SECOND-ORDER DIFFERENTIAL SUBORDINATIONS IN THE HALF-PLANE

Dorina RADUCANU°

Received: December 10, 1994

AMS subject classification: 30C80

REZUMAT. - Subordonări diferențiale de ordinul al doilea în semiplan. În lucrare, folosind subordonările diferențiale, se obțin proprietăți ale funcțiilor olomorfe în semiplanul complex care satisfac condiția de normalizare f(z)- $z\rightarrow0$ pentru $z\rightarrow\infty$.

Let Δ denote the upper half - plane

$$\Delta = \{z \in \mathbb{C}/\text{Im } z > 0\}$$

and let $A(\Delta)$ denote the class of functions f which are holomorphic in Δ and have the normalization

$$\lim_{\Delta\ni z\to\infty} [f(z)-z]=0$$

In this paper, using differential subordinations in the half - plane [2], we obtain some properties concerning functions of the class $A(\Delta)$.

DEFINITION 1 [2]. Let $f,g: \Delta \to \mathbb{C}$ be holomorphic functions in Δ . The function f is *subordinate* to the function g in $\Delta (f \prec g)$ if there is an holomorphic function $\varphi: \Delta \to \Delta$ such that $\lim_{\Delta z \to \infty} [\varphi(z) - z] = 0$ and

^{* &}quot;Transilvania" University, Department of Mathematics, 2200 Brasov, Romania

 $f(z) = g(\varphi(z))$, for all $z \in \Delta$.

THEOREM 1. Let $f \in A(\Delta)$, $g \in A(\Delta)$ and g is univalent in Δ . Then the function f is subordinate to the function g in Δ if and only if $f(\Delta) \subset g(\Delta)$.

Proof. If $f \prec g$ then using Definition 1 and Schwarz's Lemma for the upper half-plane [3], [4], it results $f(\Delta) \subset g(\Delta)$.

If $f(\Delta) \subset g(\Delta)$ then, using the univalence A the function g, we obtain that g^{-1} : $g(\Delta) \to \Delta$ is an holomorphic function in Δ and we can define the function $\varphi \colon \Delta \to \Delta$, $\varphi(z) = g^{-1}(f(z))$, $z \in \Delta$. We have

$$|\varphi(z) - z| = |g^{-1}(f(z)) - z| \le |g^{-1}(f(z)) - f(z)| + |f(z) - z|, z \in \Delta$$

and since $\lim_{\Delta z \to \infty} [f(z) - z] = \lim_{\Delta z \to \infty} [g(z) - z] = 0$ it follows that $\lim_{\Delta z \to \infty} [\varphi(z) - z] = 0$.

DEFINITION 2 [2]. We denote by $Q(\Delta)$ the set of functions $q \in A(\Delta)$ which are holomorphic and injective on $\overline{\Delta} - E(q)$, where $E(q) = \{\zeta \in \partial \Delta / \lim_{z \in \mathbb{Z}} q(z) = \infty\}$, and also $q'(\zeta) \neq 0$ for $\zeta \in \partial \Delta \setminus E(q)$.

DEFINITION 3 [2]. Let Ω be a set in \mathbb{C} and let $q \in Q(\Delta)$. We define the class of *admissible* functions $\psi_{\Delta}[\Omega, q]$ to be those functions $\psi \colon \mathbb{C}^3 \times \Delta \to \mathbb{C}$ that satisfy the following admissibility condition:

$$\begin{cases} \psi(r, s, t, z) \notin \Omega, \text{ when } r = q(\zeta), s = m \cdot q'(\zeta) \\ \operatorname{Im} \frac{t}{s} \ge m \cdot \operatorname{Im} \frac{q''(\zeta)}{q'(\zeta)} \text{ and } z \in \Delta \text{ for } \zeta \in \partial \Delta \setminus E(q), m \in \mathbb{R}. \end{cases}$$

SECOND-ORDER DIFFERENTIAL SUBORDINATIONS

We shall need the following theorem to prove our results:

THEOREM 2[2]. Let $\psi \in \psi_{\Delta}[\Omega, q]$ and $p: \Delta \to \mathbb{C}$ be an holomorphic function in Δ such that there exists $a \ge 0$ with $p(\Delta_a) \subset q(\Delta)$, where $\Delta_a = \{z \in \mathbb{C}/\text{Im } z > a\}$. If

$$\psi(p(z), p'(z), p''(z); z) \in \Omega, \text{ for all } z \in \Delta$$
 (2)

then $p \prec q$.

Remark 1. If $\lim_{\Delta \ni z \to \infty} [p(z) - z] = \lim_{\Delta \ni z \to \infty} [q(z) - z] = 0$ then we obtain that there exists $a \ge 0$ such that $p(\Delta_a) \subset q(\Delta)$. Thus, the condition " $p: \Delta \to \mathbb{C}$ be an holomorphic function in Δ such that there exists $a \ge 0$ with $p(\Delta_a) \subset q(\Delta)$ " from Theorem 2 can be replaced by $p \in A(\Delta)$.

Let Ω be a set in Δ and let q(z)=z, $z\in\Delta$. We will obtain some applications of the Theorem 2 corresponding to this particular Ω and q.

THEOREM 3. Let $p \in A(\Delta)$ and let $\gamma \in \mathbb{R}$, $\gamma \leq 0$. If

$$\operatorname{Im}\left[p(z) + \gamma \cdot \frac{p''(z)}{p'(z)}\right] > 0, \ z \in \Delta$$
 (3)

then Im p(z) > 0.

Proof. If we let $\psi(r, s, t, z) = r + \gamma \cdot t/s$ then the conclusion will follow from Theorem 2 we show that $\psi \in \psi_{\Delta}[\Omega, q]$, where $\Omega = \Delta$ and q(z) = z. This

follows from Definition 3 since

Im $\psi(r, s, t; z) = \text{Im} (\zeta + \gamma \cdot t/s) = \text{Im} \zeta + \gamma \cdot \text{Im} t/s \le 0 \text{ for } r = \zeta \in \partial \Delta,$ Im $t/s \ge 0$ and $\gamma \le 0$. Hence $\psi \in \psi_{\Delta}[\Omega, q], p < q$ and Im p(z) > 0.

THEOREM 4. Let $p \in A(\Delta)$ and let $\alpha, \beta \in \mathbb{R}$. If

$$\operatorname{Im}\left[\alpha p(z) + \beta \frac{p'(z)}{p(z)}\right] > 0, z \in \Delta$$

then Im p(z) > 0.

Proof. If we let $\psi(r, s, t; z) = \alpha r + \beta \cdot s/r$ then we have $\text{Im } \psi(r, s, t; z) = \alpha \text{ Im } \zeta + \beta \cdot m \text{ Im } 1/\zeta = 0$ for $r = \zeta \in \partial \Delta$, $s = m \in \mathbb{R}$, and $\alpha, \beta \in \mathbb{R}$. Hence $\psi \in \psi_{\Lambda}[\Omega, q], p \prec q$ and Im p(z) > 0.

COROLLARY. Let $f: \Delta \to \mathbb{C}$ be an holomorphic function in Δ such that $-\frac{f'}{f}$ satisfies the conditions of Theorem 4 and $\alpha \in \mathbb{R}$. If

$$\operatorname{Im}\left[\left(1-\alpha\right)\frac{f'(z)}{f(z)} + \alpha\frac{f''(z)}{f'(z)}\right] > 0, \ z \in \Delta \tag{5}$$
then $\operatorname{Im}\frac{f'(z)}{f(z)} < 0, \ z \in \Delta$.

Remark 2. A function $f \in A(\Delta)$, $f(z) \neq 0$, $z \in \Delta$ is starlike in the halfplane Δ if and only if

$$\operatorname{Im} \frac{f'(z)}{f(z)} < 0, z \in \Delta.$$

Using the Corollary, we obtain that a function which satisfies the condition 5 is

SECOND-ORDER DIFFERENTIAL SUBORDINATIONS

a starlike function in Δ .

THEOREM 5. Let $p \in A(\Delta)$ and $\alpha, \beta, \gamma \in \mathbb{R}, \gamma \leq 0$. If

$$\operatorname{Im}\left[\alpha p(z) + \beta \frac{p'(z)}{p(z)} + \gamma \frac{p''(z)}{p'(z)}\right] > 0, z \in \Delta$$
 (6)

then Im p(z) > 0.

Proof. If we let $\psi(r, s, t; z) = \alpha r + \beta \cdot s/r + \gamma \cdot t/s$ then we have

 $\operatorname{Im} \psi(r, s, t; z) = \alpha \operatorname{Im} \zeta + \beta \cdot m \operatorname{Im} 1/\zeta + \gamma \cdot \operatorname{Im} t/s \le 0 \text{ for } r = \zeta \in \partial \Delta, s = m \in \mathbb{R}_+,$

Im $t/s \ge 0$, $\alpha, \beta, \gamma \in \mathbb{R}$, $\gamma \le 0$. Hence $\psi \in \psi_{\Lambda}[\Omega, q]$, p < q and Im p(z) > 0.

Remark 3.

- i) If $\gamma = 0$ then Theorem 5 reduces to Theorem 4.
- ii) If $\alpha = 1$ and $\beta = 0$ then Theorem 5 reduces to Theorem 3.

REFERENCES

- 1. S.S. Miller, P.T. Mocanu, *The theory and applications of second-order differential subordinations*, Studia Univ. Babes-Bolyai, Mathematica, 34, No. 4, 1989.
- 2. D. Răducanu, N.N. Pascu, Differential subordinations for holomorphic functions in the upper half-plane, International Conference on Complex Analysis and 7th Romanian Finnish Seminar on Complex Analysis, Timisoara 1993 (to appear).
- 3. N.N. Pascu, On Schwarz's Lemma in the upper half-plane (to appear).
- 4. J. Stankiewicz, Geometric properties of functions regular in a half-plane, Current topics in Analytic Function Theory, World Scientific Singapore, New-Jersey, London, Hong Kong.