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REZUMAT. - Lema lui Jack-Miller-Mocanu pentru aplicatii olomorfe pe
domenii cu frontiersl de clas C. In acest articol vom prezenta varianta n-
dimensional# a lemei Jack-Miller-Mocanu pentru aplicatii olomorfe definite pe
domenii din C' ce au frontierd de clasi C®. De asemenea vom prezenta §i
interpretiiri geometrice ale rezultatului. -

1. Introduction. In several papers [4,5] S.S. Miller and P.T. Mocanu gave
the following generalization of the one dimensional Jack’s lemma [2] and used
it as a basic tool in developing the theory of admissible functions.

LEMMA (Jack-Miller-Mocanu). Let f: D — C be a holomorphic function
with f0)=0andf»0.If| f(z,)| = max |f(2)|, 2z, €D = {z € C] |z| < 1}

2| = |z,

then there exists a real number m = 1 such that:

6 /' @) _ o and
/) '
(ii) RCM +1z2m.
f(z,)
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In a previous paper we extend this result to the case of holomorphic
mappings defined on the unit ball of C". Since in several complex variables the
Riemann mapping theorem fails to be true the purpose of this paper is to study
an analogous problem to that studied in [2] for holomorphfc mappings defined
on arbitrary domains. Also we shall give geometric interprétations of result.

~ We let € denote the space of n-complex va. ibles z = (z,,...,z,), with
the euclidian inner product <z,w> = i zjﬁ ,and thenorm |z| = (<z,z >)12,
J=1

Vector and matrices marked with the symbol > and 'denote the t: insposed
and the transposed conjugate vector or matrix, respectively.

We denote by £(C") the space of continuou. linear operators from C” into
C, i.e. the n x n complex matrices 4 = (Ajk), with the standard operator norm;

1Al = sup {ll4z]: |zl = 1}, 4 € L(C).

The class of holomorphic mappings f(z) = (f(2),....f(z)) from
D (D C € domain) into €” is denoted by H (D).

We denote by Df(z) and D?A(z) the first and the second Fréchet derivatives
of fat z.

We say that f € H(D) is locally biholomorphic (locally univalent) at -

€ Dif fhas a local holomorphic inverse at z, or equivalently, if the derivative
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Dfes) - [af‘iz)
J

The open set D C Cis said to have differentiable boundary bD of class

] is nonsingular.
1sj,ksn

C?, at the point Z € bD if there are an open neighborhood U of Z and a real

valued function ¢ € C%(D) with the following properties:

UND={z€ U: ¢9(2) <0} 4))
0P .\ _ |99 o :
E(z) T’)z_,(z)’ s . (z)] w0 forz € U )

bD is of class C* if it is of class C* at every z € bD.
Notice that (1) and (2) imply
UNbD={z€EU: 9@z) =0} and U - D = {z € U: 9(z) > 0}. (3)
Any function ¢ € C*U) which satisfies (1) and (2) is called a (local)
defining function for bD at 7.

For a real valued function ¢ € C(U) (U € C") we define:

62 ‘ 2
992 = o) ()
9z? 9z, 0z, ke
and
9 >
?_ () = | 0@ )
9z 0z azj 9z, <) kan
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2. Main result.

THEOREM. Let D be a bounded domain in C' with 0 € D. Suppose
fE C(D) N H(D U {z}), f0)=0, /40 and Df (?) is nonsingular where 3 € bD
is defined by:.

1/ = max 1@,

zED

If D has differentiable boundary bD of class * at the point z € bD with

the locally defining function @ then there exists a real positive number m such

that:
o) (DFE))Y (% (z')) - mf(3) ©)
and ) ,
w99y iRe [w ""z_“;w - (ﬂ(z')) (D*f(2)) D*f(3)(w ,w)]
(ii) 020z 9z 0z am (7)

IDfG)w P
Jor all w € C\{0} which satisfy Re < w, %r(.p.(z') > =0,
‘ z

Proof. For z = (z,,...,z,) € C, each coordinate z, can be written as

z,=a +ia,, witha,a €R

The mapping z — (a,, ...,q,,4,,,, ...,a,) € R establishes an R linear

n? “n+l?

isomorphism between C' and R, i.e. we obtain the natural identification

between C” and R”".
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By using the weak maximum modulus theorem [1] we obtain that Z € bD
and €D is a point of local conditional maximgm of the function| f(2)|
under the condition z € bD.

Since D f(Z) is nonsingular and D has a differentiable boundary at Zz €
bD it follows that there exists an open neighborhood U of Z and ¢ a real
function such that (1), (2) and (3) hold and also f'is injective on U.

Next, we shall use method of Lagrange’s multipliers.

Let F: (G, - e,d, + €)x...x (4, - €,d,, + &) = R

F(a,,..,a,) = ’22-"; | fi(a,,...,a,))* - Ao(a,,..,a,,) 8)
where A € R and e > 0 is sufficiently small so that
(4, -e,a, +e)x..x(dy,-e,d,+e)C U
Since (d,, ...,dz,,) is a point of local maximum for the function

1f(a,, .., a,)I* under the condition ¢(a,,...,a,,) = 0 we obtain:

oF , . . .
_az(al,...,az”) =0,i€{l1,..,2n} ¢}
and
d’F(dl,...,dh) (t,1) < 0 for all + € R"\{0} (10)

.9
which satisfy Y 1,22 (a

,a, ) =0.
i=1 a, 2")

TEREE

A simple calculation yieids:
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da( P a
forj € {1, ..., n} and
oF _ f: d(p P :
(s, = 2(—( )/ (2) 16 7¢ )] Mg @70 ()

Jon
forje {1, .., n}.

oF (—(z)f(z)+f(z) f'()] g“’(z“)=o, (11)

Since
oF | . . . oF .
—(a,,...,a,) - i a,.., =0 orj€E {l
aaj( 1 2”) aajﬂ'( 1 2”) ’I { }
we easily obtain:
E_f(z)f(z) = 7» (z) for all j € {1,..,n}. (13)

i=] j
From the relations (13) we get.

(DFEE) = % ; (14)

By using the fact that Df(Z) is nonsingular we obtain:

= mf(2) (15)

° .\ - T o
(DfE)Y (—“’ @)
0z
where by m we denote the real number % (Indeed, if A = 0 we obtain/f(Z) = 0

which contradicts the assumption / # 0).

In order to prove (i) of the Theorem it remains to show that m is positive.
We now let y: f(U) — R defined by

Yw) = (S U)' (W)
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If ¢+ is a small enough real positive number we have that

(1 +0)f(@) € f(U) and (1 + 0)f () & f(D). Hence y((1 +)f(Z)) > 0.

A simple calculations yields:

-0 t
>0

0 < lim Y1 + ) f(2)) - WS (@) _ E a_‘P (fENSE) =

- Y46 POk (12 299 - X”)f;(é)%m - Lisor

i,k=1 Zk

Hence A > 0 and in consequence m > 0 too.
The second differential of F at the point Z is negative semidefinite.
Straightforward calculations given us:

n 62 3
Fe ) = Y D i) 6, -

iJ,k=1 (74 azk

j
" §,(2)
+ E : f(z)(t —Ij+n)(t k+n) *
i,/,k=1 az "'k )
n f f
+ o o= (t #n)(t +n) +
,Jz,,:.l az oz, ' *
" 3f, of, |
2, ity —it,) -
iJ.k=1 62,‘ aj
2n
-1 9y,
m ij=1 0a da,

2n
for € R*\{0} with ¥ z,?(ﬁ) - 0.

i=1 1

If we note w,o=1+ itjm,j €{l,..,n},w=(w,...,w), and use (4)
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and (5) then the above inequality becomes:

2Re (f@)'D*f(E) (w,w)) + 21DfG)wl -

2 2
2599 b 2Rew' ¥, <0, (16)
m 9z 9z m 9z2

From (15) we get that (f(3))" = % (%i"l (z"))/ (Df())" and substituting
Z

into 16) we obtain:
\

1 Re ((ﬂ (z'))'(Df(z"»-'D () (w, W) J + IDFG) wi? -
m 0z ‘
- lw‘ﬁw - iRew’_az';p ws=<0
m 9z 0z m 9z2

which is equivalent with (7).
The condition for + € R*\{0} gives the following condition for w €
C"\{0} (obtained by the natural identification between R* and C' mentioned
2n

Yy tj? (2) = 0 and this completes the proof.

above) Re< w,ﬂ @)> ==
0z e a,

3. Geometric interpretation of the main result. In the following remarks
we shall give some geometric consequences of Theorem.

First we note that if Df(Z) is nonsingular there exists a neighborhood (/
of Z so that fis injective on U and since f'is holomorphic we obtain that f'is a

biholomorphic mapping between U and AU). So, if we notc by M the
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intersection between U and bD we obtain that f{M) is a real hypersurface.
Since ((Df(2)))™ ( s (z)] is an outer normal vector to f{M) at the point
A2) the part (i) of the Theorem has the following geometric interpretation.
Remark 1. If fis a function which satisfies the requirements of the
Theorem and M is the set defined above then the outher normal vector to M)
at the point f{Z) and the position vector fZ) are in the same direction.

Let v = (v,,..,v,) be areal tangent vector to M) at f(Z).
N N
It follows that Re < ((Df(2))") = @)|,v>=0.
Z

We define on F(M) an orientation such as the second fundamental form

of the real hypersurface M) at f(Z) is

_w FUE)E
bu.u) 51‘, ab, db,

at fIM) in the point f2).

u, u, where u ER*\{0} is a real tangent vector

It is easy to check that the second fundamental form of the real

hypersurface f{M) at fZ) can be written as:

S PVIE) | L peys FVIE)

ow ow ow 2

b(v,v) = a7

OFE))" "’"’(zz) )
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We can compute as follows:

PY(f@) - 09 FUUE) |
awj ow, ; 9z, @ aw ow,

Fo@) 0/, (@) a(f)(/E)

ik 0Z,0Z, - 0w, awj (18)
MW(f(2) _ Po (U),(f@) 3D, (FE) ‘

- = - (19)
awj ow, 7 azj 9z, 6wj ow,

Next, by using the following connection between the second
derivative of a biholbmorphic function fand the second derivative of tl: - inverse
function /™
D*f(f(2))(a,b) = -(Df @) D*f@(Df(2))"a.(Df(2))"b), a,bEC and

substituting (18) and (19) into (17), we obtain:

6q>(z) u+Re
3z oz

u 9 ‘P(z)u—("’“’@)) (DF ()" D¥(2)(u, u)J

b(v,v)= (20)

@ [2)
0z
where u is defined by u = Df'(f(2))(v) = (Df(Z)) ().
Since v is a real tangent vector to f{M) at A Z) we have:
0 = Re< v, (DG ?(2) > = Re<(DfE)N'v, _?’:_“7 () > =
4 (004

= Re < u,%ﬁi(é) >
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and by using (ii) of Theorem we obtain:
b(v,v) - m|Df(Z)ul? -
v Ivl’l ©@fEN)" (% (z'))I nvn2| (DFE))" (%2 <z°))i

m |v|?

According to part (i) of the Theorem we get
b(v,v) > 1
L . VA€
Since a principal curvature of a real hypersurface M) at f(Z) can be
b(v,v)
vi?
we get the following geometric interpretation of the (ii) of Theorem.

writen as where v is a principal direction (so v is a real tangent vector)

Remark 2. If fis a function which satisfies the requirements of the
Theorem and M is the set defined above then all the principal curvature.
k, (J € {1,...,2n-1}) of fiM) at the point fZ) satisfy

1 .
k=2—_,j€({1,..,2n-1}
S V6]
Also the mean curvature of M) at f{Z) and the Gaussian curvature of

AIM) at f(2) satisfy the same inequality.
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