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REZUMAT. - Convexitate §i operatori integrali. in prima parte a lucririi
imbun#tifim un rezultat al lui V. Zanelli §i dim o demonstratie ugoari a sa.
Apoi considerdm cétiva operatori integrali i studiem proprietétile lor relative
la conservarea convexititii de ordin superior. Obtinem astfel o generalizare a
rezultatului din [3].

1. A result of V. Zanelli. In [3] it is proved the following property:
LEMMA 0. Let f [a,©) — R (with a > 0) be a positive, decreasing,
convex function and
F@) = [ (1)
Foras<y k>0, y+ k= x, we have th:z following inequality:
F(y+k) - F(y) - F(x+k) + F(x) s k[f()) -f()]. )
The proof is based on a rather complicated geometrical method. We want
to eliminate some superfluous hypotheses from the enounce and to give a simple
proof of it.

LEMMA 1. Let f. [a,b] — R be a convex function and F be defined by
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(1). For a s y<x<x+ k s b we have the inequality (2).
Proof. Let us consider the auxiliary function:
g&t) =t[f(y) S - Fy+t) + F(y) + F(x +1t) - F(x), t € [0,k].
We have
g'@) = [f(x+0) - f)] - [f+1) -f(] =0

because, by the convexity of f, the conditions x > y and x + ¢ > y + ¢ give:

JE+) 1) | S0 -10) | S0 - 1)
t t

X+t-y

Obviously g(0) = 0 so that g’(f) = 0 gives g(k) = 0, that is (2).
It can be remarked that we have renounced at the following hypotheses

from Lemma 0: a > 0, f'is positive and decreasing and y + k < x.

2. Convex functions of higher order. We must remind some definitions.
Let f. [a,b] — R be an arbitrary function. For arbitrary distinct points x,,
X, ..., X, € [a,b] the divided differences of the function f are defined by
recurrence:
[x; /1 = f(x), [x....x,.; /] =
=([x,...x,_.x,.:f ) - [x,...x;fDIx,,, - x,) 3)

The function f'is called convex of order n (or shortly n-convex) if:
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[x,..%,,:f120,Vx,..,x , € l[a,b] ()]
where the points are supposed, as in (3), distinct.

For n = 1 we get convexity and for » = 0 increasing monotony. It is
known (see [2]) that a n-convex function, with » = 1, is continuous on (a,b), so
it is integrable on any subinterval from [a,b].

The main result that we will use is the following:

LEMMA 2. If the function f is n-convex.then:

(%5 s Xisf] S [ Yyui S i %, 5 9, Y 5)

Proof. From (3) and (4) we deduce that:

[x, .. x %, f1 = [x,..,x;f] if x  >x_ This gives (5), step by

step, because the divided differences are symmetric with respect to the points.

3. Arithmetic integral means. To generalize the result from [3] we
consider, for a fixed k > 0, some operators.
Let C[a,b] be the set of continuous functions on [a,b]. For f € Cl[a,b] we

denote by I,(f) the function defined by:

x+k

FN® = [fOd, ¥ xsb-k
Then we define:
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AN E = L FN®
a sort of arithmetic integral mean and:
E(N ) = A4()x) - fx)
an "excess" function. We get so the operators F, , 4, and E, defined on C|a,b]
and with values in C[a, b—k]. To study some of their properties, we give simple
representation formulas for them.
As:
k
F(N@ = ! fGe+ydt
making the substitution ¢ = ks, we havé:
1
A @) = ‘[ S (x+ ks) ds
and so
1
E(f) () = J [f(x +ks) - f@)] s.
Thus E,(f) = 0 if fis increasing and Lemma 1 asserts in fact that E,(f) is
increasing if fis convex. We generalize this result as follows.
THEOREM 1. If the function f is n-convex, then F(f) and A(f) are
also n-convex but E(f) is (n—1)-convex.
Proof. If x,, ..., x,., are distinct points from [a, b—k] we have

1
(X5 %, 5 A(N] = ![x, +ks,..,x,, +ks;f]ds = 0
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and
(%5 n X, EL)] = :!’([xl+ks,...,xml +ks;f] = [, ...x,,;f])ds = 0
by Lemma 2. So the affirmation follows for A,(f) and E(f). As
F(f) = kA(f), it is true also for F(f).
We remark that the operator E, can be defined similarly by:
E(N)®) = f(x+k) - 4())®)
having the same properties.
Let us define also the operators F, 4, E: C[a,b] — C[a,b] as follows. For
fin C[a,b] we put:
F(f) @) = }f(t) dt
A(f)(x) = F(f;(X)/(x-a)
and
E(f)(x) = f(x) - A(S) ().
Using the substitution ¢ = a + s(x-a), we have:
AN () = :[f (a + s(x-a)) ds
and
E(f)(x) = :{[f(X) = f(sx + (1-s)a)] ds.

Thus, as above, we can prove
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THEOREM 2. If the function f is n-convex then so is also A(f), but E( f)
is (n—1)-convex.
The first result is well known (see [1]) as it is also known that under the

same hypotheses, F(f) is (n+1)-convex.
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