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REZUMAT. - Transformarea lui Legendre si aplicatiile sale. Transformarea
lui Legendre este folositd in mecanici la schimbéri de variabile in sisteme de
ecuatii diferentiale. In lucrare se prezinti unele proprietti ale transformirii in
R §i se indici aplicatii in probleme de mecanic3 generald, mecanic3 cereasci
si electricitate.

1. Introduction. The Legendre transform permits the change of dependent
and independent variables. It is very useful in mechanics and thermodynamics.
For example, let us consider the inner energy E = E(S, V), which depends on the
entropy S and the volume V. Then the total differential of £ will be

dE = TdS + PdV,
with
T = ES,V), P = E/S,V)
the absolute temperature and the pressure.

Now T and V will be the new independent variables, which means that
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from 7' = E (S, V) we have to obtain S = S(7', V).
We can find a new function F = F(T', V') givenby [k - 18 tor which
we have
dr = -SdT + Pdv
and hence
S=-F.WV,T),P=F@W )

So using the function F' we can make the change of variables, of course
imposing some conditions on the derivatives of £ in order t. obtain
S = S(7, V). The Legendre transform of £ will then be the tunction -/

The Legendre transform appears in [6], but 1. seems to have already been
known to Euler. A natural generalization was given later by Fenchel [5]. The
Fenchel transform has the property that it is defined for arbitrary tunctions. It
is very useful not only in mechanics, but also in optimization. So, this old
transform has its place in recent books on mechanics as Amold [2] or Choquard
[4], on differential equations as Amann [I], on convex analysis and optunization
as Willem [8], on in more comprehensive ones as that of Zeidler [9]. We
mention that this transform can be studied in the more general setting of Banach

spaces or dual pairs, as in the books of Barbu and Precupanu {3] or Precupanu:
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[7], but for the applications given in this paper we consider only the R” case.
In what follows we expose the definition and the main properties of the

Fenchel transform for various classes of functions. Then we emphasize its key

role in connecting the Lagrangian and the Hamiltonian setting of some

outstanding problems of mechanics and electricity.

2. The conjugate of a function. This section contains general results on
the conjugate of a function, as treated for example in [8], [3], [7] or [1].

Let the real function F: R" — ]-0,0] be given so that the effective
domain of F,D(F) = {u € R": F(u) < %} is nonvoid.

The conjugate (or the Fenchel transform) of F is the function F': R* —
]-,00] given by

F*(v) = sup {<v,u> - F(u)}, €))

u€D(F)
n

where <v,u> =} v,u, is the inner product on R".
k=1
From the definition we obtain at once the Fenchel (Young) inequality
Fu) + F*(v) 2 <v,u>, YV u,v € R" (2)

It also follows easily that for two given functions F, with D(F,) = &, i

=1, 2 so that F, = F,, we have the reversed inequality F," = F,".
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The function F~ is always convex, so we shall remind some related
definitions.
A set C C R" is said convex if for every two points x,y € C, the line
segment
[x,y] ={z€ER": z=(1-a)x + ay, a € [0,1]}
lies completely in C.
A function F: R" — ]-00,0] is called:
- convex, if for every x,y € C and ¢t € ]0,1],
F(A-x+ty) s (1 -1)Fx) + tFy)
- strictly convex, if D(F) = & and
F((1 - )x +ty) < (1 - )F(x) + tF(y)
for every x,y € D(F), x = y. t € 10, 1[;
- continuous, if w, — u implies F(u,) — Hu),
- inferior semi-continuous (i.s.c.), if u, — u implies lim /(u,) = I{(u).
The epigraph of the function F: R" — ]-00, 0] 1s the set
epi FF = {(u,1) € R" F(u) s t}.
It is clear that F is convex if and only if epi ' is convex.

If 7 1s a convex function and the graph of F lies above the hypeip!
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u - <v,u>, then -F'(v) represents the minimal distance from the graph of F
to this hyperplane, in the vertical direction. If the hyperplane intersects the graph
of F, then F"(v) represents the maximal distance in the vertical direction between
the graph of F and the hyperplane, considering the points for which the graph
of F lies under the hyperplane.

A function G: R” — R is said to be gffine if it has the form

G(u) = <v,u> + a, where vE R", a € R.

For an i.s.c. convex function, the following geometric description holds.

THEOREM 1. 4 function F: R" — ]-%,0] is i.s.c. and convex if and only
if it is the pointwise supremum of the affine functions dominated by F.

As a consequence of this theorem, F” is i.s.c. and convex.

Let us denote by I'(R") the set of all functions F: R" — ]-o,00] which
are convex, 1.s.c. and such that D(F) = &.

The following theorem holds

THEOREM 2. If F € T(R"), then F* € T(R") and " = F, so the
Fenchel transform is an involution of T(R").

Proof. The function F* being i.s.c. and convex, we have to prove only that

IXF") » & From theorem 1 it follows the existence of (v,.a) € R"'’ so that
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Fu) 2 <v,u>-a,Vu€&R"
soa=<v,u>-Fu), Vu€ R" ThenazF(v)and v € IXI") = @.

It is clear that (v,a) E epi Fif and only if F(u) = <v,u> -a, Vu € R".

So
Fu) = sup {<v,u>-a} = sup {<v,u>-a} =
(v,a) ER™ vED(F*)
(v,)-a=sF azF*v)
= sup {<v,u>-F'(v)} =F>( ),V ueER"
veED(F*)

and the equality F = F”" is proved. OJ

We give now some examples for n = 1.

Example 1. For F(u) = |ul?lp, p € ]1, o[ we have

F*(v) = |v|'q,
with g such that 1/p + 1/q = 1 (g is the conjugate of p). The Fenchel inequality
becomes in this case
uv < |ulflp + |ul'lq,

which is the well-known Young’s inequality from which some classical
inequaiities of calculus may be derived.

Example 2. For F(u) = |u|, we have

e _ 0, v] =1
I (v)_{+oo’ |v|>],

Example 3. For F(u) = o|ul|?lp, a > 0, p € ]1, | we have
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F*(v) = o™ |v|%g,
with g the conjugate of p.
Example 4. For p € ]1,o[ and ¢,c’ > 0, if
clulp < F(u) < ¢’ |ul,
then
klv|? s F*(v) s k'|v]9,
with g the conjugate of p and k = (¢’'p)7q ", k' = (cp)??q .

For a function F: R" — ]-0,0] such that D(F) = O, the sub-differential

of F at u is the set
0F(u) = {v € R" F(w) 2 F(u) + <v,w-u> Y w € D(F)}.

The function F is said sub-differentiable at u if dF(u) = .

It is clear that if F is sub-differentiable at u», then u € D(F); F is
subdifferentiable at u € D(F) iff there exists an affine function which is equal
to F at » and is less than F on R”; the se! dF(u) is closed and convex in R". The
function F has a global minimum at u iff 0 € aF(u).

THEOREM 3. If F € T(R"), the following assertions are equivalent

(@) v € IF(u),

(®)  Fu) + F7(v) = <v,u>;
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(©) u € F:(v).
Proof. (a) <> (b) follows from the fact that
v € dF(u) & <v,u> - F(u) 2z <v,w> - F(w), Vw &€IXF)
o <v,u>-Fu) =z sup {<v,w> - F(w)}
wE D(F)
< <v,u> - Fu) = F*(v).
Then, using theorem.2 we have
u € IF*(v) & <v,u>=F*(v) + F™(u) = F*(v) + Fu),
s0 (b) <> (c) and the theorem is proved. [J
The next result shows the relation between sub-differentiability and
convexity.
THEOREM 4. If F: R" — ]-%0,] is convex and continuous at u € D(F),
then F is sub-differentiable at u.
It the function is convex and differentiable, the sub-differential coincides
with the gradient, as the following theorem shows.
THEOREM 5. Let F: R" — ]-o,©] be a convex function. If I is
differentiable at u € int D(F), then
OF(u) = {VIFu)).

Proof. We show at first that VF(u) € dF(u). The funcuon /< bemg convex,
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we have
F((1 -a)u +aw) s (1 -a)F(u) + aF(w)
for each w € R”, a € ]0,1[, or
[F(;J +a(w - u)) - F(w)lu s F(w) - F(u).
Letting @ — 0" one has
<VF®u),w -u> < F(w) - F(u),

bhence VF(u) € dF(u).

We prove now that the unique element in dF(u) is VF(u). Let v € 0F(u).
Then, for each w € R”

Fu) - <v,u> s F(w) - <v,w>,
so the function F - <v,-> has at u a global minimum. From its
differentiability at u, we obtain
0 =VEKu) -v,

hence v = VF(u) and the theorem is proved. O

COROLLARY 6. The gradient of a convex function F: R" — ]-00,00]
which is differentiable at u € int D(F) satisfies

F(w) 2 u) + <VF(¥),u-w>, for eachw € R".

If VF(u) = 0, then F admits a global minimum at u.
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Proof. The inequality follows from the fact that 0F(x) = {VF(u)}. If
VF(u) =0, we have F(w) = F(u) for each w € R”, hence u is a global minimum
of F.O

The next theorem gives conditions on F in order to assure the
differentiability of F’.

'THEOREM 7. If F € T(R") is strictly conv - and satisfies a coercivity
condition

Fw)/|u| — » for |u| — =,
then F* € C'(R", R).
Proof. Let v € R” be fixed; we define G,: I' — R,
Gw) = <v,w> - Fw).

The funqtion -G, is strictly convex and -G (w) — «, as |w| — , so
there is one and only one point # € R” where -G, attains its infimum. Theorem
3 implies oF"(v) = {u}.

The function 3F": R — R", v ~ u where {u} = dF"(v) is continuous. We
have from theorem 2 that F" is i.s.c., hence dF" will have a closed graph. To
prove the continuity of dF" it suffices to show that the image of any bounded

set is bounded. Let » > 0 be given and |v| < r, {u} = dF"(v). Theorem 3 implies
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vE dF(u), hence
FO0) =2 F(u) - <v,u>.
Supposing withous loss of generality that F(0) < +o, from
r=|v| = (F(u) - F0))/|ul,
we obtain using the coercivity condition the existence of R > 0 so that |u| s R
for each v with |v| < r.

Let us prove that F" is also differentiable. Let {u} = dF°(v) and {u,} =

OF (v+h), v E R”, h € R\{0}. Then
<h,u> s F*(v+h) - F*(v) = <h,u,>
and

0 < [F*(v+h) - F*(v) - <h,u>])/|h| s <h,u,-u>/|h| s |u,-ul.

The contiiiiﬁty of 9F" implies |u,-u| — 0 for |h| — 0, so F" is
differentiable at v and {VF*(v)} = {u} = 9F*(v). It follows that F* €
cwrRpnao
Let now be given a convex function F € C'(R" R). Using theorems 3 and

5, F" can be defined implicitly by

{F‘(v) = <v,u> - Fu)
v = VF(u).

It the gradient VF is locally invertible, these relations define indeed a
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function of v, considering u = (VF)'(v). The function F* is known as the
Legendre transform of F. If F is strictly convex and F(u)/|u| — oo for |u| —
o, then by theorem 7 the Legendre transform F" is in the class C'(R",R).

It is known that for F € é(R",R), F is convex if and only if D*F(x) is
positive semi-definite for every x € R" (ie. <D*F(x)y,y> = 0 for each y €
R"); if D*F(x) is positive definite for every x € L. (i.e. <D*F(x)y,y> > 0, for
each y € R\{0}), then F is strictly convex. For FF € C*R",R) with D*F
uniformly positive definite (i.e. there exists a > 0 such that <D2F(x,, . y> =
I¥l? for each x,y € R, then for every y € R”, the equation

VE(x) = y
has a unique solution.

We obtain now the following theorem for C? - class functions.

THEOREM 8. Let F € CX(R",R) be given such that D’F is uniformly
positive definite. Then the following statements are true:

(1) The transform given by (1) has the form
F*(v) = <v,u> - Fu),
u being the solution of v = VF(u),

(ii) F* € CYR"R), F' is stricly convex and VF* = (VI)";
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(iii) Fu) + F*(v) 2 <u,v> for each wuv € R" and
Fu) + F*(v) = <u,v> iff VF(u) = v,

(iv) F”" =F.

Proof. 1t remains to prove that F* € C*(R"R). This follows from the

equality VF* = (VF)" and the theorem of implicit functions.(]

3. Euler-Lagrange and Hamiltonian systems. The Legendre transform
is of great importance in Mechanics, as it is specified in [2] or [4]. Indeed, it is
useful in transforming the implicit Euler-Lagrange systems in the explicit
Hamiltonian ones in a very simple way. The following theorem presents thi.
equivalence.

THEOREM 9. Let I C R be an open interval and D C R" a domain.
Consider L € C*(R" x D x I, R) such that for each value of the argument
(9q594-%) € R* <D x 1, L,.(4,,4,,1) € L(R") is uniformly positive define.
Then the Euler-Lagrange equation

d

=L~ L, 3)

is equivalent to the Hamiltonian system

87



A. PAL, M.C. ANISIU

p=-H,
(4)
q=H

o
where the Hamiltonian H € ('*(R* -~ 1) - i, R) is the Legendre transforn of
the Lagrangian L with respect to the variable ¢, i.e.

H(p,q.1) = <p,4> - L(q.9.1), ()
on the right-hand side q being obtained from the equation

p=1L, (6)

where H : = V_H denotes the gradient with respect to the variable q for fixed
t and p.

Proof. We apply theorem 8 considering L as a function of ¢, (and ¢, ¢ as
parameters). Then H = L’ is given by (5), where ¢ = ¢(p,q,?) is obtained from
the unique solution of (6). We have then H € CXR"x D x1I), H,=(L,)" and
L" =1L

Let now g: I — R” be a solution of the Euler-Lagrange equations. From
(6) and (3) we obtain p = L . But using (5) we get immediately L, = -H,, so
the first line in (4) is obtained. Because of H, = (Lq)" we have from (6) ¢ =
H, the second line in (4). It follows that if ¢ is a solution of (3), then (p.g) is

a solution of (4).
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Conversely, let (p,q) be a solution of (4). Because L™ = L, we have
Lg.q,1) = <p,4> - H(p.q,1),

where ¢ = H,, ie. p = p(4,q1) = (H)' = L,. Thenp = %(L(]) = -H,
because of (4). But L, = -H, and g is a soiution of the Euler-Lagrange
equations.(J

The following theorem states some important properties of a Hamiltonian
system.

THEOREM 10. In the conditions of theorem 9 we have

dH _ oH _ _oL.

a) —= -
dt at ot

b)  if the system (4) is autonomous, H(p,q) is a first integral which is
by definition the energy,

c) if %ﬁ = 0, then p, is a first integral (q, is a cyclic variable),

9,
d) ifall the q, are cyclic, the system is integrable by quadratures.
dH _ oH . . oH :
Proofa) — = __ + <H ,p> + <H ,q> = —_, and using the form
/.2) dt ot s a9 at SIne

of H as a Legendre transform, aTIti = —%Iti.

b) If the system (4) is autonomous, _%_ft{ = 0, hence % = 0 and H(p.q)
= const for the solutions p and g.

¢) Using (4), we have p, = ‘0, hence p, = ¢, gives a first integral.
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d) Applying c), we obtain p, =c, i =I,n. From (4) we have
oH

'
0, = o @uovesyt) and 4(0) = ) + f_g_g @, ., 7) du.00
4. Applications. In the problems of mechanics, the Lagrangian function
has usually the form
L@.q,) =T(4.q,t) - UQq,t) = %, -E,,
where
1G.q.0) = 2 <A@.04.4>, ™
A(g,t) being a symmetric uniformly positive matrix with entries of C2-class.
Then theorem 9 applies and the Hamiltonian obta...ed as a Legendre transform
will be
H(p,q,t) = <p,q> - L(4.94,1),
where p = A(q,1)q, hence ¢ = A(q,t)"p.
It this case
H(p.4.0 = <p,47'p> - Z<A4"p,A"p> + Uq.1) =
= 2<P.A"p> + U@.0). ®)
So, if the kinetic energy (7) is given by a uniformly positive definite

matrix A, then the Hamiltonian is the total energy, expressed in terms of the
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space and momentum variables. In the case of autonomous systems, we have by
theorem 10 b) the energy integral
H(p,q) = const.
If A(g.r) = I, i.e. T(g) = -;',zl: g2, it follows ¢, = p and
H(p.q.0) = 2 30 + U@, ©

Special problems of this type are, for example, those of particles ir

Newtonian central field of the harmonic osgillator.

1. A particle in the Newtonian central field. The motion of a punctual
-mass. is_described by system of equations
mi = kxr
mjy =kyr> |
mi = kzr™
where k > 0 is the gravitational constant and » = (x2 + y? + z2)!2_ This system
is of the type (3) with L: R* x (R*\{0}) — R given by
L(4,9) = @ + 45 + d7) - kr,
where g = (x,y,z). The Hamiltonian will be of the form given in (8),
1 ,
H(p,q) = —-(sz + P22 + Psz) + kr!
2m
and the initial system has the Hamiltonian form
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p, = kqr>
, i =1,2,3.
4, = p,/m

2. The harmonic oscillator. The equation for the harmonic oscillator is

mq'” = -kq,
qg € R, the constants mk > 0 (which has the known solutjon

q(H) = Csin (ot +a), with the frequency w = yk/m ). The Lagrange function

L=T-Uis L: R* — R,

L(g,q9) = (mq? - kq?)2.
Hence L, = m >0 and theorem 9 applies. From p = L, we obtain the

momentum p = mq. The Hamiltonian H = pg - L will be H: R* - R

4 1 k
H(q,p) = ﬂp’ + 561’,

and the Hamilton equations (4)

_kq
pim.

A
Won

3. A punctual mass on a torus. The motion of a punctual mass on a
torus is governed by a system of the type (3) with L: R* x (0,2x)> — R given
by
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L(6,$,6,¢) = %("292 + (R +rcos0)?¢’) - mgrsinb,

with m > 0, R > r > 0. Denoting g = (6,4), we have

L. = mr? 0
44 0 m(R +rcosq,)

an d<DlLyy>= m(r’jq’ +(R+rcosq ) y;)zmmin{r?, (R - r?} (v +y7),
hence L, is uniformly positive definite. From
p, = mrig,
p, = m(R + rcosq,q,,
we obtain the Hamiltonian H: R* x (0, 2n)* — R,
2 1 2

1 )
+ /(R + rcosq,)® + mgrsing,.
P 5 P ( q,)" + mgrsing,

The system corresponding to (4) is

H(p,,p,,9,,4,) =

D = —_%pf(R +rcosq,)” rsing, - mgrcosg,
p,=0
9, = — P

: 1
g, = 7n_(R +rcosq, ) p,.

L

In several problems we have to deal with generalized Lagrangian

functions having the form

L(q.q.1) = T(4.q.1) - <f,4> - U, 1), (10)
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with T given by (7) and f a function of q. Applying the Legendre transform we
shall get by theorem 9 the Hamiltonian function
H(p,q,t) = <p,4> - L,(4.4,1),
where p = A(q,t)q - f, hence ¢ = A(q, ) (p + f).
Then
H(p.q.0) = <p.A7(p+/)> - 2 <AAT( ). A (P N)> +
+<f,A7(p+f)>+ Uqy,1),
hence
H(p.q.0) = 2<p,A"p> + <p.A'f> + Z<[,Af> + Ug.0.01)
Therefore the transform of a generalized Lz ;rangian of type (10) is the
Hamiltonian (11), the corresponding systems (3) and (4) being equivalent.
For autonomous systems we have in this case an energy integral
H(p,q) = const
given by theorem 10 b).
If A(g,t) =1 ,ie. T(g) = _;__quf, it follows ¢ = p + fand
i=1

1 n n 1 n
Hl(p,q,t)=5Ep,2+gp,f,+3§ff+U(q,t). (12)

i=1

The next applications contain problems having generalized Lagrangian

functions of type (10).
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4. The photogravitational three-body problem. Let us consider the

three-dimensional photogravitational three-body problem given by the system of

eq{xations
¥-2y=Q
y+2x =5
i=Q

with Q: D = R*\{(1,0,0), (u - 1,0,0)} ~R given by
Qx,y,2) = (x> +y?)I2 + A/lr, + A,lr,,
4, =a(l-p), 4, =au,
SN RN RS LR O R ER VR LR LY
where p € [0, 1/2] and g,,a, € ]-%,1].
The system may be written as

.iL.=L

dat? T

wl;erc q=0,,9,.9,) = (x,y,z) and L: R x D — R is a generalized
Lagrangian of the form

L@G.9) =T - 2(4,9).

The kinetic energy is given by

T(g) = (@) + d; + 452

and the generalized potential Z by
2(4,9) = 49,9, - 4,4, - QA9).
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The Lagrangian is of the type (10) with A(q,?) = 1,,f(q,!) =(q,,-9,,0) and
Ug,n = -€Aq).

We have ¢ = A(q,)'(p +f), hence

9, =pr"*4q

9, =D, — q,

q, = P;.
It follows .
1
H(p,q) = (p+p; +p)2 +pg, - P4, * —2-(4.2 +q7) - Qg) =

= (P12 +P22 +1732)/2 * P4, ~ P, AT~ A,y
The Hamiltonian system (4) is in this case

b=p,-q9+%
pz =P 4, * qu
<p3=94:

g, =P *q,

|9 =p,- 9
\(]'3‘-'173-

5. A charged particle in a magnetic field B(r) = curl A(r).
The equations are given by
.. e , .
mg = —(q x curl A),
C
where m > 0 is the mass, e the charge of the particle and 4 = (4,,4,,4,), with

A EC(RY,i=1,2,3.
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In this case ¢ = (g,,9,,9,) and L: R® — R,
L(g,9) = 24> + = <A@),4>,
2 c
so we have a generalized Lagrangian of the type (10) with
A=ml,f=-24,Un=0.
c
It follows for p = (p,, p,,p,) that
p=mg+>A,
c

hence

and from (11) we obtain H: R* — R,

3
H(p,g) = -2‘; > (- 24, - % <p-24@).p-2a@)>

i=1

The Hamiltonian system is

D, = i<p - fA,Aq>
mc [ '

. 1 €

q( = "'—(pi —""A.')'
m C

6. A charged particle in an electromagnetic field (E£(q.7), B(q,0)).
In this case, the motion of a particle of mass m and charge e is governed
by the equations

mg = eE + %(q‘ x B),
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q = (4,,9,,9,;) being the coordinates of the particle. These equations admit the
Lagrangian L: R’ — R,
L(g,9,1) = 547 - €0(@,1) + = <A(g,1),4>,

the fields E and B being related to the scalar potential ¢ and the vector potential

A by

The Lagrangian is of the type (10) with
A=mlL, f= —%A, U = e¢.
It follows that p is given by
p=mq+ fA,
C

hence

and the corresponding Hamiltonian is

1
H(p.q) = <P - LA@q.0,p - £A@G, 0> + ed (g, D).
m C C

The Hamiitonian system is

e e
R e

=
i
I
~
=
|
|
PN
<~
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