
STUDIA UNIV. BABEŞ-BOLYAI, MATHEMATICA, XL, 2, 1995

ON THE LEGENDRE TRANSFORM  
AND ITS APPLICATIONS

Arpad PAL* and Mira-Cristiana ANISIlT

Received: April 3, 1995
AM S subject classification: 70H05, 26B10

REZUMAT. - Transformarea lui Legendre şi aplicaţiile sale. Transformarea 
lui Legendre este folosită în mecanică la schimbări de variabile în sisteme de 
ecuaţii diferenţiale. în lucrare se prezintă unele proprietăţi ale transformării în 
R" şi se indică aplicaţii în probleme de mecanică generală, mecanică cerească 
şi electricitate.

1. Introduction. The Legendre transform permits the change of dependent 

and independent variables. It is very useful in mechanics and thermodynamics 

For example, let us consider the inner energy E  - E(S, V), which depends on the 

entropy S  and the volume V. Then the total differential of is will be

dE  = TdS + PdV,

with

T = Es(S, V ) ,  P  = E y(S, V)  
the absolute temperature and the pressure.

Now T and V will be the new independent variables, which means tiiat * **
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from  T = Es(S,  V ) w e  h ave to  obtain S  -  S(T, V).

W e can fin d  a n ew  function  F  = F(T, V )  g iv en  by F  F  - TS for w hich  

w e  h ave

d F  - -SdT  + PdV

and h en ce

5  = ~ F r( V , T ) ,  P  = F v{V i').

S o  u sin g  the fu n ction  F  w e  can m ak e the ch an ge o f  variab les, o f  course  

im p o sin g  so m e  co n d itio n s on  the d er iva tives o f  F  in order i obtain 

S  = S(T, V).  T h e L egen d re transform  o f  E  w ill then be the function  -/•

T h e L egen d re transform  appears in  [6 ], but u seem s to have already been 

k n o w n  to Euler. A  natural generalization  w as g iven  later by F enchel [5] The 

F en ch el transform  h as the property that it is  d efin ed  for arbitrary functions It 

is  very  u sefu l n o t o n ly  in m ech a n ics , but a lso  in optim ization  S o , this old 

transform  h as its  p lace  in recent b o o k s on m ech an ics as A rnold  [2] or Choquard 

[4 ], on  d ifferen tia l eq u ation s as A m ann [1 ], on  c o n v e x  an a lysis  and optim ization  

as W illem  [8 ], on  in m ore com p reh en sive  o n es  as that o f  Z eid ler [9], We 

m en tion  that th is  transform  can be studied  in the m ore general setting o f  Banach 

sp aces or dual pairs, as in the b o o k s o f  Barbu and Precupanu (3] or Precupanu
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ON THE LEGENDRE TRANSFORM

[7], but for the applications given in this paper we consider only the R” case.

In what follows we expose the definition and the main properties of the 

Fenchel transform for various classes of functions. Then we emphasize its key 

role in connecting the Lagrangian and the Hamiltonian setting of some 

outstanding problems of mechanics and electricity.

2. The conjugate of a function. This section contains general results on 

the conjugate of a function, as treated for example in [8], [3], [7] or [1],

Let the real function F: R" -*  ]-°o,oo] be given so that the effective 

domain of F ,D ( F )  = {u E  R ":  F(u) < oo} is nonvoid.

The conjugate (or the Fenchel transform) of F  is the function F*: R" -*  
I*00,00] given by

F*(v) = sup (<v, w> -  F(ii)}, (1)
uED (F)

n

where < v , u >  = ^2 vkuk is the inner product on R".
k-\

From the definition we obtain at once the Fenchel (Young) inequality

F(ü) + F*(v) i  < v , u > ,  V u , v  E R H. (2)

It also follows easily that for two given functions F, with D ( F t) *  0 ,  / 

= 1, 2 so that F\ ^ 1*29 we have the reversed inequality F,’ *  F f
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The function F* is always convex, so we shall remind some related 

definitions.

A set C C J?" is said convex if for every two points x ,y  E C , the line 

segment

[ x , y ] -  {z E R “ : z = (1 - a ) x  + ay, a E [0,1]} 

lies completely in C.

A function F: R" -*  ]-oo,a>] is called:

- convex, if for every x ,y  E C and t E ]0,1[,

F{{ 1 - t ) x  + t y ) s ( l  - t ) F ( x )  + tF(y);

- strictly convex, if D(F) *  0  and

F ((l -  t)x + ty) < (1 -  t)F(x) + tF(y) 
for every x , y  E D (F ) ,  x  *  y ,  t E ]0,1[;

- continuous, if uk ~* u implies F(uk) -* F(u),

- inferior semi-continuous (i.s.c.), if uk -*  u implies lim F(uk) ^ F(u).

The epigraph of the fimction F: R" -*■  J-00,00] is the set

epiF  = {(«,/) E R n: F{u) s  /}.

It is clear that F  is convex if and only if epi F  is convex

If F  is a convex function and the graph of F  lies above the hyperpl
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u ~  < v , u > ,  then -F*(v) represents the minimal distance from the graph of F  
to this hyperplane, in the vertical direction. If the hyperplane intersects the graph 

of F , then F (v) represents the maximal distance in the vertical direction between 

the graph of F  and the hyperplane, considering the points for which the graph 

of F  lies under the hyperplane.

A function G  : R" -*  R  is said to be affine if  it has the form 

G(u) = < v, u > + a, where v E R", a E R.

For an i.s.c. convex function, the following geometric description holds.

THEOREM I. A function F . R" -*  ]-oo,oo] is i.s.c. and convex i f  and only 
i f  it is the pointwise supremum o f the affine functions dominated by F.

As a consequence of this theorem, F  is i.s.c. and convex.

Let us denote by r o(JÎ") the set of all functions F: R" -*  ]-°°,oo] which 

are convex, i.s.c. and such that D(F) *  0 .

The following theorem holds

THEOREM 2. I f  F  G  F0(R"), then F  E T0(R") and F" = F, so the 
Fenchel transform is an involution o f T f R ”).

Proof The function F  being i.s.c. and convex, we have to prove only that 

D (F) * 0 .  From theorem 1 it follows the existence of (v,a) E R" 1 so that
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F(u) a < v, u > -  a ,  V u G R n,

so a < v , u >  -F(u),  V a  £  R".  Then a £ F*(v) and v G D(f*) * 0 .

It is clear that (v, a) G epi F  if and only if F(u) ^ < v , u >  - a,  V u G /?"

F(w) = sup { < v , « > - a }  = sw/> { < v , u >  -  a) =
(v ,a )E R nH v eZ )(F ‘)
(v ,* ) -a * F  aasF*(v)

= sup { < v , n >  -  F ’(v)} = F**( ), V a £  if",

with q such that 1/p + l/g  = 1 (<7 is the conjugate of p). The Fenchel inequality 

becomes in this case

which is the well-known Young’s inequality from which some classical 

inequalities of calculus may be derived.

Example 2. For F(u) = |w|, we have

v € W )

and the equality F  = F** is proved. □

We give now some examples for n = 1.

Example 1. For F(u) = \u\p/p, p  G ]l ,oo[ we have

F'(y )  = |v | q/q,

uv  s  \u\p!p + \u \q!q,

Example 3. For F(u) = a\u\p/p, a  > 0, p  G ]1 , <* ( we have
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F*(v) = a q,p |v |Vq,

with q the conjugate of p.

Example 4. For p  E  ]1,»[ and c , c '  > 0, if 

c\u\p £ F(u) s  c'\u\p,

then

*|v|« s  F*(v) * k'\v\q,

with q the conjugate of p  and k = (c'p)~qlpq k ' = (cp )'qlpq

For a function F: R" -► ]-<»,<»] such that D(F) * 0 ,  the sub-differential 
of F  at u is the set

dF(u) * {v E Æ": F(w) 2  F(«) + < v , w - u > ,  V w E D (F )}.

The function F  is said sub-differentiable at u if dF(u) *  0 .

It is clear that if  F  is sub-differentiable at u, then u E  D{F)', F  is 

subdifferentiable at u E  D(F) iff there exists an affine function which is equal 

to F  at u and is less than F  on R"y the sei dF(u) is closed and convex in R" The 

function F  has a global minimum at u iff 0 E dF(u).

THEOREM 3 . I f  F  E  r o(R n), the following assertions are equivalent

(a) v E dF(u);

(b) F(u) + F ’(v) = < v , u > ;
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(c) u E  dF\v).

Proof, (a) o  (b) follows from the fact that

v E  dF{u) o  < v , u >  -  F(u) £ < v , w >  -  F(w), V w E D f / - ’)

<*> < v , u >  -  F(u) s  sup {<v,v»'> -  f ’(w)}
w e D ( F )

<=> < v , u >  -  F(u) = F'(v).

Then, using theorem. 2 we have

u E  dF"(v) < v , u >  -  F*(v) + F ” (u) = F*(v) + /'(«), 

so (b) <=> (c) and the theorem is proved. □

The next result shows the relation between sub-differentiability and 

convexity.

THEOREM 4. I f  F\ IT  -» ]-< » ,oo] is convex and continuous at u E  L)(L'), 
then F  is sub-differentiable at u.

It the function is convex and differentiable, the sub-differential coincides 

with the gradient, as the following theorem shows.

THEOREM 5. Let F: R" -*• l-00,00] be a convex function. I f  F  is 
differentiable at u E  int D(F), then

dF(u) = {VF(u)\

Proof. We show at first that VF(u) E  dF(u). The function /-'being convex,
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we have

F(( 1 -  a) u + aw) *  (1 -a)F(u) + aF(w) 
for each w e  JT, a E  ]0,1[, or

[F(u + a(w -  u)) -  F(u)]/a £ F(w) -  F(u).

Letting a - *  0+ one has

< VF(w) ,w  ~ u >  s  F(w) -  F(u),

hence VF(w) E dF(u).

We prove now that the unique element in dF(u) is VF(u). Let v E dF(u). 
Then, for each w E R?

F(u) -  < v , u >  s  F(w) -  < v ,w > ,

so the function F  -  < v , •> has at u a global minimum. From its 

differentiability at u, we obtain

0 = VF(w) -  v,

hence v = VF(u) and the theorem is proved. □

COROLLARY 6. The gradient o f a convex function F: R” -+  ] - o o ,o o ]  

which is differentiable at u E int D(F) satisfies

F(w) s  F(u) + < VF(u), u - w > ,  fo r  each w 6 f  

IfVF{u)  = 0, then F  admits a global minimum at u.
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Proof. The inequality follows from the fact that dF(u) = (VF(w)}. If 

VF(u) -  0, we have F(w) s: F(u) for each w S R " ,  hence u is a global minimum 

o fF .D

The next theorem gives conditions on F  in order to assure the 

differentiability o f F.

THEOREM 7. I f  F  G r o(/?") is strictly corn and satisfies a coercivity 
condition

F(«)/|n | -* oo fo r  |u| —*■ oo,

then F  G C\RT, R).

P ro o f Let v G R" be fixed; we define G v: T -*  R ,

G f w )  -  < v , w >  -  F(w).

The function -Gv is strictly convex and -G v(w) -*  <*>, as |w| -* oo, so 

there is one and only one point u E . R '  where -G v attains its infimum. Theorem 

3 implies dF*(v) = {«}.

The function dF: R" - *  R n, v  >-* u where {«} = dF(v) is continuous. We 

have from theorem 2 that F  is i.s.c., hence dF  will have a closed graph. To 

prove the continuity of dF  it suffices to show that the image of any bounded 

set is bounded. Let r > 0 be given and |v| s r ,  {«} = dF(v). Theorem 3 implies
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v e  dF(u), hence

F(0) % F(u) -  < v , u > .

Supposing withous loss of generality that F(0) < + » , from 

r a |v| a (F(u) -  F(0))/|u |,

we obtain using the coercivity condition the existence of R  > 0 so that |u| s  R 
for each v with |v| s  r.

Let us prove that dF* is also differentiable. Let {«} = dF*(v) and {uh} = 

dF*(y+h), v E R ,  he JT\{0}. Then

< h , u >  £ F*(v+/j) -  F*(v) s  < h , u h> 
and

0 £ [F*(v+/j) -  F ’(v) -  <h,u>]/\h\ £ < h , u h-u>/\h\ s \uh-u\.

The continuity of dF* implies \uh-u\ -* 0 for |/i| -*  0, so F* is 

differentiable at v and {VF*(v)} = {«} = d F ’(v). It follows that F* e

Let now be given a convex function F  e  C‘(FV?). Using theorems 3 and

5, F* can be defined implicitly by

F*(v) -  < v , m >  -  F(m) 
v = VF(«).

It the gradient VF is locally invertible, these relations define indeed a
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function of v, considering u =  (VF) '(v). The function F" is known as the 

Legendre transform o f F . If F  is strictly convex and F(u)/\u\ «  for |u| -*

» , then by theorem 7 the Legendre transform F* is in the class C 'ilF J l) .

It is known that for F  E C 2(RntR), F  is convex if and only if  ifiFix) is 

positive semi-definite for every x  E R? (i.e. < D 2F ( x ) y ,y >  i  0 for each y  E 

Rn); if  IfiF(x) is positive definite for every x  E L (i.e. <lfF(x)y,y> > 0, for 

each y  E 1T\{.0}), then F  is strictly convex. For F  E C 2(R "Jt) with I f  F  
uniformly positive definite (i.e. there exists a  > 0 such that < D 2F ( x , y , y >  & 
lyll2 for each x,y E JT), then for every y  E R ’\ the equation

VF(x) -  y

has a unique solution.

We obtain now the following theorem for C2 - class functions

THEOREM 8. Let F  E  ( f{ R 'tR) be given such that F ?F  is uniformly 
positive definite. Then the following statements are true:

(i) The transform given by ( 1) has the form  
F*(v) * < v , u >  -  F(u), 

u being the solution o f v -  VF(u);

(ii) r  E C2(R"^R), F* is stricly convex and VF" = (VF)1;
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(i i i)  F(u) + F * ( v ) i < « , v >  fo r  each u,v E R n and  
F(u) + F ’(v) = < u , v >  i f fVF(u)  = v;

(iv) f "  = F.

Proof. It remains to prove that F* E C 2(Rn,R). This follows from the 

equality Vf* = (V f)'1 and the theorem of implicit functions.D

3. Euler-Lagrange and Hamiltonian systems. The Legendre transform 

is o f great importance in Mechanics, as it is specified in [2] or [4], Indeed, it is 

useful in transforming the implicit Euler-Lagrange systems in the explicit 

Hamiltonian ones in a very simple way. The following theorem presents tin 

equivalence.

THEOREM 9. Let 1 C  R  be an open interval and D  C R" a domain. 
Consider L  E C 2(J?" * D  x / ,  R ) such that fo r each value o f the argument 

e  R "  * D  x I , L . . (q 0, q 0,t0) E St(RH) is uniformly positive define. 
Then the Euler-Lagrange equation

— L  » L (3)
dt « «

is equivalent to the Hamiltonian system
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where the Hamiltonian H  E ( 2( RH ■ /) ■ /, R)  is the Legendre t runs form o f 
the Lagrangian L with respect to the variable q , i.e.

H(p,q, t )  -  < P ,q >  -  U q , q , t ) ,  (5)

on the right-hand side q being obtained from  the equation

P  = V  (6)

where H q. = V / /  denotes the gradient with respect to the variable q fo r  fixed  
t and p .

Proof. We apply theorem 8 considering L as a function o f q , (and q, t as 

parameters). Then H  - Ü  is given by (5), where q = q(p,q,t) is obtained from 

the unique solution o f (6). We have then H  E C \ R n x D  * I ) , H p = (Lq)~l and 

r  = L.

Let now q: I  - *  R ” be a solution of the Euler-Lagrange equations. From 

(6) and (3) we obtain p  = L q . But using (5) we get immediately Lq = -H q, so 

the first line in (4) is obtained. Because o f Hp = (LL)'1 we have from (6) q = 
Hp  the second line in (4). It follows that if  q is a solution of (3), then (p,q) is 

a solution of (4).
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Conversely, let (p,q) be a solution o f (4). Because C *  = L , we have 

L i q , q , t )  = < P > q >  ~ H ( p , q , t ) ,

where q = H p, i.e. p  = p (q ,q ,t) = (H J*  = L .. Thenp  = (L.) =

because o f (4). But Lq = and q is a solution o f the Euler-Lagrange 

equations. □

The following theorem states some important properties o f a Hamiltonian

system.

THEOREM 10. In the conditions o f theorem 9 we have

v d H  dH  dLa) —  » —  = - — ;
dt dt dt

b) i f  the system (4) is autonomous, H(p,q) is a first integral which is

by definition the energy, 
dHc) i f ----- = 0, then p , is a first integral (q, is a cyclic variable)',
d<l,

d) i f  all the q, are cyclic, the system is integrable by quadratures.

P roo f a) -  OIL + < H  p >  + < H  ,q >  = and using the form 
dt dt dt

of H  as a Legendre transform, dH
dt

dL
dt

dH dHb) If the system (4) is autonomous, —  = 0, hence —  = 0 and H(p,q)
dt dt

= const for the solutions p  and q.

c) Using (4), we have p t =  0, hence p , =  c ,  gives a first integral.

89



A. PÀL, M C. ANISIU

d) Applying c), we obtain p t -  c(, i =1, n. From (4) we have
t

4, = >c„,0 and q ţi) = q fo )  + \0 ÎL (cx, . . . , c n, x ) ( h n
dpt l  dpt

4. Applications. In the problems o f mechanics, the Lagrangian function 

has usually the form

L ( q , q , t ) -ţ T ( q , q , t )  -  U ( q ,t ) - ^  -  E ^ ,

where

T ( q , q , t ) = } - < A ( q , t ) q , q >  , (7)

being a symmetric uniformly positive matrix with entries of C2-class. 

Then theorem 9 applies and the Hamiltonian obtained as a Legendre transform 

will be

H { p , q , t )  -  < P , q >  ~ L ( q , q , t ) ,  
where p  = A (q , t )q ,  hence q -  A(q,t)~lp.

It this case

H ( p , q , t )  = < p , A ' lP >  ~ l < A A ~ lp , A ' lp >  + U ( q , t )  =

= l < p , A ' lp >  + U(q,t) .  (8)

So, if the kinetic energy (7) is given by a uniformly positive definite 

matrix A,  then the Hamiltonian is the total energy, expressed in terms of the
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space and momentum variables. In the case of autonomous systems, we have by 

theorem 10 b) the energy integral

H(p,q) =  const.

If A(q,t) = Jm i.e. T(q) -  A £  qf ,  it follows q, = p  and
2 j-i

- i Ê p , 1 * t/(9 ,(). (9)
L / - i

Special problems of this type are, for example, those of particles ir 

Newtonian central field of the harmonic osçillator.

1. A p artic le  in th e  N ew tonian cen tra l field. The motion of a punctual

mass is described by system of equations

m x  -  k x r ' 3 
• m ÿ  -  ky r  '3 , 

mz  -  k z r ' 3

where k >  0 is the gravitational constant and r -  ( x 2 + y 2 + z 2)m. This system 

is o f the type (3) with L : It3 * ( i î3\{0}) -»• R  given by 

L { q ,q )  -  ^ ( q ?  + q l  + q l )  -  k r ' \  
where q = (x.y.z). The Hamiltonian will be of the form given in (8),

H(p,q) -  ^ ( P i 2 + Pi + Pi)  + kr l
Lm

and the initial system has the Hamiltonian form
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p,  -  *q,r~3
, i = 1 ,2 ,3 .

qt = p j m

2. T he h arm on ic  oscillator. The equation for the harmonic oscillator is

mq = -k q ,

q E R , the constants m,k >  0 (which has the known solution 

q(t) = C sin (to/ + a), with the frequency (o = Jk/m ). The Lagrange function

L = T - U is L : R 2 - *  R ,

L (q ,q )  = (mq2 -  k q 2)/2.

Hence L. .  = m > 0  and theorem 9 applies. From p  -  we obtain the

momentum p  = mq.  The Hamiltonian H  = pq -  L  will be H. R 1 -*• R

H(q>p) -  ^ - P 2 +lm  1

and the Hamilton equations (4)

. P  = ~kq
q -  plm .

3. A punctua l m ass on a to rus. The motion of a punctual mass on a 

torus is governed by a system of the type (3) with L : R 2 * (0 ,2ji)2 -*> R  given 

by
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Z,(0,<j>,0,<|>) = I!L(r2Q2 + (R  + rcos0)2<j>2) -  m grsinO,

with m > 0, R  >  r >  0. Denoting q = (0,<j>), we have
/ \

L , ,

a n d< D 2L y ,y >  - m(r2y ?  + (R + r cosq^fy2 ) ^ m min{r 2, ( R - r ) 2}(y[1 +y2 ),

m r“ 0
0 m (R + rcos<jr, ) 2

,2 ,2 '

hence is unifonnly positive definite. From

A = m r \

P2 = m(Æ + r co sq xf q 2 ,

we obtain the Hamiltonian H: R 2 * (0, 2 ji)2 -* A ,

1 1
H ( p l ,p 2, q l ,q 2) -  - — -A 2 + + r cos^ , ) 2 + mgr sin

2mr2 2m

The system corresponding to (4) is

A  = ~— p2 (R + r c o sq {) 3 rsin^ -  mgr cos <7,

A ■ 0
m r

A  -  — (Æ + rcostf,)2/>2. 
m

In several problems we have to deal with generalized Lagrangian 

functions having the form

A të ’ tf’ O = TXtf.tf.O " < /> ? >  ~ U ( q ,t\ ( 10)
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with T given by (7) and / a function of q. Applying the Legendre transform we 

shall get by theorem 9 the Hamiltonian function

H i i P t q J )  -  < P , q >  -  L ^ q ,q ,  t), 
where p  = A(q, t)q - / ,  hence q = A(q,t)~\p + f ) .

Then

H x(p,q>t)  = < P M ~ x( j> + f) >  - 1 < A A - It  + f ) , A ~ l ( P +f ) >  +

+ < / ,  A -\ p  + f )  > + U(q,t),

hence

-  l < p , A - ' p >  + < p , A - ' f >  * l < f , A - ' f > - +  V ( q ,0.(11) 

Therefore the transform of a generalized L^rangian of type (10) is the 

Hamiltonian (11), the corresponding systems (3) and (4) being equivalent.

For autonomous systems we have in this case an energy integral

H l ( p ,q )  = const

given by theorem 10 b).

If A(q, t) » l n, i.e. T(q) = \  » it follows q = p  + /a n d

H {( p ,q , t )  = + T>P>f, + \ i f i  + u (q>0- O2)
l  /-l f.i L <-i

The next applications contain problems having generalized Lagrangian 

functions of type (10).
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4. The photogravitational three-body problem. Let us consider the 

three-dimensional photogravitational three-body problem given by the system of 

equations
x  -  2y  * Qj 

■ ÿ  + 2x = Qy 
z =

with Q: D = U*\{(p,0,0), (p - 1,6,0)} — R  given by

Q { x ,y ,z )  = (x2 + y 2)/2 + A J r x + A2lr2 ,

A  -  o ,( l - iO .  A  = <W>

r l  -  (x -  p)2 + y 2 + z 2, r22 = (x -  p + l)2 + y 2 + z 2, 

where p e  [0, 1/2] and ax,a2 E  ]-°°,l].

The system may be written as

where q = (ql , q 2,q 3) = ( x ,y ,z )  and L: R 3 * D  - *  R  is a generalized 

Lagrangian of the form

L{q,q)  -  m  -  Z(q, q).

The kinetic energy is given by

m  = (<7,2 + q l  + <?32)/2

and the generalized potential Z by

Z (q ,q j  = qxq2 ~ q2qx -  &(q)
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The Lagrangian is of the type (10) with A(q,t) = I3,f(q ,t)  = {qv  -<7,,0) and 

U(q,t) = -Q(q).

We have q = A(q , t)'\p  + / ) ,  hence

= Pi + ?2

<j2 = P2 ~ <1\

4 * - P i ­

li follows

H(P,q)  » (A2 + Pi + P Î)I2  + P X<12 ~ P2<h + ~ Qfa) =

= (A2 + P2 + A2)/2 + A ^2 - A 2/r2.
The Hamiltonian system (4) is in this case

Pi = P2 '  + Q *
À  = "P. - <h + Q ,,

. P* =
<?i "  A  + 
i i - P i - V x  
Qi - P y

5. A charged particle in a magnetic field B(r) = curl A(r).

The equations are given by

mq -  — (q x curl A),
c

where m > 0 is the mass, e the charge of the particle and A  = (/t,^42̂ 3X with

A i Ê  C '(J?3), I =  1, 2, 3.
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In this case q « {qxyq2, q i ) and L: if6 -* R ,

L(q,q)  -  + -  < A ( q ) ,q > ,
2 c

so we have a generalized Lagrangian of the type (10) with

A  = / « / . , / =  - 1 /1 ,  U  m 0. 
c

It follows for p  « (px,p 2>p 3) that

p  = /w# + _ i 4 ,
c

hence

and from (11) we obtain H: B2 - *  R ,

H(p,q) -  J -  -  1,1 ,(?))> = - L  < p  -  -  ! /% ) > .
2m m  c 2m c c

The Hamiltonian system is

P, = —  < P  ~ - A , A f > 
m e  c q'

<i, = — (p, - ~ A t).
m c

6. A charged particle in an electromagnetic field (E(q,t), B(q,t)).

In this case, the motion of a particle of mass m and charge e is governed 

by the equations

mq = e E  + — (q x B),
c
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q = (qi t q2, q 3) being the coordinates of the particle. These equations admit the 

Lagrangian L: R 7 - *  R ,

E ( q ,q , t )  = ^ - q 2 ~ e $ ( q ,t )  + l < A ( q , t ) , q > ,
2 c

the fields E  and B  being related to the scalar potential <|> and the vector potential 

A  by

J-, j , 1 dAE  = -  gradé ----------
c d t

B = curl A.

The Lagrangian is o f the type (10) with

A  = w /3, / =  -  — A ,  U  = e<j>.
c

It follows that p  is given by

e  Ap  -  mq + — A ,
c

hence

and the corresponding Hamiltonian is

2m c c

The Hamiltonian system is

H ( p , q ) = ~ < P  ~ - A ( q , t ) ,  p  -  l A ( q , t ) >  + ety(q,t).

/ = 1 2 3
q, = — ( p , - 1 a .)
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