CONVEXITY AND INTEGRAL OPERATORS

Silvia TOADER*

Received: January 20, 1995
AMS subject classification: 26A51

REZUMAT. - Convexitate şi operatori integrali. In prima parte a lucrării îmbunătăţim un rezultat al lui V. Zanelli şi dăm o demonstrație uşoară a sa. Apoi considerăm câţiva operatori integrali şi studiem proprietăţile lor relative la conservarea convexităţii de ordin superior. Obţinem astfel o generalizare a rezultatului din [3].

1. A result of V. Zanelli. In [3] it is proved the following property:

LEMMA 0. Let $f:[a, \infty) \rightarrow R($ with $a>0)$ be a positive, decreasing, convex function and

$$
\begin{equation*}
F(x)=\int_{a}^{x} f(t) d t \tag{1}
\end{equation*}
$$

For $a \leq y, k>0, y+k \leq x$, we have the following inequality:

$$
\begin{equation*}
F(y+k)-F(y)-F(x+k)+F(x) \leq k[f(y)-f(x)] . \tag{2}
\end{equation*}
$$

The proof is based on a rather complicated geometrical method. We want to eliminate some superfluous hypotheses from the enounce and to give a simple proof of it .

LEMMA 1. Let $f:[a, b] \rightarrow R$ be a convex function and F be defined by

[^0](1). For $a \leq y<x<x+k \leq b$ we have the inequality (2).

Proof. Let us consider the auxiliary function:

$$
g(t)=t[f(y)-f(x)]-F(y+t)+F(y)+F(x+t)-F(x), t \in[0, k]
$$

We have

$$
g^{\prime}(t)=[f(x+t)-f(x)]-[f(y+t)-f(y)] \geq 0
$$

because, by the convexity of f, the conditions $x>y$ and $x+t>y+t$ give:

$$
\frac{f(x+t)-f(x)}{t} \geq \frac{f(x+t)-f(y)}{x+t-y} \geq \frac{f(y+t)-f(y)}{t} .
$$

Obviously $g(0)=0$ so that $g^{\prime}(t) \geq 0$ gives $g(k) \geq 0$, that is (2).
It can be remarked that we have renounced at the following hypotheses from Lemma 0: $a>0, f$ is positive and decreasing and $y+k \leq x$.
2. Convex functions of higher order. We must remind some definitions.

Let $f:[a, b] \rightarrow R$ be an arbitrary function. For arbitrary distinct points x_{1}, $x_{2}, \ldots, x_{n+1} \in[a, b]$ the divided differences of the function f are defined by recurrence:

$$
\begin{gather*}
{\left[x_{1} ; f\right]=f\left(x_{1}\right),\left[x_{1}, \ldots, x_{n+1} ; f\right]=} \\
=\left(\left[x_{1}, \ldots, x_{n-1}, x_{n+1} ; f\right]-\left[x_{1}, \ldots, x_{n} ; f\right]\right) /\left(x_{n+1}-x_{n}\right) \tag{3}
\end{gather*}
$$

The function f is called convex of order n (or shortly n-convex) if:

$$
\begin{equation*}
\left[x_{1}, \ldots, x_{n+2} ; f\right] \geq 0, \forall x_{1}, \ldots, x_{n+2} \in[a, b] \tag{4}
\end{equation*}
$$

where the points are supposed, as in (3), distinct.

For $n=1$ we get convexity and for $n=0$ increasing monotony. It is known (see [2]) that a n-convex function, with $n \geq 1$, is continuous on (a, b), so it is integrable on any subinterval from $[a, b]$.

The main result that we will use is the following:

LEMMA 2. If the function f is n-convex then:

$$
\begin{equation*}
\left[x_{1}, \ldots, x_{n+1} ; f\right] \leq\left[y_{1}, \ldots, y_{n+1} ; f\right], \text { if } x_{i} \leq y_{1}, \forall i \tag{5}
\end{equation*}
$$

Proof. From (3) and (4) we deduce that:
$\left[x_{1}, \ldots, x_{n-1}, x_{n+1} ; f\right] \geq\left[x_{1}, \ldots, x_{n} ; f\right]$ if $x_{n+1}>x_{n}$. This gives (5), step by step, because the divided differences are symmetric with respect to the points.
3. Arithmetic integral means. To generalize the result from [3] we consider, for a fixed $k>0$, some operators.

Let $C[a, b]$ be the set of continuous functions on $[a, b]$. For $f \in C[a, b]$ we denote by $F_{k}(f)$ the function defined by:

$$
F_{k}(f)(x)=\int_{x}^{x+k} f(t) d t, \forall x \leq b-k
$$

Then we define:

$$
A_{k}(f)(x)=\frac{1}{k} F_{k}(f)(x)
$$

a sort of arithmetic integral mean and:

$$
E_{k}(f)(x)=A_{k}(f)(x)-f(x)
$$

an "excess" function. We get so the operators F_{k}, A_{k} and E_{k} defined on $C[a, b]$ and with values in $C[a, b-k]$. To study some of their properties, we give simple representation formulas for them.

As:

$$
F_{k}(f)(x)=\int_{0}^{k} f(x+t) d t
$$

making the substitution $t=k s$, we have:

$$
A_{k}(f)(x)=\int_{0}^{1} f(x+k s) d s
$$

and so

$$
E_{k}(f)(x)=\int_{0}^{1}[f(x+k s)-f(x)] d s
$$

Thus $E_{k}(f) \geq 0$ if f is increasing and Lemma 1 asserts in fact that $E_{k}(f)$ is increasing if f is convex. We generalize this result as follows.

THEOREM 1. If the function f is n-convex, then $F_{k}(f)$ and $A_{k}(f)$ are also n-convex but $E_{k}(f)$ is ($n-1$)-convex.

Proof. If x_{1}, \ldots, x_{n+2} are distinct points from $[a, b-k]$ we have

$$
\left[x_{1}, \ldots, x_{n+2} ; A_{k}(f)\right]=\int_{0}^{1}\left[x_{1}+k s, \ldots, x_{n+2}+k s ; f\right] d s \geq 0
$$

and

$$
\left[x_{1}, \ldots, x_{n+1} ; E_{k}(f)\right]=\int_{0}^{1}\left(\left[x_{1}+k s, \ldots, x_{n+1}+k s ; f\right]-\left[x_{1}, \ldots, x_{n+1} ; f\right]\right) d s \geq 0
$$

by Lemma 2. So the affirmation follows for $A_{k}(f)$ and $E_{k}(f)$. As $F_{k}(f)=k A_{k}(f)$, it is true also for $F_{k}(f)$.

We remark that the operator E_{k} can be defined similarly by:

$$
E_{k}(f)(x)=f(x+k)-A_{k}(f)(x)
$$

having the same properties.
Let us define also the operators $F, A, E: C[a, b] \rightarrow C[a, b]$ as follows. For f in $C[a, b]$ we put:

$$
\begin{gathered}
F(f)(x)=\int_{a}^{x} f(t) d t \\
A(f)(x)=F(f)(x) /(x-a)
\end{gathered}
$$

and

$$
E(f)(x)=f(x)-A(f)(x)
$$

Using the substitution $t=a+s(x-a)$, we have:

$$
A(f)(x)=\int_{0}^{1} f(a+s(x-a)) d s
$$

and

$$
E(f)(x)=\int_{0}^{1}[f(x)-f(s x+(1-s) a)] d s
$$

Thus, as above, we can prove

S. TOADER

THEOREM 2. If the function f is n-convex then so is also $A(f)$, but $E(f)$ is ($n-1$)-convex.

The first result is well known (see [1]) as it is also known that under the same hypotheses, $F(t)$ is $(n+1)$-convex.

REFERENCES

1. Lacković, I.B., On convexity of arithmetic integral mean, Univ. Beograd Publ Elektroteh. Fak. 381-409(1972), 117-120.
2. Roberts, A.W., Varberg, D.E., Convex functions, Academic Press, New York and London, 1973.
3. Zanelli, V., Sign distribution and absolutely divergent series, Periodica Math. Hung. 28(1994), 1-17.

[^0]: *Technical University, Department of Mathematics, 3400 Cluj-Napoca, Romania

