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REZUMAT. - Polinoame Bernstein pe simplexuri. in aceasta lucrare autorii
se ocupd de studiul unor proprietéti ale polinoamelor Bernstein definite pe un
simplex arbitrar din R’. Se pun in evidenji anumite relatii care au loc intre
functiile convexe in T §i sirurile polinoamelor Bernstein corespunzitoare.

Abstract. In this paper the authors are concemed with a study of the
multivariate Bernstein polynomials over an arbitrary simplex in R*. Some
relations between convex functions in 7' and the sequences of the corresponding

Bemstein polynomials are shown.”

Let 7,,T,,..., T, be (s + 1) affinely independent points of R®, s = 1. The
s-dimensional simplex T is defined by
T = span{T,,.., T}

Each point P € T can be uniquely expressed by
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such that w 2 0,/ =0, . v, E u = tothe (s ¢ Dtple o= (u, . 1) as

1=

called the barycentric coordinates of £ with respect to the simplex /)

Let us define the basic functions

!
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a = (a),..,a) € Z", |a| = E ol =ot o, ol =, 0 =t
1=0

s

Y BAP) = 1.
i=0
The points x_ = o , o € 22" are called nodes of the simplex 7, :t means
n
. - . (10 (x'v
that their barycentric coordinates are |—, ..., —Z|.
n n

For any function f(P) continuous on 7 the multivariate Bemstein

polynomials defined by

B(fiP) = ¥ BJ(P)./‘(%) @)

laj=n

aeZ
converge to f(#) uniformly on 7" as n — o. Properties of the multivariate
Bemstein polynomials have been also studied in [2], [3], [4], [10], [11], [12],
[13], [14].

Now some properties of multivariate Bernstein polynomials are stated.

For a given interior point P€ T, P = (u,, ..., u,) and a number 0, u, > b
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>0,i=0, .., s we define
Ty = {0 = Vs sV )|V, 204, -8,i=0,.., s}
This is a closed simplex contained by the simplex 7' and containing P as
its focal point. Each edge of T}, is parallel to the corresponding edge of 7.

LEMMA 1. LetP = (u,,..,u,), PEtT and 0 <O <u, i=0,..,s

9 .

Then

nd?

Y PIP)sY e T 3)

lal=n

a
n Pa

Proof. By the definition of T}, it is clear that & ¢ 1, if there exists k
» n PY

a
€ {0, ..., s} such that —* < u, - 8. Then
n

21: Pj(P) s ‘E P/(P)
la|=n |la|=n
%QTM _(_;.<u,—6

Let us define functions G(x), i = 0, ..., s, as follows

G(x) = Y, BI(P)e™ ™™ xER. @)

lal=n
It is easy to show (using the fact zs: u, = 1) that
i=0
Gx) = (™1 -u) +ue ™y
Let us denote
Q) =e™(1 -u) + ue ™.

And now in the same way as in [9], [6] it can be shown that
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ux*(l -u)

Q) =1 +ux?(1-u)se
under the assumption |x| < 3/2.
From it follows
G,(x) < e™ ™), 5)
Let ¢ be an arbitrary positive real number. Then

G = ¥ BJR)e™ ™™ = ¥ @)™ >

la|=n la| =n
"> ¢1G (x) -

> Y BMP)e'G(x).

la]=n
" > 016G (x)

This gives the following estimate

Y B(P)<e” (6)

laj=n
e > e 'G,x)

Now, using (5) we obtain

Yy B(P)<e™ (7

P """I::I:': mela-u

) ‘

=" r e % then |x| = 3/2 and (7) gives
4(1 -u,) 2(1 —u‘) -

Y B/P)<e T
la|=n

a,

—<u-0
n 1

Let ¢

And this estimate concludes our proof

nd?

Y PIP)sYe T =
la| =n i=0
Ser,
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LEMMA 2. Let P = (uy,..,u,) be an .interior point of T,

0<d< %., i =0,..,s. Then for 2e T, , the following inequality
p :

§ 3Ind 1

BJ(P) = k1l e W (8)
P

holds, where K is an positive constant independent only on s.

Proof. Let us remind Stirling’s formula

‘ 0
nl =\2nnn"e"H , H =e>, 0<06<1

ie.
n . ) n 1
2nn (ﬂ) <n! <y2nn (ﬁ) e 1n
e e
Then s
V2nn ne [
BIP) = L ue > .
ol s .
II/2na, o'e
i=0
‘/ d Iul
f[e™ (2 @_7.?
i=0
Denote

1 a‘

L, - (l‘l‘l u,]a'e'“'(T;‘T'"‘), i=0,..,s.

As it was proved in [5]

(lil\w]a‘elal(%-ul) ze ED (T-r ) (10)

@,

provided that
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* <Li=o0 (1)
—_— - u —, i =0,..,s.
o] 4
(03
It is easy to see that these assumptions are satisfied. From — 2z u, - d it
n
(9]
follows immediately s = & = u, - —. On the other hand the equalities

n

s a 5 a
E_‘ = 1 and E u, =1 give sd 2 — - u,. Together with the assumptions
i=0 N =0 n

al
— -u

u
of lemma we have . > 58 =
4 |ox|

nE

Therefore if inequalities (11) are satisfied th

s s ey lalgyn L
IILa,=J]e ™ =¢ ™ =° (12)
i=0 i=0
Further
s 1 E 1
Hem = e T < g (. (13)
i=0
and
1
V]
a M
Jl | = - (14)
3
Hal o]
i=0
for
Mz 1 ,i=0,..,s
a e+u

where the constants C and M are independent on .

Summarizing (9), (10), (13) and (14) we obtain

3nd
B)P)=K_ ¢ T =W -
)

n
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LEMMA 3. Let Q C T be a simplex with edges parallel to those of the
given simplex T. Let N, be a number of nodes belonging to Q. Then there exists
a positive number ny such that

N, > yn’ (15)
if n =z ny, where y > 0 is a constant.

The proof is simple.

The following theorem can be proved

THEOREM 1. Let f € C(T) be convex on T. Then

B(f;P) = f(P), B(f,P)=B,(f;P)
forallnz1andallPET.

See [3] for the proof.

It is well-known that for univariate Bemstein polynomials so-called
converse theorems hold ([5], [7], [8], [15]):

() B”(f;x) z f(x), x € [0,1], n =2 1 = fis convex in [0,1].

(i) B(f;x) = B,,,(f;x), x € [0,1], n 2 1 = fis convex in [0,1].
But it is impossible to extend directly these converse theorems to the Bemnstein

polynomials over simplices.

As concerns Bernstein pdlynomials over triangles this problem was solved

59



I. HOROVA, J. ZELINKA

in [1]. In [6] there was given a different approach to this problem. Now we are
going to prove the following theorem:

THEOREM 2. Let f€ C(T) and B(f;P) = f(P) for all P € T and all
natural numbers n. Then the function f does not attain its strict local maximum
inside T.

' Proof. Let us suppose that f attains a strict I¢ al maximum at the intetior
point Q = (u,, ..., u,). Without lost of generality it is possible to put £Q) = 0.

Then there exists a §ubsimplex T,

0.8,7 0<9, <u,i=0,.,s contai ing Q as

an interior point such f{P) < 0 for all P € Tg,a, and let ¢ = min{u,, ..., u}.
Let us choose 8, in such a way that
0 < 8, < min [_f’_',__f"___], e = ﬁjl,
45 V3e(-1) =0 ¥
Then T, , O T, ,. Further let Q C 7, , be a subsimplex with edges parallel
to the corresponding edges of TQ"O, and AP) <O for all P € Q. Let (—h) be a

maximum of f over the subsimplex Q and let M = max,_, | f(P)].

Now let us evaluate B, (f; Q). It is

B(f:0)= ¥ f( )B @+ ¥ f( )B (Q)+z:f( )B"wa)

_.erml er €
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Using lemma [ we obtain for the first sum

a a
- € Ta.a. - 2 Tos

nbf

)3 f(%)BJ'(Q) <MY BXQ) sMs+le T (1)

Further as far as the second sum is concerned one can state it is nonpositive.

And now the sum will be estimated: Q@ C T, . and due to this reason it is

Q,3,
i _3116;l
Y B =Ky —e T
%en %en lal’z
Now the use of lemma 3 gives
3nd;
Y BXQ) s -hL e T
%ea n?
Then
_ nd 5 _3n8;
B(f;0) = M(s+1)e T - hI, ”s e ¥
n?
_3n6§= ) nd} *3n6§' s
=e ? \MGs+De 0 T _pin?

|

Under given assumptions from here it follows that B (f; Q) < 0 and this

contradiction concludes our proof.

The following theorem can be proved as the consequence of the theorem

THEOREM 3. If f € C(T) and the inequality

B(f.P) =B, (f.])
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holds for all natural numbers n and all points on T, then the function f does not

attain a strict local maximum inside T.
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