us come back to the main purpose of our 

paper. As shown in Section 1, we shall determine the first and second order (in 

jc) relativistic perturbations o f the nodal period. To do that, we shall resort to the 

method proposed in [15], extended in [6], and generalized in [8] for some 

special situations.

According to this method, to second order in a small parameter 

characterizing the perturbing factor, the nodal period is given by

where T0 (the Keplerian period corresponding to u0) is determined from (see (4) 

and the last equation (14))

At» -  6 j ip /( c 2/?0), (20)

(21)

(22)
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with the abbreviation g = g(u) = 1 + A q0 + Bk0.

The general expression of A{T and A27'were given and explicited in [6, 

7] and will not be repeated here. We shall directly particularize them to our 

perturbing factor (taking into account, for the beginning, the fact that W = 0 and 

the small parameter is just x).

The first order (in jc) perturbation of the noda' period has (in our case) the

form

with [6]

\ T  = p0(p0/p ) '* (-2 /? - 2 / i + ( 3 / 2 ) / > 0), (23)

231
= \g-2k p d u ,

2n
Ia = j g ^ A A q d u , (24)

2n

' • ’ I 1
g ' 3B A k d u .

The second order (in jc) perturbation of the nodal period has (in our case)

the form

n o

A2r  = 3A)(p0/p)i,2(/w - / tt + 2/flA

(2 5 )
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with [6]
2i>

W ;g ' 2(Ap)2du,

W 1= (g~4A 2(àq)2du,

2n

' * ’ 1'
= \g~AB \ tik 'fd u ,

2n
g ^ A A p A q  du,

2n

W '
2n

g ^ A B A q A k d u .

(2 6 )

6 . Results. R ep la c in g  (1 7 )  in  (2 4 )  and (2 6 ), exp an d in g  g  n «  2 7 4 ,  to  

first order in  <70, Ar0, and perform ing the in tegrations, form u lae  (2 4 ) and (2 6 )  

b eco m e resp ec tiv e ly

Ip -  A n x p ^ ^ A ^  + B0k0\  
l q = -jix62(1 + 3 A 0q0), (27)

h  = -JtJC(62 -  264^0 + 3b2B0k0), 
and

/. 0 .

i l l
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/„  ■ Jix2*2(* 2(3/4 + 4 ? ) + (6 *2 *  *,(1/2 -  2Ba ))A0q0 *

* w , A Bo * *<(“  -  “<,)M<A).

l „  -  jij i *2(*2(3/4 * B„2) ♦ 2 ((M „ fl0 -  * >  -  »,))«„ -

-  4*4/3 )î 0 ♦ (6*2 -  *,(3/2 * 2 B i))B tk0), (28)

/„  -  ~ 2 n x 2p0bl b2(2A0q0 *  B0*0),

Ip -  -2 * x 2p0b,b1(A<lq0 * 2 

/„  -  x x 2b ,( b ,U  * ((*2 -  6,/4 * bAl2)A0 -  2bar$)q0 *

+ (» , -  » , «  -  *4/2 )«„*„).

-With these expressions, (23) acquires the form

A ,r = 2np0(pJ\k)mx(2b2 -  (2b4 -  3, + 62)i40)gr0 +

+ 3(6, + 62)fl0*0), (29)

while (25) becomes

A2T « 3 np0(p0/\i)mx 2b2(3b2 -  (464 -  (66, + 8 62 + 64)^ 0 +

+ 264(ji -  u0)B0)g0 + ((66, + 862 -  64)fi0 +

+ 2b/n -  u0)A0)k0). (30)

Finally, replacing (16) in (29) and (30), denoting 

A  -  2 (20  + y -  3 a )  + (2 ( -p  + 2y + 2) + 3(2p + 3y + 2 -  5 a )A 0)g0 *

* 3(20 + 3y + 2  - 5 a ) B 0k0), (31)
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f 2 = (3/2) (20 + y -  3<x)(3 (2 P  + y -  3 a ) + (4 (-0  + 2y + 2) +

+ (170 + 18y + 10 -  3 6 « H  -  2(0 -  2 Y -  2 )(*  -  u0)B0)q0 +

+ ((150 + 22y ♦ 14 -  3 6 a )B0 * 2(0 -  2Y -  2 )(*  -  u0)A0)k0), 
substituting the resulting expressions in (21), and writing (22) to first order in 

?o> *o as

T0 = 2np0(p0/p)'*, (32)

the nodal period (to second order in x) reads

TQ ~ T0(l + x f { + x % ) .  (33)

This is the basic formula we searched for and which will be used in the next 

sections (with f u f 2 provided by (31), and with x  given by (15)).

7. Two particular cases. We shall consider two particular cases: initial 

orbital elements corresponding to ascending node, and initially circular orbit. In 

the first situation we u0, hence A0 = 1, B0 =  0. So, (31) become 

/ ,  -  2 (20  + y -  3 a )  + (40 + 13y + 10 -  1 5 a )q0, 
f 2 = (3 /2 )(20  + y -  3 a )(3 (2 0  + y -  3 a ) + (130 + 26Y + (34)

+ 18 -  36a)q0 + 2ji(0 -  2 Y -  2)&0).

If the initial orbit is circular (of radius p c/y we have q0 = 0 ,  k0 = 0,
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hence (31) acquire the form

/ ,  -  2(2Ş + y -  3a),

A  = ( 9 / 2 ) ( 2 p + Y - 3 a ) 2 (35)

It is easy to see that in this last particular case the perturbation of the nodal 

period does not depend on the initial position of the test particle.

8. Spherical Einstein post-Newtonian field. Consider that the field in 

which the test particle moves is the spherical Einstein post-Newtonian 

gravitational field. In this case P = Y = 1> and formulae (31) read

A  -  3(2(1 -  a ) + (2 + (7 -  5 a )A0)q0 + (7 -  5a )B0k0),

7̂  = (27 /2 )(l - a ) (3 ( l  - a )  +(4+3(5-4a)v40+2(jt-w0)# 0)<70+ (36)

+ ((17 -  1 2 a )5 0 -  2(*  -  u0)A0)k0).

The two particular cases (34) and (35) become respectively 

/ ,  = 3(2 (1  -  a) + ( 9 - 5 a ) * 0),

A  m (27/2 ) ( 1 -  a ) ( 3 ( l  -  a )  + (19 -  12a)^0 -  2nk0), (37)

and

/ ,  = 6 (1  -  a ) ,  f 2 - (8 1 /2 ) (1  -  a )2. (38)

Let us now assign to the gauge parameter a  some particular values, which
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mean some systems of coordinates. The case a  = 0 means the use of standard 

post-Newtonian coordinates (spatially isotropic). Expressions (36) become in this 

case

A  -  3(2 ♦ (2 + l A 0)q0 * 7 B0k0),

A  " (27/2)(3 + (4 + 15^0 + 2 (n -  u0)B0)q0 * (39)

+ ( n B 0 - 2 ( n - u 0)A0)k0),

while the particular cases (37) and (38) becpme respectively

A -  3 (2  + 9q0), A  -  (27/2)(3 + 19^0 -  2nk0), (40)

and

A  "  6 , A  "  81/2 (41>

If we consider a  = 1, namely the spatial standard coordinate system is 

used, formulae (36) read

A  = 6((1 + A0)q0 + B0k0),

A  = 0, (42)

while (37) and (38) acquire respectively the form

A  -  Utfo. / 2 -  0, (43)

and

A  = 0 . / 2 “ 0. (44)
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Lastly, put a  = 2. This value of the gauge parameter leads to 

/ ,  -  _3(2 -  (2 -  3A0)q0 + 3B0k0),

A  = (27/2)(3 -  (4 -  9A0 + 2 (n -  u0)B0)q0 * (45)

+ ( 7B0 + 2 (ic -  u0)A0)k0) 
for the expressions (36), and to

A  -  -3 (2  +.q0), A  = (27/2)(3 + 5q9 * 2nk0\  (46)

and

A  -  / 2 - 81/2 (47)

for the particular cases (37) and (38), respectively.

9. Period behaviour for circular orbits. To end, let us compare the 

nodal period with the corresponding Keplerian period for circular orbits in the 

spherical Einstein post-Newtonian gravitational field. Taking into account (38), 

formula (33) can be written in this situation

7q = r0( l  + (3 /2 ) ( l  -  a )x (4  -  27(1 -  a )* )). (48)

Consider the standard post-Newtonian coordinates (a  = 0); formula (48) 

becomes in this case

Tq = r0( l  + (3/2)x(4 + 21 x)). (49)

116



ON A PERIOD OF QUASI-CIRCULAR MOTION

Since x  is a positive quantity, we have Ta > T0. In other words, for a  = 0 the 

post-Newtonian perturbing force acts to decelerate the motion.

For a  = 1, formula (48) leads immediately to Ta = T0, that is, if we use 

the spatial standard coordinate system, the motion keeps its Keplerian period.

Lastly, for a  = 2, expression (48) reads

Ta = r0( l  -  (3/2)x(4 -  27 x)). (50)

This means that there exists a critical value of jc, x c say, such that for x  =- xc = 

4/27 the nodal period and the corresponding Keplerian period coincide. Having 

in view the expression (15) of x  (with p0 = orbit radius), and recalling the 

expression of the Schwarzschild radius RSch = 2p/c2, the above coincidence 

criterion can be formulated as

Po - (« « )« * * ■  (51)
In other words, for an initial radius smaller than (27/$)RSch the post-Newtonian 

perturbing force acts to decelerate the motion, and conversely. We may therefore 

conclude that for concrete astronomical situations the case a  = 2 entails 

generally an acceleration of the circular motion as against the Keplerian motion.
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