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REZUMAT. - Asupra perioadei migcdirii cvasicirculare intr-un cimp
gravitational post-newtonian sferic. Utilizdndu-se: teoria clasicd a
perturbatiilor, se studiazi evolutia perioadei nodale in raport cu perioada
keplerian# corespunzitoare in migcarea cvasicirculard a unei particule de probi
intr-un cdmp gravitational post-newtonian sferic (caracterizat de parametri a,
B, v). Se deduc analitic (cu o precizie de ordinul intdi in excentricitate)
perturbatiile relativiste de ordinele intdi i al doilea ale perioadei nodale.
Considerindu-se cazul campului post-newtonian sferic al lui Einstein (f =y =
1), se discutii evolutia perioadei nodale pentru trei valori ale parametrului a,
atit in cazul general, cit §i in doud cazuri particulare. Se discutd, de asemenea,
influenta aceluiagi cdmp Einstein asupra migcérii circulare, in trei sisteme de
" coordonate diferite.

. Introduction. One of the oldest methods intended to study the motion in
a post-Newtonian (not necessarily relativistic) field used the classic theory of
perturbations. According to this method, the force acting on a test particle in
such a field is written as a sum of two terms: the Newtonian attraction and a
post-Newtom'an perturbing force, while the deviations of the orbit from a

Keplerian orbit are regarded as perttirbations (e.g. [2]).

Such a method was used by different authors (e.g. [3-5]) to determine first
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order relativistic changes of some Keplerian orbital parameters over one
anomalistic period. First and second order perturbations in orbital elements over
one nodal period were determined in [1, 9, 10] for different relativistic and
nonrelativistic post-Newtonian fields.

Few authors dealt with the nodal period behaviour in such a field. An
approximate formula for the nodal period as functio. of the orbital elements Was
given in [5], for the Schwarzschild field, but without expressing the variation of
this period. ” The first and second order changes of the nodal perisd were
obtained in [10, 11] for the Miicket-Treder field, in [1, 7] for the Schwarzschild
- de Sitter field, and in [9] for Fock’s field.

In this paper we shall treat perturbatively the quasi-circular motion of a
test particle in a spherical post-Newtonian gravitational field. We shall determine
the first and second order relativistic perturbations of the nodal period.

Notice that the orbits are in fact unperturbed in the considered field, but

we shall hereafter use, by abuse of language, a perturbation theory terminology.

2. Starting equations. Let a central body of mass A be the source which

generates a spherical post-Newtonian gravitational field, and let p = GM be its
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‘g_ravitational parameter (G = gravitational constant). Consider a test particle
orbiting M under the action of this field. The relative motion of the test particle
can be described in coordinates (¢, x) in the form [12]
dvidt = -ux/r’ + a,,,. )
The left-hand side of the above equation is the total acceleration of the test
particle. The first term in the right-hand side is nothing but the Newtoniar
attraction per unit mass (r = radial coordinate), while a,, is the virtual
perturbing post-Newtonian acceleration, which has the expression (e.g. [12]; see
also [13])
a,, = (Wc?) (B +Y - 20)ux/r - (y + o) (V/r¥)x +
+*3a(x-Vyxir’+2(y +1-0)(x-V)VIr?), )
wilere ¢ = speed of light; a = gauge parameter [3]; B, y are the Eddington-
Robertson parameters [14]: B = post-Newtonian parameter describing the amout
of nonlinearity of the gravitational field, y = post-Newtonian parameter
describing the space curvature.
Choose a reference frame originated in the mass centre of the body M,
and feature the motion of the test particle with respect to this frame throung the

Keplerian orbital parameters {y € ¥; u}, all time-dependent, where
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Y={p,q =ecosw, k = esinw, Q, i} 3)
and p = semilatus rectum, e = eccentricity, @ = argument of pericentre, Q =
longitude of ascending note, i = inclination, # = argument of latitude.

For our purposes we shall use the definition relati;)n of the nodai period
T, = ]:(dt/ du)du 4)
and Newton-Euler equations written §viﬂ1 respect to in the form(e.g. [1, 9, 10])
dpldu = 2(Z/w)r’T,
dq/du = (Z/u) (r3kBCWI(pD) + r?T(r(q + A)Ip + A) + r*B. ),
dk/du = (ZIw) (-r*qBCWI(pD) + r*T(r(k + B)/p + B) - r?4S),
dQ/du = (ZIWr*BwWi(L D), (5)
dildu = (ZIwr*Awlp,

dt/du

Zri(up)™®,

whereZ = (1 - r2CQ/(up)'?)™, A = cosu, B = sinu, C = cosi, D = sini,
S, T, W = radial, transverse, and binormal components of the perturbing
acceleration, respectively.

The change of y € 7 between the initial (,) and current () positions,

which will be used below, is

Ay = f(dy/a’u)du, y€EY, (6)
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with the integrands given by (5). The integrals are estimated by successive

approximations, with Z =~ 1.

3. Perturbing acceleration and corresponding equations of motion. The
components of the perturbing acceleration a,y have the following expressions
(12]

S = (n/e*)(ui(a*(1 -e?))) (1 +ecosv)’ (2B +y -30) +
+ (y+2)e? + 2(B-2a)ecosv - (2y +2 - a)e?cos?v), (7)
T =2(c?)(ula*(1 -e?)*))(1 +ecosv)’(y +1 - ) esinv,
W =0,
with a = semimajor axis, v = true anomaly.
Replacing in (7) the well-known formulae
p=al -e?), 8)
u=m+v, 9
the definition expression of g and k, and the orbit equation in polar coordinates
r = pl(1 + ecosv), (10)
then retaining only terms to first order in g and k& (because we deal with quasi-

circular orbits), the components of the perturbing acceleration reduce to
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S =( WHc’pr?)) (L, + L,Aq + L,Bk),
T = (Wlc*r’) L(Bq - Ak), amn
W =0,
where we abbreviated
L =28 +y-3a,
L, =2(B - 20), (12)
L=2(y+1-a).

Focus now our attention to equations (5). It is easy to observ., by the
fourth and the sixth equations (5) and by the expression of Z, that Z = 1
(because W = 0). Substituting (11) in (5), using (1.) in the equivalent form

r = p/(1 + Aq + Bk), (13)
and performing all necessary calculations, the equations of motion become
dp/du = 2(n/c?) L,(Bq - Ak),
dg/du = plc*p))(L,B + (L, + 2L,)ABq + (L,B*-2L,A*)k),
dk/du = -(pl(c*p)) (LA + (L,A* -2L,B*)q + (L, + 2L,) ABk), (14)
d/du = 0,
dildu = 0,

dt/du = p(p/W'*(1 + Aq + Bk)™
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4. Variations of orbital elements. Let us now perform the integrals (6)
with the integrands provided by the first five equations (14). We use the
succes§ive approximations method, limiting the process to the first order
approximation. Accordingly, we consider y = y, = (u,), y € Y, in the right-hand
side of equations (14), and integrate these ones separately. Performing the
integrations, and denoting

x = pic?p,) (15)

and

by=L,=2(+1-a),

b,=1L =28 +y-3a, (16,
b, =(L,+2L,)2 =B +2y+2-4aq,
b,=(L,-2L,)I2 =B -2y-2,
we get the first order (in x) relativistic changes
Ap = 2xp,b,(-Aq, - Bk, + A,q, + Byk,),
Ag = x(-b,A + b,B*q, - (b,AB - bu)k, +
+ bA, - b,Blq, + (b,A B, - b,u))k,),
Ak = x(~b,B - (b,AB + b,u)q, - b,B%, + a7)

+ b,B, + (b,A,B, + b,u,)q, + b,Bik,),
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where, obviously, 4, = A(u,), B, = B(u,).

Observe that, due to the post-Newtonian conservation of the angular
momentum, the motion is restricted to a fixed plane (see the last two
expressions (17)).

Although this is not the goal of our paper, let us examine briefly what
changes ubdergoes the orbit over one nodal period (that is, lettin; u vary

between 0 and 2x). Putting 4, = 0, = 2x in (17), the first three expressions

become
Ap =0,
Agq = 2nxb,k,, (18)
Ak = -2mxb,q,.

Observing that for quasi-circular orbits p == a, using the definitions of ¢ and &,

and taking into account the last notation (16), relations (18) lead easily to

>
*
]

=

Aw = 2nx(f - 2y - 2).
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This means that the only first order relativistic effect in the considered field
consists of a rotation of the orbit in its plane (apsidat motion). If we
particularize the field to the spherical Einstein post-Newtonian gravitational field
(B =y =1), then, takiﬁg into account (15), the last formula (19) reads

Aw = 6zpl(c?p,), 20)

that is, the well-known expression for the relativistic shift of pericentre.

5. Nodal period. Now, let us come back to the main purpose of our
paper. As shown in Section 1, we shall determine the first and second order (in
x) relativistic perturbations of the nodal period. To do that, we shall resort to the
method proposed in [15], extended in [6], and generalized in [8] for some
special situations.

Accofding to this method, to second order in a small parameter
characterizing the perturbing factor, the nodal period is given by

T, =T, + AT + AT, 2n
where T, (the Keplerian period corresponding to u,) is determined from (see (4)

and the last equation (14))

2
T, = py(py/m)"? !g 2du, (22)
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with the abbreviation g = g(u) = 1 + Aq, + Bk,.

The general expression of A,7 and A,7’ were given and explicited in [6,
7] and will not be repeated here. We shall directly particularize them to our
perturbing factor (taking into account, for the beginning, the fact that # = 0 and
the small parameter is just x).

The first order (in x) perturbation of the noda’ )eriod has (in our case) the

form
AT = py(p,/0)'? (=21, -21,+(3/2) 1 Ip,), (23)
with 6]
2n
1, = ‘[g‘zApdu,
2
I, = ‘[g-‘é‘AAqdu, (24)

2n
I, = IgﬁBAkdu.

The second order (in x) perturbation of the nodal period has (in our case)
the form
AT = 3p,(py/W)'"* (L, + 1, + 21, -

Ly * L)y + 1 I8Py ), ©(25)
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with [6]

2n
I = {g 2(Ap)du,
2n
I, = Ig*‘A’(Aq)’du,
2n
1, = !g “B2(Ak)ydu, (26)
. 2n

- -3
I Jg AApAq du,

2x
I, = Ig BApAkdu,

2n

I, = J’g “4ABAqAkdu.

' d

6. Results. Replacing (17) in (24) and (26), expanding g ™, n = 2,4, to
first order in g, k,, and performing the integrations, formulae (24) and (26)
become respectively
I, = 4nxpyb,(Ayq, + Byk,),
I, = -nxb,(1 +34,q,), z7
I, = -nx(b, - 2b,9, + 3b,B,k,),

and
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I, = mx2b,(b,(3/4 + A7) + (6b, + by(112 -~ 2B7)) A4, +
+ 2(b,A,B, + b(m - uy))Ak,),
1, = nx2by(b,(3/4 + B}) + 2((byA4,B, - b(m - u,))B, -
- 4b,/3)q, + (6b, - b,(3/12 + 2B}))B,k,), (28)
L, = -2nx2p,b,b,(24,9, + B,k,).
L, = =2nxip,b b(A,q, +2 k)
Iy = nx2b,(b,/4 + ((b, - b,/4 + b,2)A, - 2b,/3)q, +
+ (b, - b,/4 - b,12)Bk,).
With these expressions, (23) acquires the form
AT = 2np,(p,/n)?x(2b, - (2b, -3, + b,)A4,)q, +
+ 3(b, + b,)B,k,), (29)
while (25) becomes
AT = 3npy(p,/n)'?x*b,(3b, - (4b, - (6b, + 8b, + b))A, +
+2b(m - uy))B,)g, + ((6b, + 8b, - b,)B, +
+ 2b,(m - uy)A)k,). (30)
Finally, replacing (16) in (29) and (30), denoting
fi=22B+y-3a) +(2(-B +2y +2) +3(2P + 3y + 2 - Sw)4)q, +

+3(2P +3y +2 -50)Bjk,), (31)
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S=G2)2B +y-30)3@2B +y-3a) + (4(-B+2y+2)+
+ (178 + 18y + 10 - 36)4, - 2(B - 2y - 2)(® - uy)B,)q, +
+ (158 +22y + 14 - 36a)B, + 2(B -2y - 2)(xw - u,)A4,)k,),
substituting the resulting expressions in (21), and writing (22) to first order in
90, ko as
T, = 2npy(p,/n)'2, (32)
the nodal period (to second order in x) reads
T, = T,(1 + xf, + x2f,). (33)
This is the basic formula we searched for and which will be used in the next

sections (with f, f, provided by (31), and with x given by (15)).

7. Two particular cases. We shall consider two particular cases: initial
orbital elements corresponding to ascending node, and initially circular orbit. In
the first situation we u,, hence 4, = 1, B, = 0. So, (31) become

fi=22B+y-3a) + (4B + 13y + 10 - 15a)q,,
f,=2)2B +y-3a)B(2B +y -30) + (138 +26y +  (34)
+ 18 - 36a)q, + 2n(B - 2y - 2)k,).

If the initial orbit is circular (of radin< :.; :#n we have g, = 0, k, = 0,
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hence (31) acquire the form
£, =22 +y - 3a),
£, =(92)(2B +y - 3a)% (35)
It is easy to see that in this last particular case the pertufbation of the nodal

period does not depend on the initial position of the test particle.

8. Spherical Einstein post-Newtonian field. Consider that the field in
which the test particle moves is the spherical Einstein post-Newtonian
gravitational field. In this case § = y = 1, and formulae (31) read

fi =3QUA -a) + (2 +(7 -5a)4,)q, + (7 - 50)Bk,),
£=272)A-a)(3(1-a) +(4+3(5-4a)A,+2(n-u,)B,)q,+  (36)
+((17 - 120)B, - 2(n - u,)A4))k,).

The two particular cases (34) and (35) become respectively

£, =3Q0 -0) + (9 - 5a)g,),
5 =Q@272)Q - )(3(1 -a) + (19 - 12a)g, - 2nk,), 37
and
fi =61 -a), f, =(812)(1 - ). (38)

Let us now assign to the gauge parameter o some particular values, which
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mean some systems of coordinates. The case o = 0 means the use of standard
post-Newtonian coordinates (spatially isotropic). Expressions (36) become in this
case
fi =3@R + (2 +74,)q, + 1Byk,),
£, = Q72)(3 +(4 + 154, + 2(7 - uy)By)q, + 39)
+ (17B, - 2(7 - uy) A )k,),
while the particular cases (37) and (38) become respectively
f,=3(2+9q,), f, =(2712)(3 + 19q, - 2=nk,), (40)
and
f, =6, f, =812 41)
If we consider a = 1, namely the spatial standard coordinate system is
used, formuiae (36) read
Ji = 6((1 + 4y)q, + Byk,),
5L=0, (42)
while (37) and (38) acquire respectively the form
£y =12q,, f, =0, (43)
and

5 =0, f,=0 (44)
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Lastly, put a = 2. This value of the gauge parameter leads to
Ji = -3(2 -(2-34,)q, + 3B,k,),
S, = (2712)(3 - (4 - 94, + 2(nw - uy)By)q, + (45)
+ (1B, + 2(m - uy)Ay)k,)
for the expressions (36), and to
5= 32 +.qy), f, =(272)(3 + 5q, + 2nk,), (46)
and
f,=-6, f, =812 (47)

for the particular cases (37) and (38), respectively.

9. Period behaviour for circular orbits. To end, let us compare the
nodal period with the corresponding Keplerian period for circular orbits in the
spherical Einstein post-Newtonian gravitational field. Taking into account (38),
formula (33) can be written in this situation

T, = T,(1 + (32)(1 - a)x(4 +27(1 - a)x)). (48)

Consider the standard post-Newtonian coordinates (a = 0); formula (48)

becomes in this case

T, = T,(1 + (32)x(4 +27x)). (49)
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Since x is a positive quantity, we have 7, > T,. In other words, for o = 0 the
post-Newtonian perturbing force acts to decelerate the motion.
For a = 1, formula (48) leads immediately to T, = T, that is, if we use
the spatial standard coordinate system, the motion keeps its Keplerian period.
Lastly, for a = 2, expression (48) reads
T, = T,(1 - (3/2)x(4 - 27x)). (50)
This means that there exists a critical value of x, x_ say, such that for x = x, =
4/27 the nodal period and the corresponding Keplerian period coincide. Having
in view the expression (15) of x (with p, = orbit radius), and recalling the
expression of the Schwarzschild radius R, = 2u/c?, the above coincidence
criterion can be formulated as
P, = (27118)R,,. (&2))
In other words, for an initial radius smaller than (27/8)R,, the post-Newtonian
perturbing force acts to decelerate the motion, and conversely. We may therefore
conclude that for concrete astronomical situations the case o = 2 entails

generally an acceleration of the circular motion as against the Keplerian motion.
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