STUDIA UNIV. BABEŞ-BOLYAI, MATHEMATICA, XL, 2, 1995

CONVEXITY AND INTEGRAL OPERATORS

Silvia TOADER^{*}

Received: January 20, 1995 AMS subject classification: 26A51

> **REZUMAT.** - Convexitate și operatori integrali. În prima parte a lucrării îmbunătățim un rezultat al lui V. Zanelli și dăm o demonstrație ușoară a sa. Apoi considerăm câțiva operatori integrali și studiem proprietățile lor relative la conservarea convexității de ordin superior. Obținem astfel o generalizare a rezultatului din [3].

1. A result of V. Zanelli. In [3] it is proved the following property:

LEMMA 0. Let f: $[a,\infty) \rightarrow R$ (with a > 0) be a positive, decreasing,

convex function and

$$F(x) = \int_{a}^{x} f(t) dt.$$
 (1)

For $a \le y$, k > 0, $y + k \le x$, we have the following inequality:

$$F(y+k) - F(y) - F(x+k) + F(x) \le k [f(y) - f(x)].$$
(2)

The proof is based on a rather complicated geometrical method. We want to eliminate some superfluous hypotheses from the enounce and to give a simple proof of it.

LEMMA 1. Let $f: [a,b] \rightarrow R$ be a convex function and F be defined by

^{*} Technical University, Department of Mathematics, 3400 Cluj-Napoca, Romania

S. TOADER

(1). For $a \le y \le x \le x + k \le b$ we have the inequality (2).

Proof. Let us consider the auxiliary function:

$$g(t) = t[f(y) - f(x)] - F(y+t) + F(y) + F(x+t) - F(x), t \in [0,k].$$

We have

$$g'(t) = [f(x+t) - f(x)] - [f(y+t) - f(y)] \ge 0$$

because, by the convexity of f, the conditions x > y and x + t > y + t give:

$$\frac{f(x+t) - f(x)}{t} \ge \frac{f(x+t) - f(y)}{x+t-y} \ge \frac{f(y+t) - f(y)}{t}.$$

Obviously g(0) = 0 so that $g'(t) \ge 0$ gives $g(k) \ge 0$, that is (2).

It can be remarked that we have renounced at the following hypotheses from Lemma 0: a > 0, f is positive and decreasing and $y + k \le x$.

2. Convex functions of higher order. We must remind some definitions.

Let $f: [a,b] \rightarrow R$ be an arbitrary function. For arbitrary distinct points x_1 , $x_2, ..., x_{n+1} \in [a,b]$ the divided differences of the function f are defined by recurrence:

$$[x_{1};f] = f(x_{1}), [x_{1}, ..., x_{n+1};f] =$$

$$= ([x_{1}, ..., x_{n-1}, x_{n+1};f] - [x_{1}, ..., x_{n};f])/(x_{n+1} - x_{n})$$
(3)

The function f is called convex of order n (or shortly n-convex) if:

$$[x_1, \dots, x_{n+2}; f] \ge 0, \ \forall \ x_1, \dots, x_{n+2} \in [a, b]$$
(4)

where the points are supposed, as in (3), distinct.

For n = 1 we get convexity and for n = 0 increasing monotony. It is known (see [2]) that a *n*-convex function, with $n \ge 1$, is continuous on (a,b), so it is integrable on any subinterval from [a,b].

The main result that we will use is the following:

LEMMA 2. If the function f is n-convex then:

$$[x_{1}, \dots, x_{n+1}; f] \le [y_{1}, \dots, y_{n+1}; f], \text{ if } x_{i} \le y_{i}, \forall i.$$
(5)

Proof. From (3) and (4) we deduce that:

 $[x_1, ..., x_{n-1}, x_{n+1}; f] \ge [x_1, ..., x_n; f]$ if $x_{n+1} > x_n$. This gives (5), step by step, because the divided differences are symmetric with respect to the points.

3. Arithmetic integral means. To generalize the result from [3] we consider, for a fixed k > 0, some operators.

Let C[a,b] be the set of continuous functions on [a,b]. For $f \in C[a,b]$ we denote by $F_{k}(f)$ the function defined by:

$$F_k(f)(x) = \int_x^{x+k} f(t) dt, \ \forall \ x \le b - k.$$

Then we define:

$$A_{k}(f)(x) = \frac{1}{k} F_{k}(f)(x)$$

a sort of arithmetic integral mean and:

$$E_{k}(f)(x) = A_{k}(f)(x) - f(x)$$

an "excess" function. We get so the operators F_k , A_k and E_k defined on C[a,b]and with values in C[a, b-k]. To study some of their properties, we give simple representation formulas for them.

As:

$$F_k(f)(x) = \int_0^k f(x+t) dt$$

making the substitution t = ks, we have:

$$A_k(f)(x) = \int_0^1 f(x+ks) \, ds$$

and so

$$E_{k}(f)(x) = \int_{0}^{1} [f(x+ks) - f(x)] ds.$$

Thus $E_k(f) \ge 0$ if f is increasing and Lemma 1 asserts in fact that $E_k(f)$ is increasing if f is convex. We generalize this result as follows.

THEOREM 1. If the function f is n-convex, then $F_k(f)$ and $A_k(f)$ are also n-convex but $E_k(f)$ is (n-1)-convex.

Proof. If $x_1, ..., x_{n+2}$ are distinct points from [a, b-k] we have

$$[x_1, \dots, x_{n+2}; A_k(f)] = \int_0^1 [x_1 + ks, \dots, x_{n+2} + ks; f] \, ds \ge 0$$

12

and

$$[x_1, \dots, x_{n+1}; E_k(f)] = \int_0^1 ([x_1 + ks, \dots, x_{n+1} + ks; f] - [x_1, \dots, x_{n+1}; f]) \, ds \ge 0$$

by Lemma 2. So the affirmation follows for $A_k(f)$ and $E_k(f)$. As $F_k(f) = kA_k(f)$, it is true also for $F_k(f)$.

We remark that the operator E_k can be defined similarly by:

$$E_{k}(f)(x) = f(x+k) - A_{k}(f)(x)$$

having the same properties.

Let us define also the operators F, A, E: $C[a,b] \rightarrow C[a,b]$ as follows. For f in C[a,b] we put:

$$F(f)(x) = \int_{a}^{x} f(t) dt$$
$$A(f)(x) = F(f)(x)/(x-a)$$

and

$$E(f)(x) = f(x) - A(f)(x).$$

Using the substitution t = a + s(x-a), we have:

$$A(f)(x) = \int_{0}^{1} f(a + s(x - a)) \, ds$$

and

$$E(f)(x) = \int_{0}^{1} [f(x) - f(sx + (1-s)a)] ds.$$

Thus, as above, we can prove

S. TOADER

THEOREM 2. If the function f is n-convex then so is also A(f), but E(f)

is (n-1)-convex.

The first result is well known (see [1]) as it is also known that under the

same hypotheses, F(t) is (n+1)-convex.

REFERENCES

- 1. Lacković, I.B., On convexity of arithmetic integral mean, Univ. Beograd. Publ. Elektroteh. Fak. 381-409(1972), 117-120.
- 2. Roberts, A.W., Varberg, D.E., Convex functions, Academic Press, New York and London, 1973.
- 3. Zanelli, V., Sign distribution and absolutely divergent series, Periodica Math. Hung. 28(1994), 1-17.