BERNSTEIN POLYNOMIALS OVER SIMPLICES

Ivana HOROVÅ ${ }^{\circ}$ and Jiří ZELINKA ${ }^{\bullet}$

Received: March 20, 1995
AMS subject classification: 41A36, 41 A63

> REZUMAT. - Polinoame Bernstein pe simplexuri. Inn această lucrare autorii se ocupă de studiul unor proprietăti ale polinoamelor Bernstein definite pe un simplex arbitrar din \mathbf{R}^{\prime}. Se pun în evidentă anumite relaţii care au loc intre funcţile convexe în T şi ssirurile polinoamelor Bernstein corespunzătoare.

Abstract. In this paper the authors are concerned with a study of the multivariate Bernstein polynomials over an arbitrary simplex in \mathbf{R}^{s}. Some relations between convex functions in T and the sequences of the corresponding Bernstein polynomials are shown."

Let $T_{0}, T_{1}, \ldots, T_{s}$ be $(s+1)$ affinely independent points of $\mathbf{R}^{s}, s \geq 1$. The s-dimensional simplex T is defined by

$$
T=\operatorname{span}\left\{T_{0}, \ldots, T_{s}\right\}
$$

Each point $P \in T$ can be uniquely expressed by

[^0]$$
r=\sum_{i=1}^{\dot{x}} \cdot \vec{j}
$$
such that $u_{i} \geq 0, i=0, \ldots, i, \sum_{j=1}^{n} u_{i}=1$: the $(s+1)$ tuple $u=\left(u_{0}, \ldots, u_{1}\right)$ is called the barycentric coordinates of I^{\prime} with iespect to the simplex I.

Let us define the basic functions

$$
\begin{gathered}
B_{\alpha}^{n}(P)=\frac{|\alpha|!}{\alpha!} u^{\alpha} \\
\alpha=\left(\alpha_{0}, \ldots, \alpha_{s}\right) \in Z_{+}^{s+1},|\alpha|=\sum_{i=0}^{s}, \alpha!=\alpha_{0}!\ldots \alpha_{s},|\alpha|=n, u^{\alpha}=u_{0}^{\left(\alpha_{0}\right.} \ldots u_{s}^{u}, \\
\sum_{i=0}^{s} B_{\alpha}^{\prime \prime}(P)=1
\end{gathered}
$$

The points $x_{\alpha}=\frac{\alpha}{n}, \alpha \in Z_{+}^{\beta+1}$ are called nodes of the simplex T, t means that their barycentric coordinates are $\left(\frac{\alpha_{0}}{n}, \ldots, \frac{\alpha_{s}}{n}\right)$.

For any function $f(P)$ continuous on T the multivariate Benstein polynomials defined by

$$
\begin{equation*}
B_{n}(f ; P)=\sum_{\substack{|\alpha|=n \\ \alpha \in Z_{+}^{\prime+1}}} B_{a}^{\prime \prime}(P) f\left(\frac{\alpha}{n}\right) \tag{2}
\end{equation*}
$$

converge to $f(P)$ uniformly on T as $n \rightarrow \infty$. Properties of the multivariate Bernstein polynomials have been also studied in [2], [3], [4], [10], [11], [12], [13], [14].

Now some properties of multivariate Bernstein polynomials are stated.

For a given interior point $P \in T, P=\left(u_{0}, \ldots, u_{s}\right)$ and a number $\delta, u_{i}>\delta$
$>0, i=0, \ldots, s$ we define

$$
T_{P, 0}=\left\{Q=\left(v_{0}, \ldots, v_{s}\right) \mid v_{i} \geq u_{i}-\delta, i=0, \ldots, s\right\}
$$

This is a closed simplex contained by the simplex I and containing P as its focal point. Each edge of $T_{P, 0}$ is parallel to the corresponding edge of T.

LEMMA 1. Let $P=\left(u_{0}, \ldots, u_{s}\right), P \in \operatorname{int} T$ and $0<\delta<u_{i}, i=0, \ldots, s$.
Then

$$
\sum_{\substack{|\alpha|=n \\ \frac{\alpha}{n} \notin T_{r, s}}} P_{\alpha}^{n}(P) \leq \sum_{i=0}^{s} e^{-\frac{n \delta^{2}}{4\left(1-u_{1}\right)}}
$$

Proof. By the definition of $T_{P, \delta}$ it is clear that $\frac{\alpha}{n} \notin T_{P, \delta}$ if there exists k $\in\{0, \ldots, s\}$ such that $\frac{\alpha_{k}}{n}<u_{k}-\delta$. Then

$$
\sum_{\substack{|\alpha|=n \\ \frac{\alpha}{n} \notin r_{r o j}}} P_{\alpha}^{n}(P) \leq \sum_{\substack{|\alpha|=n \\ \frac{\alpha}{n}<u_{1}-\delta}} P_{\alpha}^{n}(P)
$$

Let us define functions $G_{i}(x), i=0, \ldots, s$, as follows

$$
\begin{equation*}
G_{i}(x)=\sum_{|\alpha|=n} B_{a}^{n}(P) e^{x\left(\alpha_{1}-u, n\right)}, x \in \mathbf{R} . \tag{4}
\end{equation*}
$$

It is easy to show (using the fact $\sum_{i=0}^{s} u_{i}=1$) that

$$
G_{i}(x)=\left(e^{-x u_{i}}\left(1-u_{i}\right)+u_{i} e^{x\left(1-u_{i}\right)}\right)^{n}
$$

Let us denote

$$
\varphi_{i}(x)=e^{-x u_{i}}\left(1-u_{i}\right)+u_{i} e^{x\left(1-u_{i}\right)}
$$

And now in the same way as in [9], [6] it can be shown that

$$
\varphi_{i}(x) \leq 1+u_{i} x^{2}\left(1-u_{i}\right) \leq e^{u_{i} x^{2}\left(1-u_{i}\right)}
$$

under the assumption $|x| \leq 3 / 2$.
From it follows

$$
\begin{equation*}
G_{i}(x) \leq e^{n u_{1} x^{2}\left(1-u_{1}\right)} \tag{5}
\end{equation*}
$$

Let t be an arbitrary positive real number. Then

$$
\begin{aligned}
& G_{i}(x)=\sum_{|\alpha|=n} B_{a}^{n}(P) e^{x\left(\alpha_{1}-u_{1} n\right)} \geq \sum_{\substack{\left.|\alpha|=n \\
e^{n\left(q-u u^{\prime}\right)}\right\rangle e^{\prime} G_{1}(x)}} \int_{\alpha}^{n}(P) e^{x\left(\alpha_{1}-n u_{1}\right)}> \\
& >\sum_{\substack{\mid\left(\alpha a \mid=n \\
e^{\prime}\left(a-a_{1}\right)>e^{\prime} G_{i}(x)\right.}} B_{\alpha}^{n}(P) e^{\prime} G_{i}(x) .
\end{aligned}
$$

This gives the following estimate

$$
\begin{equation*}
\sum_{\substack{\left.| | \alpha \mid=n \\ e^{x\left(q-a, u^{\prime}\right)}>e^{\prime} G_{1} x\right)}} B_{\alpha}^{n}(P)<e^{-t} \tag{6}
\end{equation*}
$$

Now, using (5) we obtain

$$
\begin{equation*}
\sum_{\substack{|a|=n \\-w,>e^{\prime} e^{2} n^{2}(a-w)}} B_{a}^{n}(P)<e^{-t} \tag{7}
\end{equation*}
$$

Let $t=\frac{n \delta^{2}}{4\left(1-u_{i}\right)}, x=-\frac{\delta}{2\left(1-u_{i}\right)}$ then $|x| \leq 3 / 2$ and (7) gives

$$
\sum_{\substack{|\alpha|=n \\ \frac{\alpha_{1}}{n}<u_{1}-\delta}} B_{a}^{n}(P)<e^{-\frac{n \delta^{2}}{4\left(1-u_{1}\right)}}
$$

And this estimate concludes our proof

$$
\sum_{\substack{|\alpha|=n \\ \frac{\alpha}{n} \notin r_{r, 0}}} P_{\alpha}^{n}(P) \leq \sum_{i=0}^{s} e^{-\frac{n \delta^{2}}{4\left(1-u_{i}\right)}} .
$$

LEMMA 2. Let $P=\left(u_{0}, \ldots, u_{s}\right)$ be an interior point of T, $0<\delta<\frac{u_{i}}{4 s}, i=0, \ldots, s$. Then for $\frac{\alpha}{n} \in T_{P, \delta}$ the following inequality

$$
\begin{equation*}
B_{\alpha}^{n}(P) \geq K \frac{1}{n^{s / 2}} e^{-\frac{3 n \delta^{2}}{4} \sum_{i=0} \frac{1}{u_{1}}} \tag{8}
\end{equation*}
$$

holds, where K is an positive constant independent only on s.

Proof. Let us remind Stirling's formula

$$
n!=\sqrt{2 \pi n} n^{n} e^{-n} H_{n}, H_{n}=e^{\frac{\theta}{12 n}}, 0<\theta<1
$$

i.e.

$$
\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}<n!<\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} e^{\frac{1}{12 n}}
$$

Then

$$
\begin{gather*}
B_{\alpha}^{n}(P)=\frac{n!}{\alpha!} u^{\alpha}>\frac{\sqrt{2 \pi n} n^{n} e^{-n} \prod_{i=0}^{s} u_{i}^{\alpha_{i}}}{\prod_{i=0}^{s} \sqrt{2 \pi \alpha_{i}} \alpha_{i}^{\alpha_{i}} e^{-\alpha, e^{\frac{1}{1 / m a /}}}}= \\
=\frac{1}{\prod_{i=0}^{s} e^{\frac{1}{12 \alpha_{i}}}} \frac{1}{(\sqrt{2 \pi})^{s}} \frac{\sqrt{|\alpha|}}{\sqrt{\alpha_{0} \ldots \alpha_{s}}} \prod_{i=0}^{s}\left(\frac{|\alpha|}{\alpha_{i}} u_{i}\right)^{\alpha_{1}} \prod_{i=0}^{s} e^{|\alpha|\left(\frac{\alpha_{i}}{|\alpha|}-u_{i}\right)} . \tag{9}
\end{gather*}
$$

Denote

$$
L_{\alpha_{i}}=\left(\frac{|\alpha|}{\alpha_{i}} u_{i}\right)^{\alpha_{1_{1}}} e^{|a|\left(\frac{\alpha_{i}}{|\alpha|}-u_{i}\right)}, i=0, \ldots, s
$$

As it was proved in [5]

$$
\begin{equation*}
\left(\frac{|\alpha|}{\alpha_{1}} u_{i}\right)^{\alpha_{1}} e^{|\alpha|\left(\frac{\alpha_{1}}{|\alpha|}-u_{1}\right)} \geq e^{-\frac{3|\alpha|}{4 u_{1}}\left(\frac{\alpha_{1}}{|\alpha|}-u_{1}\right)^{2}} \tag{10}
\end{equation*}
$$

provided that

$$
\begin{equation*}
\left|\frac{\alpha_{i}}{|\alpha|}-u_{i}\right|<\frac{u_{i}}{4}, i=0, \ldots, s \tag{11}
\end{equation*}
$$

It is easy to see that these assumptions are satisfied. From $\frac{\alpha_{i}}{n} \geq u_{i}-\delta$ it follows immediately $s \delta \geq \delta \geq u_{i}-\frac{\alpha_{i}}{n}$. On the other hand the equalities $\sum_{i=0}^{s} \frac{\alpha_{i}}{n}=1$ and $\sum_{i=0}^{s} u_{i}=1$ give $s \delta \geq \frac{\alpha_{i}}{n}-u_{i}$. Together with the assumptions of lemma we have $\frac{u_{i}}{4}>s \delta \geq\left|\frac{\alpha_{i}}{|\alpha|}-u_{i}\right|$.

Therefore if inequalities (11) are satisfied the

$$
\begin{equation*}
\prod_{i=0}^{s} L \alpha_{i} \geq \prod_{i=0}^{s} e^{-\frac{3|\alpha|}{4 u_{1}} \delta^{2}}=e^{-\frac{3|\alpha|}{4 u_{i}} \delta^{2} \sum_{i=0} \frac{1}{u_{i}}} \tag{12}
\end{equation*}
$$

Further

$$
\begin{equation*}
\prod_{i=0}^{s} e^{\frac{1}{12 \alpha_{i}}}=e^{\sum_{i=0} \frac{1}{12 \alpha_{i}}}<e^{s+i}=c \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{|\alpha|}{\prod_{i=0}^{s} \alpha_{i}}\right)^{\frac{1}{2}} \geq \frac{M}{|\alpha|^{\frac{s}{2}}} \tag{14}
\end{equation*}
$$

for

$$
\frac{|\alpha|}{\alpha_{i}} \geq \frac{1}{\varepsilon+u_{i}}, i=0, \ldots, s
$$

where the constants C and M are independent on α.
Summarizing (9), (10), (13) and (14) we obtain

$$
B_{\alpha}^{n}(P) \geq K \frac{1}{n^{\frac{s}{2}}} e^{\frac{3 n 0^{2}}{4} \sum_{i=0} \frac{1}{u_{1}}}
$$

BERNSTEIN POLYNOMIALS OVER SIMPLICES

LEMMA 3. Let $\Omega \subset T$ be a simplex with edges parallel to those of the given simplex T. Let N_{Ω} be a number of nodes belonging to Ω. Then there exists a positive number n_{0} such that

$$
\begin{equation*}
N_{\mathbf{\Omega}}>\gamma n^{s} \tag{15}
\end{equation*}
$$

if $n \geq n_{0}$, where $\gamma>0$ is a constant.
The proof is simple.
The following theorem can be proved
THEOREM 1. Let $f \in C(T)$ be convex on T. Then

$$
B_{n}(f ; P) \geq f(P), \quad B_{n}(f ; P) \geq B_{n+1}(f ; P)
$$

for all $n \geq 1$ and all $P \in T$.
See [3] for the proof.
It is well-known that for univariate Bernstein polynomials so-called converse theorems hold ([5], [7], [8], [15]):
(i) $B_{n}(f ; x) \geq f(x), x \in[0,1], n \geq 1 \Rightarrow f$ is convex in $[0,1]$.
(ii) $B_{n}(f ; x) \geq B_{n+1}(f ; x), x \in[0,1], n \geq 1 \Rightarrow f$ is convex in $[0,1]$.

But it is impossible to extend directly these converse theorems to the Bernstein polynomials over simplices.

As concerns Bernstein polynomials over triangles this problem was solved

I. HOROVA, J. ZELINKA

in [1]. In [6] there was given a different approach to this problem. Now we are going to prove the following theorem:

THEOREM 2. Let $f \in C(T)$ and $B_{n}(f ; P) \geq f(P)$ for all $P \in T$ and all natural numbers n. Then the function f does not attain its strict local maximum inside T.

Proof. Let us suppose that f attains a strict lc al maximum at the interior point $Q=\left(u_{0}, \ldots, u_{s}\right)$. Without lost of generality it is possible to put $f(Q)=0$. Then there exists a subsimplex $T_{Q, \delta_{1}}, 0<\delta_{1}<u_{i}, i=0, \ldots, s$ contai ing Q as an interior point such $f(P) \leq 0$ for all $P \in T_{Q, \delta_{1}}$ and let $t=\min \left\{u_{0}, \ldots, u_{i}\right\}$.

Let us choose δ_{2} in such a way that

$$
0<\delta_{2}<\min \left(\frac{\delta_{1}}{4 s}, \frac{\delta_{1}}{\sqrt{3 \varepsilon(1-t)}}\right), \varepsilon=\sum_{i=0}^{s} \frac{1}{u_{i}}
$$

Then $T_{Q, \delta_{1}} \supset T_{Q, \delta_{2}}$. Further let $\Omega \subset T_{Q, \delta_{2}}$ be a subsimplex with edges parallel to the corresponding edges of $T_{Q, \delta_{2}}$ and $f(P)<0$ for all $P \in \Omega$. Let $(-h)$ be a maximum of f over the subsimplex Ω and let $M=\max _{P \in T}|f(P)|$.

Now let us evaluate $B_{n}(f ; Q)$. It is

$$
B_{n}(f ; Q)=\sum_{\frac{\alpha}{n} \notin T_{Q Q_{i}}} f\left(\frac{\alpha}{n}\right) B_{\alpha}^{n}(Q)+\sum_{\frac{\alpha}{n} \in T_{Q A_{1}}-\Omega} f\left(\frac{\alpha}{n}\right) B_{\alpha}^{n}(Q)+\sum_{\frac{\alpha}{n} \in \Omega} f\left(\frac{\alpha}{n}\right) B_{a}^{n}(Q)(16)
$$

Using lemma 1 we obtain for the first sum

$$
\begin{equation*}
\left|\sum_{\frac{\alpha}{n} \notin r_{e, \theta_{1}}} f\left(\frac{\alpha}{n}\right) B_{\alpha}^{n}(Q)\right| \leq M \sum_{\frac{\alpha}{n} \notin T_{e e_{1}}} B_{a}^{n}(Q) \leq M(s+1) e^{-\frac{n \delta_{0}^{2}}{4(1-t)}} . \tag{17}
\end{equation*}
$$

Further as far as the second sum is concerned one can state it is nonpositive.
And now the sum will be estimated: $\Omega \subset T_{\Omega, \delta_{2}}$ and due to this reason it is

Now the use of lemma 3 gives

$$
\sum_{\frac{\alpha}{n} \in \Omega} B_{\alpha}^{n}(Q) \geq K \sum_{\frac{\alpha}{n} \in \Omega} \frac{1}{|\alpha|^{\frac{\delta}{2}}} e^{-\frac{3 n \delta_{2}^{2}}{4} e}
$$

$$
\sum_{\frac{\alpha}{n} \in \Omega} B_{\alpha}^{n}(Q) \leq-h L \frac{n^{s}}{n^{\frac{s}{2}}} e^{-\frac{3 n \delta_{2}^{2}}{4}}
$$

Then

$$
\begin{aligned}
& B_{n}(f ; Q) \leq M(s+1) e^{-\frac{n \delta_{1}^{2}}{4(1-t)}}-h L \frac{n^{s}}{n^{\frac{s}{2}}} e^{-\frac{3 n \delta_{2}^{2}}{4} e}= \\
& \quad=e^{-\frac{3 n \delta_{2}^{2}}{4} e}\left(M(s+1) e^{-\frac{n \delta_{1}^{2}}{4(1-1)}+\frac{3 n \delta_{2}^{2}}{4} e}-h L n^{\frac{s}{2}}\right)
\end{aligned}
$$

Under given assumptions from here it follows that $B_{n}(f ; Q)<0$ and this contradiction concludes our proof.

The following theorem can be proved as the consequence of the theorem 2.

THEOREM 3. If $f \in C(T)$ and the inequality

$$
B_{n}(f ; P) \geq B_{n+1}(f ; P)
$$

holds for all natural numbers n and all points on T, then the function f does not attain a strict local maximum inside T.

REFERENCES

1. Chang G., Zhang J., Converse Theorems of Convexity for Bernstein Polynomials, Journal of App. Theory 61(1990), 265-278.
2. Chui C.K., Hong D., Wu S.T., On the Degree of Multivariate Bernstein Polynomial Operator, CAT Report \# 263, February 1992.
3. Dahmen W., Micchelli C.A., Convexity of Multivariate Bernstein Polynomials and Spline Surfaces, Studia Scientiarium Hungarica, 23(1988), 265-287.
4. Della Vecchia B., Kocić Lj.M., The Degeneracy of Bernstein-Bézier Polynomials over Simplices, Coll. Math. Soc. Janos Bolyai, 58. Approx. Theory, Kecskemét (Hungary), 1990, 187-195.
5. Horová I., Linear Positive Operators of Convex Functions, Mathematica (Cluj), vol. 10, (33), 2(1968), 275-283.
6. Horová I., A Note on Bernstein Polynomials over Triangles, Proceedings of ISNA'92, Part III, 102-107.
7. Kocić Lj. M., Lacković I.B., Convexity Criterion In Iving Linear Positive Operators, Facta Universitas (Niš), Ser. Math. Inf 1(1986), 13-22.
8. Kosmák L., Les polynomes de Bernstein des fonctions convexes, Mathematica (Cluj), 9, (32) 1967, 71-75.
9. Lorentz G.G., Bernstein Polynomials, Univ. of Toronto, Toronto 1953.
10. Ming-Jun Lai, Asymptotic Formulae of Multivariate Bernstein Approximation, Journal of App. Theory 70(1992), 229-242.
11. Sauer T., Multivariate Bernstein Polynomials and Convexity, Computer Aided Geometric Design 8(1991), 465-478.
12. Stancu D.D., Approximation of Functions of Two and Several Variables by a Class of Polynomials of Bernstein Type, Studii Cercet. Matem. 221970), No. 2, 335-345.
13. Stancu D.D., A New Class of Uriform Approximating Polynomial Operator in Two and Several Variables In "Proc. Conf. on Constructive Theory of Functions", Akad. Kiado Budapest, 443-455.
14. Zelinka J., Degenerate Bernstein Polynomials In "Proc. of the Xth Summer School Software and Alg. of Num. Math., Cheb (Czech Republic), 1993, 195-199.
15. Zeigler Z., Linear Approximation and Generalized Convexity, Journal of App. Theory 1 (1968), 420-443.

[^0]: -Masaryk University, Department of Applied Mathematics, Janáckovo nám. 2a, 66295 Brno, Czech Republic
 **This work was accomplished under the financial support of the Grant Agency of the Czech Republic, reg. no. 201/93/2408.

