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REZUMA‘l: - Preconditionarea pentru indeplinirea conditiilor de aproximare in metoda

multigrid algebricd Se prezintsi o metodi de preconditionare pentru sistéme liniare simetrice

si pozitiv definite. Folosind un operator de interpolare se dovedeste ci se realizeazi

indeplinirea conditiilor de aproximare, care de obicei cauzeazi cele mai multe dificultiti in

utilizarea algoritmilor algebrici multigrid [4], [17]. Astfel se obfine convergenta V-cicluri de

tip multigrid pentru sistemele simetrice generale pozitiv definite. Lucrarea se incheie cu

prezentarea mai multor exemple numerice pentru ecuatiile Dirichlet, precum §i Poisson si

Helmholtz anisotropice.

Abstract. In the last years a lot of papers ([1], [2], [3], [15], [20]) presented various
preconditioning techniques for the improvement of the condition number of symmetric and
positive definite M-matrices arrising from the discretization of elliptic partial differential
equations. All of these techniques essentially use the "geometric" information offerend by the
continuous problem ("good" properties of the partial differential operator, special types of
regular discretizations etc.). Thus, even the ideas are quite general we cannot apply these
methods for arbitrary systems.

In this paper we present a method of preconditioning for arbitrary symetric and
positive definite linear systems. We don’t obtain an improvement of the condition number of

the system matrix (which is very hard in this general approach) but using a special

construction of the interpolation operator we prove the fulfilment of the approximation
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assumption (which usually causes the most troubles in the algebraic multigrid algorithms, see
[4], [17]). Thus we obtain the convergence of the V-cycle type algebraic multigrid for general
symetric and positive definite systems.

At the end of the paper we present numerical examples on Dirichlet, anisotropic

Poisson and Helmholtz equations.

1. Introduction. In this section we shall use the notations, definitions and results from

[17]. Let A be an n by n symmetric and positive definite matrix. For b6 € R" we consider the
system

Au = b, 0))

with the (unique) exact solution u € R*. Let ¢ = 2 be an integer and C,,C,, ..., C, a sequence

of nonvoid subsets of {1, ..., n} such that

{1,.,n} =C,DC,D..D Cq, )
ICl=n,m=1,.,q, 3)
'n-nl>n2>...>nq>l, 4)

where by |C,| we denoted the number of elements in the set C,. Furthermore for
m = 1,2, ..., g-1 we consider the linear operators
LN K= — K-, IR — R 5)
and the matrices 4™ with the properties
L7 = (), AV = A, A™ V= [T (6)
Form =1, ..., g-1 we define the coarse grid correction operators 1™ by
Tm=l = I0 (A™) LA )
anti the smoothing process of the form
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U, G ugy+ (I -G")(A")'b", (8)
wh.ere I, is the identity and
| A"u"™=5p" )
are the systems correspondin_g to the coarse levels.

Remarks 1. The sets C,, m = 1, ..., q formally piay the same role as coarse grids in
the classical geometric multigrid ([3]), I%,, I are the interpolation and restriction
operators, respectively and A™ the coarse grids matrices.

2. The form (8) of the smoothing process includes the classical relaxation schemes (-
Jacobi, Gauss-Seidel, S O R, I L U - decomposition). -

3. With all the above defined elements we consider a classical ¥ - cycle type algorithm

(with at least one smoothing step performed after each coarse grid correction step) looking

like (e.g. [18])

m=1
m=2
: . (10)
m=q-1 L L
m=q a
Qhere we suppose that on the last grid (m = q) the system (9) is solved exactly.
We introduce the matrix
D,_= diag(A™), m = 1,..,q-1 (11)

and define on each level the inner products
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<u”,v"> = <D u”v"> <yt yv"> =<A"y" v">, (12)
<y",v"> = <D]'A™u" A"v™>,
along with their corresponding norms |-|,, i = 0, 1,2, where <-, -> is the Euclidean inner
product and | -] the Euclidean norm (on the spaces R™ ). We shall denote bye ” = v™ - u "
the error on each level m = 1, .., g-1. We know the following result concerning the
convergence of the above defined V' -cycle.
THEOREM 1. ([17]) Assume that the interpolations I,,,,, m = 1, .., q-1 have full
rank and that theré exists a constant d > 0 independently on m and e™ such that
. IG";e"Ifs le™l} -84 T e}, m = 1,..,q9-1. 13)
Then d < 1 and the V - cycle (10) to solve (1) has a convergence factor (in the energy norm
i -1,) bounded above by ﬂ
COROLLARY 1. ([17]) If there exists constants o, > 0 independently of m and e"
such that
IG"e "l = le ™I} - ale ™, (14)
IT"e "1} = Ble ", (15)
Jor everym =1, ..., g-1 then we have (13) with
o= ap (16)
Remarks 1. Properties (14), (15) are called the smoothing assumption (SA) and the
approximation assumption (AA), respectively ([17]).

2. (SA) is fulfilled by the classical relaxation schemes (see [4], [12], [17]).
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3. The condition (AA) causes the most troubles. There are two weaker forms, namely

(AA) IT"e "l s BAT"e ", an

- (AAY min{je” - I e™'] + 0% e™ € R} = B,le "I}, (18)
where the positive constants' 8, and 8, are also independently on m and e™. Following the
result from [17] (AA,) implies (AA,) with 8, = B, and one of them with the smoothing
assumption (14) ensures the convergence of the two grid algorithm (m, m+l). For the
multilevel case (g = 3) it is necesary that (i 5) holds. This is, in fact; our principal aim in the

present paper.

2. Preconditioning - the two level case. We present in this section the method of
preconditioning for a pair of two consecutive grids (m, m+1) where m € {1, ..., ¢g-1} is

17, C,, 4,4, instead

arbitrary fixed. In order to simplify the notations we shall write n, p, 1",

ofn,n,, I, 17", C, A", A™" respectively. We shall suppose also that the coarse grid

m+1?
C, satisfies

C,={n-p+1,n-p+2, .. ,n} (19)

Accordingly to (19) we consider the block decomposition of 4

4, B
A=
t Az

where A4,,4, are symmetric invertible matrices of dimension n-p and p, respectively, with 4,

(20

positive definite. Let A_l be another symmetric and positive definite matrix of dimension n-p.
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We consider the Cholesky decompositions of 4, and Il
A =L L, Zx = le:‘ @n

and we define the matrix Z, (of dimension n) by

= =

L O

Z-ll

0 I

2

(22)

where 1, is the identity on R”. We shall also denote by /, the identity on R™” and by u =
[u,,u,] a vector u € R” for the descomposition
R = R7QK (23)

We precondition- the system (1) in the following way

(A 44) (A" u) = Ab. (24)
Thus the system (1) becomes
A= b, 25)
where
#=(A)'u, b =Apb, (26)
and
-1 R
A-;'A-AJA, @27

with the (7-p) x p matrix B given by

B=LL'B. (28)

Remark. 1t is clear that u is the solution of (1) if and only if u from (26) is the

82



PRECONDITIONING FOR THE FULFILMENT

solution of (25). We also observe that the preconditioned matrix A from (27) is symmetric

and positive definite. Thus we can define for A the inner products from (12) and the

associated norms. These norms will be denoted by |||*|||,, # = 0,1, 2. Accordingly with

[13] and [14] we shall define the interpolation I” by

Then 1, has full rank and from (21) and (28) we obtain
Ly L'B
I

2

Iil

4

PROPOSITION 1. ) The coarse grid matrix 4, is given by
A, =4,-B'A’B
and is independent on the matrix .Zl of the preconditioning.
(ii) The coarse grid correction operator, T, is given by

I A'B
o o |

(iii) If € = [e,,e,] € R is the error after the correction step then

eI} = <4e,e> =<4, &> =2 A, (A)IEF,
where A, ( ;4.,) is the smallest eigenvalue of .;i_l.
Proof. (i) Firstly we observe that from (29), (6) and (27) we obtain
e [0i4,-B'4'B] = [0i4,],

with 12 given by

(29)

(30)

@31

(32)

(33)

€D
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7 -1

A,=4,-B'A"B.

- - |-4'B
A =I7AL = [0 4) I‘ -4

2

But, using (21), (35) and (28) we have
4, = 4,-B'LY L) L) LL" B = 4,- B(L,"YL,' B = 4,- B'A."'B,
which ‘gives us (31).

(ii) Using (7), (34) apd (31) we obtain

-1

n -1 p- n -1 . -AIB :
T=l-L4 A= 1-[J 4705 4) = 1-| IO 1] -

2

/, O 1, A'B
o o

“lo g,

0 -4"'B

o 1,

which is exactly (32).
(iii) If € = [e,,&,] € I is the eror after the comection step we have ([8])

I’4e = 0.

[OiAP]E_l
2

A, =0=¢=0,

From (39), (36) we obtain

=0

thus

because 4, is invertible. Then (33) is obvious.
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We shall make now the following assumption: there exists a constant ¢ - 0
independently of the dimension n of the matrix A such that
HI;'EH <c. (42)
Then we obtain the following result conceming the fulfilment of (15) and (17).

THEOREM 2. For every vector e = [e,,e,] € K we have

min{a, 1lsisn-p}
HITelll} < I 7elll; 3)
'min 1
and
max{a,, 1 si<n-p}-min{a,, 1 <is<n-p)
| Te|||} = c? : Hlelll3. (44)

min{a,,n-p+1 sisn}-h_ (4)

where we denoted the elements of the matrix ;1-, by a,.
Proof. We denote the vector
e=Te (45)
by € = [e,,e,] i.e. the error after the correction step. From Proposition 1 (iv)
g =0, (46)
thus, using (33) and (46),

- - - A (A
1E112 2 A A)he 12 = A (A) 121 = mn(4))

}Hle'lllz. a7

min{a , l<i<sn-p

i’

But a simple calculation using Cauchy-Schwarz inequality (see also [4], [17]) yields fore,
using also (46),

1N < [Hel, e, (48)
Combining (47) with (48) we get (43).
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For the.second assertion, .(44), we firstly observe that
AT = T'4, (49)
which follows from (7) and the symmetry of A. Then we have
_ — - - =1 o, )
[11e1113=111Te|||3=< D" ATe, ATe > < \DTID "T'D |- ||le|||; = p(EE ") || fe] |13, (50)
where D = diag(A4) and E is the matrix given by
_1 _ .1
E=D?T(D). (&2))

But from (32) and (51) we obtain

I, D'*4B(Dy"
_[n 0747 By )
O o
then
,+KK' O
EE' = (53)
o o
where KX is the matrix
- l — - - —-l
K=D4"B(D)? (54,
Then, using (42), it results that
P(EE') = p(1,+ KK') = 1 +o(KK") < 1 + |KI* < 1 + ID,1*14,”" BI-I1D, | =
a,lsisn-
ljl&x {a, stsn. -p} o2 55)
min{a,, n-p+1 sis<n}
and from (50) and (55) we obtain -
- max {a,, 1 <i < n-p) )
N Telll; = 112111 < c||lelll;. €

min {a,, n-p+1 si<n)

Now, using (43), (44) is obvious.

It remains now to see under what assumptions A _, (Z,) from (33) and ¢ from (2) we
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constants which not depend on the dimension of the matrices 4 or A. In that sense we have
the following result.

PROPOSITION 2. Suppose that there exists a constant y > 0, independently on the

dimension n of A such that
Mady) = v, AL )=y (57)
Then-(42) holds with ¢ > 0 given by
¢ = JAL (58)
Y

where by IS|_ we denoted the number
Isi, = m:lx; Is,| (59)
Jor an arbitrary matrix S = (s,) .
Proof. From (30) we have
A'B=L)'@MB
Thus
14, Bl < ALY UL N 1B (60)

But, because ITI and L, are Cholesky factors, we obtain

G = fpd™) = L 61)
W
and

IL') = Jp(Al") s % {62
Y

For |B} we can write (using the symmetry of A4)

1B = Vo(B'B) = 1B'BI_ = [IB'I"1BI_ = I4I, ©63)
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Then, introducing (61)-(63) in (60) we obtain (58).

We shall denote by B,, the positive constant

p - L mex{a, lsisnp)@,lsicnp) | )

Y min {a,, n-p<isn}

where m € {1, .., ¢-1} is the arbitrary level considered at the begining of this section.
Accordingly to (44), (57), (58) and (64) we obtain
I Tellly = B, Illelllz, 65)
i.e. the approximation assumption (15) (on the level m). Defining g > 0 by '
B = max{f_,1 <m=xqg-1}, (66)
from (65) it results for every e " € R,
HIT=e~I1li s Blllelz (V) m =1,...q-1, ©67)

where ™ is the same matrix with T from (38) (on the level m).

3. The smoothing assumption for the preconditioned system. We obtained in (67)
the approximation assumption for the preconditioned system with respect to the norms
{11111, i = 1,2 defined with the inner products from (12) for the preconditioned matrix 4.
Thus, it is necessary that the smoothing assumption be also fulfilied with respect to these
norms. This is the aim of the present section.

We shall mentain the notational conventions from the above section. Firstly we
observe that a relaxation step of the type (8) can be written in the form

u,,=M?'Nu,+M'b, (68)
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where
A=M-N (69)
isa spljtting of the matrix 4 with M invertible and
p(MN) <1, (70)
(indeed, it is sufficient to define G = M'N and from (68) we get (8)). Suppose that relaxation
(68) satisfies the smoothing assumption (14) (on the level m) with a constant a,, > 0, i.e.
(V)eer |
IM'Nel; = lel; - a,lel; M)
We shall define now (only for theoretical pumo;e!) for tﬁe preconditioned system (25) a

similar relaxation, i.e.

i =M"'Ni,+M"b, (72)
where the matrices M and N are given by
M = AMA;, N = A NA, (13)
We denote by e, e respectively the errors
e=u,-u (74)
and
€ =i, - i (75)

THEOREM 3. (i) M is invertible, A = M - N and
p(M'N) < 1. (76)

) If
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i =(B) 0y )
then
i, =@)'u,,. (78)
(iii) The relaxation (72) satisfies the smoothing assumption with the same constant a.,, i.e.
IIMTNENI = (121 - e dlEN] (79)
Proof. (i) The first two statements are obvious. For the third, using the well known
equalit-y p(4B) = p(BA) (see é.g. »[19]) we obtain
p(M™'N) = p(B)' M N(AY) = p(M~N) < 1
(ii) It results t;y simple computations using (68), (72), (73), (25) and (26).
(iii) From (26) and (77) we have
T B)e, (80)
Then, it is sufficient to observe, using (73), that
<AM’'Née, M'N& > = <AM™"Ne,, M™Ne >,

<Ae

old’e—old>-<Ae €u”

old* “old "~ *

-1 -

<D4é,,Ae,> = <D e, Ade,>
and the prof is complete.

Remark. From the assertion (ii) of the above theorem we obtain the following usefull
fact: computing Em with (72) and a given approximation #, . 18 the same as computingu_

with (68) and u_, given by
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and calculate
“,=@)'s,,, (82)
In this way, the relaxation proces (72), for the preconditioned system (25), can be carried out
using a classical relaxation of the type (68) for the initial system and the relations (81)~(82).
Like in the previous section we can now define

a=min{a_,lsmsq-1} (83)

Then, over denoting G = M " N from (79; by G™ and e by e™ we obtain
HIG=e=1[i = [lle=lI[} - a-llle=llf3, (V)m =1,...q-1, (84)

i.e. the smoothing assumption (14).

4. The convergence of the algebraic multigrid algorithm. Accordingly to the
Theorem 1 we obtain that the V - cycle type multigrid algorithm defined in section 2
converges to the exact ;zolution u of (1) and the convergence factor, in the energy norm of the
preconditioned matrix A4 is bounded above by

p=Vi-op (85)
w_ith a and P from (83) and (66) respectively.

We have the possiBility (see the next section) to obtain y from (57) independently of
the dimension and the spectrum of the matrices A and A Thus, the constants a,, and §,, from
(64) and (79) will depend only on the coefficients of the matrices A" and 4™ (4" is 4 on
the level m). But, unfortunately, in the general case, a and B, and so p from (85), will
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depend on the number of levels used in the V' - cycle. It is very hard, even in particular cases,
to find a theoretical value of the factor p. The only way is to use an accurate coarsening
process and to define an efficient interpolation such that the coarse grid matnces keep the
properties of the initial matrix.

In our case an encouraging aspect comes to helps us. Indeed, from the relation (31)
it results that the coarse grid matrix 4, obtain with the Galerkin approach (6) and 1] from
(29), don’t depend on the preconditioning. More than that, 4, is the Schur complement of A,
obtained with Gaussian elimination. But there exist results (see e.g. [9]) which say that, for
example, 4 is (weakly) diagonally dominant, 4, keeps this property a.s.o. In this way we can
controle the coefficients of A4, their signs, absolute values, positions (i.e. the sparsity of the
matrix). Thus, defining interpolations like in (29) the only problem is to properly choose’ 4,
(and El) for that the ’extra work’ and the computational costs be not too expensive.

Remark. Choosing A, means, from (19) and (20), choosing the coarse grid C,. Some
facts related to this aspect can be found in the papers [4], [17], [16]. Concerning the (spectral)
condition of the preconditioned matrix A denoted by k(z ), we can easly obtain some precise
informations. Indeed, from (27) we have

k() = 1A1147') = k(A) IAA I-I(A)7 A, (86)

From (20) and (57) we obtain

1A Al < _"_'_’-_'!, 1A A = _“ﬂ. (87)
Y Y
Ti1en, (86), (87) and similar arguments with 4 instead A get
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- Al-IA.
k(d)—Y sk(A)sMi'_;'
14,0-14,1

with k(Z ) the spectral condition number of 4.

k(4), (83)

Then, for an accurate and realistic y in (57), k() is of the same order with k(4) and

the convergence in the norm '||| +|||, will not deteriorate the results.

5. Some particular cases.
L Z, = A,. Then A = A thus no preconditioning occurs. Condition (57) will hold if;,
for example 4, is strictly diagonally dominant, i.e.

n-p

v,=a,- E la,| >0,i=1,.. np. (89)
Jol, i

Then, we can take y from (57) to be (from Gershgorin’s theorem, [19])
Yy=min{v,i=1,. . n-p} (90)
The interpolation operator will be given by (see also [13]).

-Al- lB
I - . ©1)
I

2

The following result gives us a way for constructing /," without inverting the matrix
A,. Firstly we have to observe that, the matrix 4 being positive definite (and symmetric) we
can perform the Gaussian -elimination algorithm without pivoting ([16]) and making 1 on the

diagonal of 4,, for the first n-p columns. After that we obtain a matrix A of the form (in

block notation)

0

92)

JZ'
T o

~
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or elementwise

1 612 &’IS &l.u-p al,n-rl ~lu ]
o1 &, .. 4, &, ., .4,
A=0 0 0.1 . S - 93)
00 0.0 4, . .4,
00 0.0 -

For k=1, ..., n-p we define the matrices H, of dimension (n-k) x (n-k+1) and H of dimension

p xnby
-4,, 1 0.0
H =|4,,01.0 (%4)
q -G, 00 .1
an
H=H_H_ . . H. %)

Observation. The first column of H, (without minus sign) is the k - row of the matrix [ 4, i 5]
from (93) without the 1 on the diagonal.
THEOREM 4. With the above considerations we have
I)=H. (%)
Proof. 1t results from (94) and (95) that the matrix H has the structure
H=[HAil], 97)
where I, is the identity on R” and A is a p x (n-p) real matrix. We observe that the first
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column of H, is given by

a, = ala,,

k=2, (%8)
Thus, in block notation,
HA=[0i4V], (99)
or elementwise
a,-(aa,)a, .. a,-(a,al)a,
H A =0 a,-(a,a))a, .. a,-(a,a )a,|. (100)
0 a,-(a,a,)a, .. a " (a,a)a,
Frum the symmetry of 4 it results that the matrix fi“’ from (iOO) is the same with the square
matrix of dimension (7-1) x (n-1) obtained after the first step of the Gaussian elimination by
neglecting the first row and column. Recursively we obtain that
H_H__ . .HA=[0id). (101)
But, from (101), (20) ;nd (97) it results
HA,+ B' =0, (102)
which gives us
H=-B'A", (103)
COROLLARY 2. jhe interpolation operator 1, and the coarse grid matrix A, are
given by
I'=H'H' .H,, (104)
A =H_  HHAH'H'  H, (105)
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Remark. We observe that for the construction of I,” (or 1) we must perform the
Gaussian elimination only on the matrix 4, (i.e. only for the n-p rows of A).

18 ;, = diag(d,,d,, ...,d, ,) where we suppose that

n-p
d>0,i=1,.,np. (106)
Then
- - 1 1 1
L =L = diag@’,d;,....d.},) (107)

and the interpolation 1’ is givén by

-
[ LB (108)
! .

2

n
P

In order to obtain the product L, B (with L, the Cholesky factor of 4,, from (21)) we
make a Gaussian elimination (Without pisoting and making 1 on the diagonal) on the first n-p

rows of A. In this way we obtain the matrix

. |, B
A= (109)
‘ 4
where
A =LA (110
is an (LU) - decomposition of 4, (Jl i; upper triangular with 1 on his diagonal) and
B=L'B (11)
Then, if D, = diag (L)) = diag (7,,. 7, ...1_, ) it is obvious that
L' =D"4 (112)
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Then elements of the matrix I, can be recursively obtained by the formulas
a,=1,a,=1+ giu-d,,’,, i=2,.,np (113)
(where d, are the elements of A)). Then we have
L'B=D"B (114)
The constant y from (57) can be taken as

y=min{v,d,i=1,., np) 115)

1%

I 4, = A, + R, where
- R (116)
is an incomplete Cholesky decomposition of 4, iif A, is supposed to be an M - matrix, cf.
[11]). The factor I.:l is obtained during this decomposition. We know from [11] that
p=p(4 R)<1 (117)
From (116) we obtain
| A4 =T1-4A"R (118)
Thus, if A € C is an eigenvalue of 4, 4,, 1-A will be an eigenvalue for 4,"'R, and
(using (117))
M-Il s|1-Asp (119)
From (119) it results that for every eigenvalue A of .Z;'Al
l-ps |\ s1+p (120)
In particular
1-p < p(4,4,) < 14, 4] = 14,114, (121)
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and
- A A
Aa(A) = —_ < ML 1AL (122)
1471 1 1-p
Thus, y from (57) can be taken as

. . . IAII-
Y = min |min{v,,i = 1, ..,n-p}, S (123)

: P

Remark. Relation (123) tells us that the number 1-p must not depend on the dimension
of the matrix A4,. Thus, the EU4ewmpo§iﬁon (116) must not be ’too incomplete’, i.e..the
matrix R, must not have too much nonempty entries, the ’ideal’ case being

R =0, (124)

i.e. our particular case 1.

6. Nummerical examples. We considered the following plane problems:

.. -Au = fin Q
Dirichlet {  u =0 o0naQ
u _ du -
. - = ‘— T — - Q
Anisotropic Poisson ¢ ax?  ay? Jin
u =0 on dQ

Helmholtz

Au +k* = f in Q
u = 0 on dQ

with Q = (0,1) x (0,1) C R, discretized by a classical 5-point stencil finite differences (see
e.g. [8]). We used two different initial (finest grid) discretizations (corresponding to meshsizes

h =1/14 and h = 1/32) and a 5 - grids V - cycle algebraic multigrid (see section 1). We
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applied the preconditioning methods from cases I and II (section 5). As relexation we used
the classical Gauss - Seidel method ([19]). The stopping criterion of the multigrid algorithm
was
[Hu¥-ulll, = 107 (125)
where u is the exact solution and «" the corresponding approximation (N is the minimum
number of iteration such that (125) holds).
In tables 1-4 we indicated the worst norm reduction factor per iteration step, p,

computed with the formula

e/
P = sup u, =1,..,N-1 (126)
el
for Dirichlet and anisotropic Poisson problems and
Mm
P = sup Ie I,j-l,...,N-l (127)
le’l

for Helmholtz equation (¢/ = « - u is the error at the j-th iteration of the multigrid algorithm).

Remarks 1. For coarsening we used the algorithm presented in the paper [16].

2. In the case of Helmoltz equation the algebraic system is symmetric but not more
positive definite. But following the results of Mandel ([10]), the condition (35), with M(I,)
not depending on the dimension of the initial matrix A, ensures the convergence of the two
grid algorithm even in the indefinite case.

3. Some improvements in order to avoid the fill - in process appearing sometimes in
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the coarses grids matrices were presented in [7].

4. The values of e (table 2) and k* (tables 3 and 4) were selected accordingly to

similar examples solved in papers [17] and [5] respectively.

Acknowledgement. The author thanks to Mr. Gabriel Golubovici, Departement of

Mathematics, Univ. of Constanta, for his help preparation of numerical examples.

h ~1/14 132
o for case | : 0.051 0078
| oforcasell | oo 04
‘ Table 1. The Dirichlet problem
h 1/14 1/32
e=10" 0,052 Q.078
p for case I £ =107 0.052 0.078
g=10% 0.054 0.079
e=10" 0.19 041
p for case II g =10’ 02 041
. e=10° 023 0.42
Table 2. The anisotropic Poisson problem
=4 0.054
=19 0,058
p for case I B =25 0.09
=30 037
P=4 021
E=10 027
p for case I B =15 048
£ =30 0.74

"Table 3. The Helmmoltz problem, A = 1/14,




PRECONDITIONING FOR THE FULFILMENT

10.

11

12.

13.

14.

13.

E=19 0,077
pforcascl E=55 - 034
=100 0.83
B=19 0,56
p for case II — E =55 0.8
=100 0.97

Table 4. The Helmholtz problem, = 1/32.
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