MONOTONE TECHNIQUE TO THE INITIAL VALUES PROBLEM FOR A DELAY INTEGRAL EQUATION FROM BIOMATHEMATICS

Radu PRECUP*

Received: November 12, 1994
AMS subject classification: 47H17, 34K15

REZUMAT. - Metoda iteratiilor monotone pentru problema cu valori initiale relativă la o. ecuaţie integrală din biomatematică. In lucrare este prezentată o matodă constructivă de rezolvare a problemei (1) - (2) în ipotezele (i) - (iv) presupunând că funcţia $f(t, x)$ este monotonă în raport cu x. Un aspect nou conṭinut în acest articol îl constituie ảdaptarea metodei iteraţiilor monotone la cazul operatorilor anti-izotoni, în particular, la cazul când $f(t, x)$ este o funcţie necrescătoare în \boldsymbol{x}.

1. Introduction. The following delay integral equation

$$
\begin{equation*}
x(t)=\int_{t=\tau}^{t} f(s, x(s)) d s \tag{1}
\end{equation*}
$$

is a model for the spread of certain infectious diseases with a contact rate that varies seasonally. In this equation $x(t)$ is the proportion of infectives in the population at time t, τ is the length of time an individual remains infectious and $f(t, x(t))$ is the proportion of new infectives per unit time.

In [1], [2], [4], [5], [6] sufficient conditions were given for the existence of nontrivial periodic nonnegative and continuous solutions to equation (1) in

[^0]
R. PRECUP

case of a periodic contact rate: $f(t+\omega, x)=f(t, x), f(t, 0)=0$. The tools were Banach fixed point theorem [5], topological fixed point theorems [1], [2], [4], [6], fixed point index theory (the additivity property) [2] and monotone technique [2], [4].

In [3] we dealt with positive and continuous solutions $x(t)$ for equation (1), on a given interval of time $-\tau \leq t \leq T$, when it , known the proportion $\phi(t)$ of infectives in the population for $-\tau \leq t \leq 0$, i.e.

$$
\begin{equation*}
x(t)=\phi(t), \text { for }-\tau \leq t \leq 0 . \tag{2}
\end{equation*}
$$

Clearly, we had to assume that ϕ satisfies the following condition:

$$
\begin{equation*}
b=\phi(0)=\int_{\tau}^{0} f(s, \phi(s), d s \tag{3}
\end{equation*}
$$

Under this condition problem (1)-(2) is equivalent with the initial values problem:

$$
\begin{gather*}
x^{\prime}(t)=f(t, x(t))-f(t-\tau, x(t-\tau)), 0 \leq t \leq T \tag{4}\\
x(t)=\phi(t),-\tau \leq t \leq 0 .
\end{gather*}
$$

The existence of at least one solution to problem (4) was established in
[3] under the following assumptions:
(i) $f(t, x)$ is nonnegative and continuous for $-\tau \leq t \leq T$ and $x \geq 0$;
(ii) $\phi(t)$ is continuous, $0<a \leq \phi(t)$ for $-\tau \leq t \leq 0$ and satisfies condition
(3);
(iii) there exists an integrable function $g(t)$ such that

$$
\begin{equation*}
f(t, x) \geq g(t) \text { for }-\tau \leq t \leq T \text { and } x \geq a \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{t-\tau}^{t} g(s) d s \geq a \text { for } 0 \leq t \leq T \tag{6}
\end{equation*}
$$

(iv) there exists a positive function $h(x)$ such that $1 / h(x)$ is locally integrable on $[a,+\infty)$,

$$
\begin{equation*}
f(t, x) \leq h(x) \text { for } 0 \leq t \leq T \text { and } x \geq a \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
T<\int_{0}^{\infty}(1 / h(x)) d x \tag{8}
\end{equation*}
$$

THEOREM 1 [3]. Suppose that assumptions (i)-(iv) are satisfied. Then equation (1) has at least one continuous solution $x(t), x(t) \geq a$, for $-\tau \leq t \leq T$, which satisfies condition (2).

Moreover, as follows from the proof, each continuous solution $x(t)$ to (1)(2) satisfying $x(t) \geq a$ for $-\tau \leq t \leq T$, also satisfies

$$
\begin{equation*}
x(t) \leq R \text { for } 0 \leq t \leq T \tag{9}
\end{equation*}
$$

where R is so that

$$
\begin{equation*}
T=\int_{0}^{R}(1 / h(x)) d x \tag{10}
\end{equation*}
$$

R. PRECUP

The proof of Theorem 1 was given by using the topological transversality theorem of Granas and can also be done by using Leray-Schauder continuation theorem. A constructive scheme to solve (1)-(2), namely the successive approximations method, was described in [3] only for the particular case where condition (iv) is replased by the more restrictive Lipschitz condition
(iv") there exists $L>0$ such that

$$
|f(t, x)-f(t, y)| \leq L|x-y|
$$

for all $t \in[-\tau, T]$ and $x, y \in[a,+\infty)$.
The aim of this paper is to give a constructive scheme to solve (1)-(2) under assumptions (i)-(iv) provided that $f(t, x)$ is nonotone with respect to x. Uniqueness will be also discussed. In case $f(t, x)$ is nondecreasing in x, our results are somewhat similar with those in [2] referring to periodic solutions of (1).
2. Main results. Let E be the Banach space of all continuous functions $x(t), 0 \leq t \leq T$ with norm

$$
\|x\|=\max _{0 \leq t \leq T}|x(t)| .
$$

Consider the closed subset of E :

$$
X=\{x \in E ; x(0)=b \text { and } x(t) \geq a \text { for } 0 \leq t \leq T\}
$$

and the d lay integral operator

$$
A: E \rightarrow X, A x(t)=\int_{i=\tau}^{t} f(s, \tilde{x}(s)) d s
$$

where $\tilde{x}(s)=x(s)$ for $0<s \leq T$ and $\tilde{x}(s)=\phi(s)$ for $-\tau \leq s \leq 0 . A$ is completely continuous as an operator from X into X.

THEOREM 2. Let (i)-(iv) be satisfied. Suppose that $f(t, x)$ is nondecreasing in x for $a \leq x \leq R$. Denote

$$
\begin{gathered}
U_{0}(t)=a \text { for } 0 \leq t \leq T \\
U_{n}(t)=A U_{n-1}(t) \text { for } 0 \leq t \leq T(n=1,2, \ldots) .
\end{gathered}
$$

Then, $U_{n}(t) \rightarrow x_{*}(t)$ uniformly in $t \in[0, T]$ as $n \rightarrow \infty, x_{*}(t)$ is the minimal solution to (1)-(2) in X and

$$
a \leq U_{1}(t) \leq \ldots \leq U_{n}(t) \leq \ldots \leq x_{*}(t) \leq R \text { for } 0 \leq t \leq T .
$$

Proof. By Theorem 1 there exists at least one solution in X to (1)-(2). Let $x_{1}(t)$ be any solution to (1)-(2). We have

$$
a=U_{0}(t) \leq x_{1}(t) \leq R \text { for } 0 \leq t \leq T .
$$

Consequently, since A is nondecreasing on interval $[a, R]$ of E

$$
U_{1}(t)=A U_{0}(t) \leq A x_{1}(t)=x_{1}(t) .
$$

On the other hand, by (iii), we have $a=U_{0}(t) \leq U_{1}(t)$. Hence

R. PRECUP

$$
U_{0}(t) \leq U_{1}(t) \leq x_{1}(t) \text { for } 0 \leq t \leq T .
$$

Now we inductively find that

$$
a \leq U_{1}(t) \leq U_{2}(t) \leq \ldots \leq U_{n}(t) \leq \ldots \leq x_{1}(t) \text { for } 0 \leq t \leq T \text {. }
$$

A being completely continuous on X, the sequence $\left(A U_{n}\right)_{n \geq 1}$ must contain a subsequence, say $\left(A U_{n_{k}}\right)_{k \geq 1}$, convergent to some $x . \in X$. But $A U_{n_{t}}(t)=U_{n_{t}+1}(t)$ and taking into account the monotonicity of $\left(J_{n}(t)\right)_{n \geq 1}$, we obtain that $U_{n}(t) \rightarrow x_{*}(t)$ uniformly in $t \in[0, T]$ as $n \rightarrow \infty$ and

$$
U_{n}(t) \leq x_{*}(t) \leq x_{1}(t) \text { for } 0 \leq t \leq T(n=0,1, \ldots) .
$$

Letting $n \rightarrow \infty$ in $A U_{n}(t)=U_{n+1}(t)$ we get $A x_{*}(t)=x_{*}(t)$, i.e. $x_{*}(t)$ is a solution to (1)-(2). Finally, by $x_{*}(t) \leq x_{1}(t)$ where $c_{1}(t)$ was any solution to (1)(2), we see that $x_{*}(t)$ is the minimal solution to (1)-(2) in X.

The following result is concerning with the existence and approximation of the maximal solution in X to (1)-(2).

THEOREM 3. Let (i)-(iv) be satisfied. Suppose that there exists $R_{0} \geq R$ such that

$$
\begin{equation*}
f\left(1, R_{0}\right) \leq R_{0} / \tau \text { for }-\tau \leq t \leq T \tag{11}
\end{equation*}
$$

(i.e. $f(t, \phi(t)) \leq R_{0} / \tau$ for $-\tau \leq t \leq 0$ and $f\left(t, R_{0}\right) \leq R_{0} / \tau$ for $0<t \leq$ T) and $f(t, x)$ is nondecreasing in x for $a \leq x \leq R_{0}$. Denote $V_{0}(t)=R_{0}$ for $0 \leq t \leq T$,

$$
V_{n}(t)=A V_{n-1}(t) \text { for } 0 \leq t \leq T(n=1,2, \ldots) .
$$

Then, $V_{n}(t) \rightarrow x^{*}(t)$ uniformly in $t \in[0, T]$ as $n \rightarrow \infty, x^{*}(t)$ is the maximal solution to (1)-(2) in X and

$$
x *(t) \leq \ldots \leq V_{n}(t) \leq \ldots \leq V_{2}(t) \leq V_{1}(t) \leq R_{0} \text { for } 0 \leq t \leq T
$$

Proof. By (11) we have

$$
V_{1}(t) \leq V_{0}(t)=R_{0} \text { for } 0 \leq t \leq T .
$$

Next, the proof is analog to that of Theorem 2.
THEOREM 4. Let the conditions of Theorem 2 be satisfied. Suppose that there exists $\alpha \in(0,1)$ such that

$$
\begin{equation*}
f(t, \gamma x) \geq \gamma^{\alpha} f(t, x) \text { for all } \gamma \in(0,1), t \in[0, T], x \in[a, R] . \tag{12}
\end{equation*}
$$

Then, (1)-(2) has a unique solution in X.
Proof. Let $x_{1}(t)$ be any solution in X to (1)-(2). We will show that $x_{1}(t)=$ $x_{\text {. }}(t)$. Let

$$
\gamma_{0}=\min _{0 \leq t \leq T}\left(x_{*}(t) / x_{1}(t)\right) .
$$

Since $a \leq x_{0}(t) \leq x_{1}(t) \leq R$, we have $a / R \leq \gamma_{0} \leq 1$. Now, we show $\gamma_{0}=1$. In fact, if $\gamma_{0}<1$, then (12) implies

$$
x_{*}(t)=A x_{*}(t) \geq A\left(\gamma_{0} x_{1}\right)(t)=\int_{\tau}^{1} f\left(s, \widetilde{\gamma}_{0} \tilde{x}_{1}(s)\right) d s
$$

R. PRECUP

$$
\geq \gamma_{0}^{\alpha} \int_{t=\tau}^{1} f\left(s, \tilde{x}_{1}(s)\right) d s=\gamma_{0}^{\alpha} A x_{1}(t)=\gamma_{0}^{\alpha} x_{1}(t)
$$

Thus $\gamma_{0} \geq \gamma_{0}^{\alpha}$, which is impossible for $0<\alpha<1$. Therefore, $\gamma_{0}=1$ and $x_{n}(t)=x_{1}(t)$.

THEOREM 5. Let the conditions of Theorem 3 and Theorem 4 be satisfied. Then, (1)-(2) has a unique solution $x_{0}(t)$ in X and for any $x_{0}(t)$ in E satisfying $a \leq x_{0}(t) \leq R_{0}$ for all $t \in[0, T]$, we have ${ }_{n}(t) \rightarrow x_{*}(t)$ uniformly in $t \in[0, T]$ as $n \rightarrow \infty$, where

$$
x_{n}(t)=A x_{n-1}(t) \quad(n=1,2, \ldots)
$$

Proof. We find from

$$
a=U_{0}(t) \leq x_{0}(t) \leq V_{0}(t)=R_{0}
$$

that

$$
U_{n}(t) \leq x_{n}(t) \leq V_{n}(t) \quad(n=1,2, \ldots)
$$

On the other hand, by Theorem 2 and Theorem 3, we have that

$$
U_{n}(t) \rightarrow x_{*}(t) \text { and } V_{n}(t) \rightarrow x_{*}(t)
$$

uniformly in $t \in[0,7]$ as $n \rightarrow \infty$. Therefore, $x_{n}(t) \rightarrow x_{.}(t)$ uniformly in $t \in$ $[0, T]$ as $n \rightarrow \infty$.

The following result refers to functions $f(t, x)$ which are nonincreasiti: in x.

THEOREM 6. Let (i)-(iv) be satisfied. Denote $R_{0}=\max \left(R,\left\|U_{1}\right\|\right)$ and suppose $f(t, x)$ is nonincreasing in x for $a \leq x \leq R_{0}$. Also suppose that there exists $\alpha \in(-1,0)$ such that

$$
\begin{equation*}
f(t, \gamma x) \leq \gamma^{\alpha} f(t, x) \text { for } \gamma \in(0,1), t \in[0, T], x \in\left[a, R_{0}\right] \tag{13}
\end{equation*}
$$

Then, (1)-(2) has a unique solution $x_{0}(t)$ in X,

$$
\begin{gathered}
a=U_{0}(t) \leq V_{1}(t) \leq \ldots \leq U_{2 n}(t) \leq V_{2 n+1}(t) \leq \ldots \leq x_{0}(t) \leq \\
\ldots \leq U_{2 n+1}(t) \leq V_{2 n}(t) \leq \ldots \leq U_{1}(t) \leq V_{0}(t)=R_{0} \text { for } 0 \leq t \leq T,
\end{gathered}
$$

and $U_{n}(t) \rightarrow x_{*}(t), V_{n}(t) \rightarrow x_{*}(t)$ uniformly in $t \in[0, T]$ as $n \rightarrow \infty$.
Proof. By Theorem 1 there exists as least one solution $x_{1}(t)$ to (1)-(2) and $a \leq x_{1}(t) \leq R$ for $0 \leq t \leq T$. We have

$$
a=U_{0}(t) \leq x_{1}(t) \leq V_{0}(t)=R_{0}
$$

whence

$$
V_{1}(t) \leq x_{1}(t) \leq U_{1}(t)
$$

But, by (iii), $a \leq V_{1}(t)$. Also $U_{1}(t) \leq\left\|U_{1}\right\| \leq R_{0}$. Hence

$$
U_{0}(t) \leq V_{1}(t) \leq x_{1}(t) \leq U_{1}(t) \leq V_{0}(t) .
$$

It follows

$$
U_{0}(t) \leq V_{1}(t) \leq U_{2}(t) \leq x_{1}(t) \leq V_{2}(t) \leq U_{1}(t) \leq V_{0}(t) .
$$

Finally

R. PRECUP

$$
\begin{gather*}
a=U_{0}(t) \leq V_{1}(t) \leq \ldots \leq U_{2 n}(t) \leq V_{2 n+1}(t) \leq \ldots \\
\ldots \leq x_{1}(t) \leq \ldots \leq U_{2 n+1}(t) \leq V_{2 n}(t) \leq \ldots \leq U_{1}(t) \leq V_{0}(t)=R_{0} . \tag{14}
\end{gather*}
$$

A being completely continuous on X, the sequence $\left(A U_{2 n-1}(t)\right)_{n \geq 1}$ contains a subsequence convergent to some $y_{0}(t)$ in X and similarly, $\left(A V_{2 n-1}(t)\right)_{n \geq 1}$ contains a subsequence converging to some $y^{*}(t)$ in X^{X}. Now, from (14) we see that

$$
\begin{align*}
& U_{2 n}(t) \rightarrow y_{*}(t), V_{2 n+1}(t) \rightarrow Y_{*}(t) \\
& U_{2 n+1}(t) \rightarrow y^{*}(t), V_{2 n}(t) \rightarrow y^{*}(t) \tag{15}
\end{align*}
$$

uniformly in $t \in[0, T]$ as $n \rightarrow \infty$ and

$$
\begin{equation*}
y_{*}(t) \leq x_{1}(t) \leq y^{*}(t) \tag{16}
\end{equation*}
$$

By (15), it follows that

$$
y^{*}(t)=A y_{*}(t) \text { and } y_{*}(t)=A \dot{y}^{*}(t)
$$

Now, we prove that under assumption (13), we have indeed $y_{.}(t)=y^{*}(t)$. To do this, let

$$
\gamma_{0}=\min _{0 \leq t \leq T}\left(y_{*}(t) / y^{*}(t)\right) .
$$

Obviously, $0<a / R_{0} \leq \gamma_{0} \leq 1$. We will show that $\gamma_{0}=1$. In fact, if $\gamma_{0}<1$, then (13) implies

$$
y^{*}=A y_{*} \leq A\left(\gamma_{0} y^{*}\right)=\int_{t=\tau}^{1} f\left(s, \widetilde{\gamma_{0} y^{*}}(s)\right) d s \leq
$$

MONOTONE TECHNIQUE TO THE INITIAL VALUES PROBLEM

$$
\leq \gamma_{0}^{\alpha} \int_{t=\tau}^{t} f\left(s, \tilde{y}^{*}(s)\right) d s=\gamma_{0}^{\alpha} A y^{*}=\gamma_{0}^{\alpha} y_{*} .
$$

Therefore, $\gamma_{0}^{-\alpha} \leq \gamma_{0}$ or, equivalently, $\alpha \leq-1$, a contradiction. Thus, $\gamma_{0}=1$ as claimed. Consequently, $y_{*}=y^{*}$. The proof is complete.

REFERENCES

1. K.L. Cooke, J.L. Kaplan, A periodicity thereshald theorem for epidemics and population growth, Math. Biosc. 31(1976), 87-104.
2. D. Guo, V. Lakshmikantham, Positive solutions of nonlinear integral equations arising in infectious diseases, J. Math. Anal. Appl. 134(1988), 1-8.
3. R. Precup, Positive solutions of the initial value problem for an integral equation modeling infectious disease, "Babes-Bolyai" Univ., Faculty of Math., Preprint nr. 3, 1991, 25-30.
4. R. Precup, Periodic solutions for an integral equation from biomathematics via the Leray-Schauder principle, Studia Universitatis Babes-Bolyai (Mathematica) 39, No. 1 (1994).
5. I.A. Rus, A delay integral equation from biomathematics, "Babes-Bolyai" Univ. Faculty of Math., Preprint nr. 3, 1989, 87-90.
6. L.R. Williams, R.W. Leggett, Nonzero solutions of nonlinear integral equations modeling infectious disease, SIAM J. Math. Anal. 13(1982), 112-121

[^0]: * "Babeş-Bolyai" University, Faculty of Mathematics and Computer Science, 3400 ClujNapoca, Romania

