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REZUM AI. - Precondiţionarea pentru îndeplinirea condiţiilor de aproximare în metoda 
multigrid algebrică. Se prezintă o metodă de precondiţionare pentru sisteme liniare simetrice 
şi pozitiv definite. Folosind un operator de inteipolare se dovedeşte că se realizează 
îndeplinirea condiţiilor de aproximare, care de obicei cauzează cele mai multe dificultăţi în 
utilizarea algoritmilor algebrici multigrid [4], [17]. Astfel se obţine convergenta K-cicluri de 
tip multigrid pentru sistemele simetrice generale pozitiv definite. Lucrarea se încheie cu 
prezentarea mai multor exemple numerice pentru ecuaţiile Dirichlet, precum şi Poisson şi 
Helmholtz anisotropice.

Abstract. In the last years a lot of papers ([1], [2], [3], [15], [20]) presented various 

preconditioning techniques for the improvement of the condition number of symmetric and 

positive definite AZ-matrices arrising from the discretization of elliptic partial differential 

equations. All of these techniques essentially use the ’'geometric" information offerend by the 

continuous problem ("good" properties of the partial differential operator, special types of 

regular discretizations etc.). Thus, even the ideas are quite general we cannot apply these 

methods for arbitrary systems.

In this paper we present a method of preconditioning for arbitrary symétrie and 

positive definite linear systems. We don’t obtain an improvement of the condition number of 

the system matrix (which is very hard in this general approach) but using a special 

construction of the interpolation operator we prove the fulfilment of the approximation

* University o f  Constanţa, Department o f  Mathematics, 8700 Constanţa, Romania



C. POPA

assumption (which usually causes the most troubles in the algebraic multigrid algorithms, see 

[4], [17]). Thus we obtain the convergence of the F-cycle type algebraic multigrid for general 

symétrie and positive definite systems.

At the end of the paper we present numerical examples on Dirichlet, anisotropic 

Poisson and Helmholtz equations.

1. Introduction. In this section we shall use the notations, definitions and results from 

[17], Let A be an n by n symmetric and positive definite matrix. For J 6 R " w e  consider the 

system

Au = b, (1)

with the (unique) exact solution u E. R". Let q 2 2 be an integer and C ,, C2 ,..., C a sequence 

of nonvoid subsets of (1, . . n} such that

, -  C ) D C , D  ... D  C ţ , ( 2 )

\CJ  "  m m ! > > ? » ( 3 )

« - « , >  n2 >... > n9> 1 , ( 4 )

where by |C J  we denoted the number of elements in the set Cm. Furthermore for 

m -  1,2, . . . ,  q -\ we consider the linear operators

C,: r- -* ir-, r- - r- (5)
and the matrices A" * 1 with the properties

c l -  ( C , y .  a 1 - a , A m*1 -  i: " a  " c ,  (6)

For m -  1, .... q-1 we define the coarse grid correction operators 7" by

r - (A m' ly l i  a  " (7)

and the smoothing process of the form
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O -  G " u Z  + Um -  G - H A  - r 1 b - ,  (8)

where /„ is the identity and

A mu m- b m (9)

are the systems corresponding to the coarse levels.

Remarks 1. The sets C„ m = 1......q formally play the same role as coarse grids in

the classical geometric multigrid ([3]), I " * 1 are the interpolation and restriction

operators, respectively and AT the coarse şrids matrices.

2. The form (8) of the smoothing process includes the classical relaxation schemes (o>- 

Jacobi, Gauss-Seidel, S O R, I L  U - decomposition). -

3. With all the above defined elements we consider a classical V - cycle type algorithm 

(with at least one smoothing step performed after each coarse grid correction step) looking 

like (e g. [18])

m = 1 p

m = 2 O

m “  q - 1 1)

m “  q

where we suppose that on the last grid (m = q) the system (9) is solved exactly.

We introduce the matrix

diag(>4 "), m -  \ ,  . ..,q-\ (11)

and define on each level the inner products
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< w ", v " >0 -  <Dmu m, v " > , ■ < A Mu m, v m> , (12)

< u m, v m > 2 ■ <D~lA mu m, A mv m>,

along with their corresponding norms I * |,, i ■ 0 ,1 ,2 ,  where < % *> is the Euclidean inner 

product and | *| the Euclidean norm (on the spaces V* ). We shall denote bye " -  v " -  u " 

the error on each level m -  1 , . ...  q-1 . We know the following result concerning the 

convergence of the above defined V -cycle.

THEOREM 1. ([17]) Assume that the interpolations /J*,, m -  1, . 1 have full

rank and that theré exists a constant b > 0 independently on m and e" such that

| G " « - I ï *  l « * l î  -  ô|  T Me " l î ,  m « 1, . . . ,*-1.  (13)

Then ô sc 1 and the V - cycle (10) to solve (1) has a convergence factor (in the energy norm 

I i j )  bounded above by yj\ -Ô .

COROLLARY 1. ([17]) I f  there exists constants a,p  > 0 independently o f m and em 

such that

I G - e - l î *  | e " l î  - a | e " É , (14)

(15)

for every m = 1, .... q-\ then we have (13) with

6 -  o/p (16)

Remarks 1. Properties (14), (15) are called the smoothing assumption (SA) and the 

approximation assumption (AA), respectively ([17]).

2. (SA) is fulfilled by the classical relaxation schemes (see [4], [12], [17]).
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3. The condition (AA) causes the most troubles. There are two weaker forms, namely 

(AA,) 1 7 - e - l î *  p j r - e - g ,  (17)

(AA,) min {| e -  -  C ,  e"*11 + 0 \  e "“  E  R"-} * p2|e  - |* , (18)

where the positive constants' p, and P2 are also independently on m and em. Following the 

result from [17] (AA,) implies (AA,) with p, = p2 and one of them with the smoothing 

assumption (14) ensures the convergence of the two grid algorithm (m, m+1). For the 

multilevel case (q i  3) it is necesaiy that (IS) holds. This is, in fact; our principal aim in the 

present paper.

2. Preconditioning - the two level case. We present in this section the method of 

preconditioning for a pair of two consecutive grids (m, m+1) where m E  {1, ..., q-1} is 

arbitrary fixed. In order to simplify the notations we shall write n,p, I ”, / / ,  C , A, Ap instead 

of Cm, A m, A mrl respectively. We shall suppose also that the coarse grid

Cp satisfies

Cp -  { n - p  + l . n - p + 2 , ...,/»} (19)

Accordingly to (19) we consider the block decomposition of A

A , B
A -  (20)

B ' A2

where AltA2 are symmetric invertible matrices of dimension n-p and p, respectively, with Al 

positive definite. Let Ax be another symmetric and positive definite matrix of dimension n-p.
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We consider the Cholesky decompositions of Ax and Ax

At -  Lt L ‘, Ât -  l xl ;

and we define the matrix A, (of dimension n) by

\LXLX O 

O L

(21)

(22)

where /2 is the identity on We shall also denote by /, the identity on R"'/> and by u = 

[w,,m2] a vector u £  R" for the descomposition

R1 -  R"-'©RP (23)

We précondition the system (1) in the following way

(V Â J) ( (Â ; ) -1I » ) - Ă 1*. (24)

Thus the system (1) becomes

A ü  -  b. (25)

where

and

« “ (*[)-'«, b - \ b , (26)

A, 5  

B ‘ A,
(27)

with the (w -/?) x p  matrix 5  given by

5  -  (28)

Remark. It is clear that u is the solution of (1) if and only if t7 from (26) is the
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solution of (25). We also observe that the preconditioned matrix A from (27) is symmetric 

and positive definite. Thus we can define for A the inner products from (12) and the

associated norms. These norms will be denoted by 111*111,, / -  0 ,1 ,2 .  Accordingly with 

[13] and [14] we shall define the interpolation I ” by

V -
-A? B

Then I f  has full rank and from (21) and (28) we obtain

) '1 Lt-'B
V "

PROPOSITION 1. (i) The coarse grid matrix Ap is given by

Ap - A 2 ~ B 'A ? B

and is independent on the matrix At o f the preconditioning.

(ii) The coarse grid correction operator, T, is given by

T - A Â B  
O O

(iii) I f  e ■ [e,, e2] e  R1 is the error after the correction step then

i i i«i i i î  - < Â ë j>  - < â 1ï 1, ï 1> *  x.nto( i , ) m \

where •̂min( ^ 1) is the smallest eigenvalue o f At .

Proof (i) Firstly we observe that from (29), (6) and (27) we obtain 

i : Â  -  [OiA2 - B ' Ă ; l B]  -  [OiĂ2],

with Ă2 given by

(29)

(30)

(31)

(32)

(33)

(34)
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i 2 -  a2- b ' â ~'b .

Then

a p -  i; ă i ;  -  [ o  i
-Â~lB

■ Ă,

But, using (21), (35) and (28) we have

i j  m A2~ B L i ( L ‘y l( L ,) - ' f , f , " B  -  A2~B'(L[l)'L i1 B »  -B 'A ^B ,

which gives us (31).

(ii) Using (7), (34) and (31) we obtain

t  -  i - i; a; ' i : a  -  / - / / ^ - ' [ o  • ^
-y4,B

[O « /2] -

A o' O - i^ B H /, A?B

0  7* °  7> 0  0

which is exactly (32).

(iii) If ë  ■ [ë,, J2] €  BT is the error after the correction step we have ([8])

InPÂ ë  -  0.

From (39), (36) we obtain

thus

[ O i A fJ 0

-  o => e2 -  0,

because i4p is invertible. Then (33) is obvious.

84



PR E C O N D IT IO N IN G  FO R TH E FU LFILM EN T

We shall make now the following assumption: there exists a constant c * 0  

independently o f the dimension n o f the matrix A such that

tĂ;'B\\ * c. (42)

Then we obtain the following result concerning the fulfilment of (15) and (17).

THEOREM 2. For every vector e » [ep e2] E  IP we have

and

\Te\ £  C
max{a., 1 £ / £ n-p) - min {a.i9 1 ^ / £ n-p} 

m in{atj,n-p+l x i x

(43)

(44)

where we denoted the elements o f the matrix Al by ă  .

Proof We denote the vector

e -  Te (45)

by e ■ [e , ,e2] i.e. the error after the correction step. From Proposition 1 (iv)

e2 -  0, (46)

thus, using (33) and (46),

* I I IÎ * \n iM )K !2 “ *M.(4)I«Ï2 * —r- K J H ) I - |  I |2 (47)
min {a.., 1 * i * n - p )

But a simple calculation using Cauchy-Schwarz inequality (see also [4], [17]) yields fore,

using also (46),

1* 1 1 1 ?  *  I I I F I I L  l l l ë l (48)

Combining (47) with (48) we get (43)
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For the-second assertion, (44), we firstly observe that

AT  -  T'Ă,

which follows from (7) and the symmetry of A. Then we have

111*1112" 111^11 \lm<D~lÂTe,ĂTe> & |Z)^7Ï) l7’,D ^ |* | | M II2 * p ( £ £ ' ) l  11*1 II2.

where D -  diag(/l) and E is the matrix given by
1 __1

E  -  D'I T (D ) '1.

But from (32) and (51) we obtâin

E  -
/, D m A?B (D ) m

O O

then

where K  is the matrix

Then, using (42), it results that

E E ' -
/, + K K ‘ O

O O

_  \

K  -  D ?A~ 'B (D t y ‘

P(E E 1) -  p(7, K K ‘) -  1 +pIKK1) s 1 + |* |2 s  1 + ^ |* l *

max [âu, 1 * i *n-p) 
min {au, n-p+l «/«/>}

•r 2

and from (SO) and (S5) we obtain

I Tel
„ 2 max {a.., 1 ^ * n-p)
e U s

min {a.r n-p+\ £ / £ n) c M I M I l l

Now, using (43), (44) is obvious.

It remains now to see under what assumptions ^ „ ( / l ,)  from (33) and c from (-:

(49)

(50)

(51)

(52)

(53) 

(54,

(55)

r ''

2 ) .tic
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constants which not depend on the dimension of the matrices A or A . \n that sense we have 

the following result.

PROPOSITION 2. Suppose that there exists a constant y > 0, independently on the

dimension n o f A such that '

\* .M ,)  » Y, X ^M ,) *  y.

Thett (42) holds with c > 0 given by

Y
where by |S | .  we denoted the number

|S |.  -  max J ]  | s |
1 j

for an arbitrary matrix S  ■ (sy) .

Proof From (30) we have

Ă ; lB «

Thus

i â ; ' b î  s

But, because Lx and Lx are Choiesky factors, we obtain

K f / n  -  J p (Â ;1) s  _ L
VY

and

u r ' l  -  Jp(4t-'y « _ L
vy

For |0 |  we can write (using the symmetry of A)

IBI -  \/p(B'B) * f lB 'B I .  * J l B ' L - I B L  * Ml,

(57)

(58)

(59)

(60)

(61)

(63)
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Then, introducing (61)-(63) in (60) we obtain (58).

We shall denote by p„ the positive constant

i max{ă,,, 1 s ix n - p )  '{ă... 1 * i* n -p \ ,
P„ -  4 ----- î - ï ln r - ,-----  l U ,-------— M li (64)

where m €  {1, ^-1} is the arbitrary level considered at the begining of this section.

Accordingly to (44), (57), (58) and (64) we obtain

111 7« 11 l i * P„ 11M 11* » (65)

i.e. the approximation assumption (15) (on the level m). Defining p > 0 by

P -  max{Pm, 1 * m * q -1), (66)

from (65) it results for every « " e l ' 1,

l l | r " e 1 | | î * P l l l * 1 l l 2 ,  (V )m  -  1 , . ( 6 7 )  

where T" is the same matrix with T from (38) (on the level m). 3

3. The smoothing assumption for the preconditioned system. We obtained in (67) 

the approximation assumption for the preconditioned system with respect to the norms 

111 * 11 |y> i •  1 ,2 defined with the inner products from (12) for the preconditioned matrix^. 

Thus, it is necessary that the smoothing assumption be also fulfilled with respect to these 

norms. This is the aim of the present section.

We shall mentain the notational conventions from the above section. Firstly we 

observe that a relaxation step of the type (8) can be written in the form

u M 'lNuoU + M ' b t (68)
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where

A = M  - N  (69)

is a splitting of the matrix A with M  invertible and

< 1, (70)

(indeed, it is sufficient to define G = At lN  and from (68) we get (8)). Suppose that relaxation 

(68) satisfies the smoothing assumption (14) (on the level m) with a constant a„ > 0, i.e. 

(V)e e VC

|M -W e|î s  le l \  -  a  J e l l  (71)

We shall define now (only for theoretical purpose!) for the preconditioned system (25) a 

similar relaxation, i.e.

M ' lNUoU+ M~'b, (72)

where the matrices M  and N  are given by

M  -  A,A/a;, N  -  Â.AIĂ'. (73)

We denote by e, ê  respectively the errors

e ~ UoU~ U (74)

and

ë  -  ûM -  û  (75)

THEOREM 3. (i) M  is invertible, Ă  -  M -N  and

p(M  *JV) < 1. (76)

(ii ) / /
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then

(Ă',)'1^ .  (78)

(iii) 77»e relaxation (72) satisfies the smoothing assumption with the same constant «„, i.e.

I I I M - ^ F I I I Î *  | | | ë | | | î - a j | | « | | | î .  (79)

Proof, (i) The first two statements are obvious. For the third, using the well known 

equality p(AB) -  p(BA) (see ê.g. [19]) we obtain

P(A?"'jV) -  p((Ă ')-1A/-'Ar(Ă'I)) -  p( M- ' N)  < 1

(77)

(ii) It results by simple computations using (68), (72), (73), (2S) and (26).

(iii) From (26) and (77) we have

êM - ( K r l eo

Then, it is sufficient to observe, using (73), that

< Ă M 'lNeM,M -lNeM > -  <AM~'NeoU,M -lNeoU>,

^  ̂  ̂ old* ôU ̂  ^  »old* old

<D~lÂeM,Ă eM> -  <D-lAeM,A eM>

(80)

and the prof is complete.

Remark. From the assertion (ii) of the above theorem we obtain the following usefull 

fact: computing with (72) and a given approximation UoU is the same as computing u^w 

with (68) and uoU given by

(«o
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and calculate

In this way, the relaxation proces (72), for the preconditioned system (25), can be carried out 

using a classical relaxation of the type (68) for the initial system and the relations (81)-(82).

Like in the previous section we can now define

a  •  min (a^, 1 s m s g - 1 )  (83)

Then, over denoting G m M  lN  from (79) by Gm and ë  by e" we bbtain

| | | G " e " | | | î  * 111«" || lî -  o*l I Ie "I Hî , ( V ) w -  1. . . . .4-1,  (84)

i.e. the smoothing assumption (14). 4

4. The convergence of the algebraic multigrid algorithm. Accordingly to the 

Theorem 1 we obtain that the V - cycle type multigrid algorithm defined in section 2 

converges to the exact solution u of (1) and the convergence factor, in the energy norm of the 

preconditioned matrix A is bounded above by

p -  Vl - o /p  (85)

with a  and 0 from (83) and (66) respectively.

We have the possibility (see the next section) to obtain y from (57) independently of 

the dimension and the spectrum of the matrices A and A. Thus, the constants am and 0W from 

(64) and (79) will depend only on the coefficients of the matrices Am and A m (A m is A on 

the level m). But, unfortunately, in the general case, a  and 0, and so p from (85), will

(82)
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depend on the number of levels used in the V - cycle. It is very hard, even in particular cases, 

to find a theoretical value of the factor p. The only way is to use an accurate coarsening 

process and to define an efficient interpolation such that the coarse grid matnces keep the 

properties of the initial matrix.

In our case an encouraging aspect comes to helps us. Indeed, from the relation (31) 

it results that the coarse grid matrix Ap obtain with the Galerkin approach (6) and Ip from 

(29), don’t depend on the preconditioning. More than that, Ap is the Schur complement of Ax 

obtained with Gaussian elimination. But there exist results (see e.g. [9]) which say that, for 

example, A is (weakly) diagonally dominant, Ap keeps this property a.s.o. In this way we can 

contrôle the coefficients of Ar  their signs, absolute values, positions (i.e. the sparsity of the 

matrix). Thus, defining interpolations like in (29) the only problem is ’to properly choose’ Ax 

(and At) for that the ’extra work’ and the computational costs be not too expensive.

Remark. Choosing Ax means, from (19) and (20), choosing the coarse grid Cp. Some 

facts related to this aspect can be found in the papers [4], [17], [16]. Concerning the (spectral) 

condition of the preconditioned matrix A denoted by k{A ), we can easly obtain some precise 

informations. Indeed, from (27) we have

k{Ă) -  m h -m '1» * *M)iĂ;Ă1H(Ă;)-iĂ;, i. (86)

From (20) and (57) we obtain

iă;ă.b s iii, i(â;)-'ă;1! * ill. (87>
Y Y

Then, (86), (87) and similar arguments with A instead A get
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k(A)----- 1 ----- « k(A)  * KA),  (88)

with k(A)  the spectral condition number of A.

Then, for an accurate and realistic y in (57), k(A) is of the same order with k(A) and 

the convergence in the norm ‘111f 11 li will not deteriorate the results.

PRECONDITIONING FOR THE FULFILMENT

5. Some particular cases.

I. Ax -  Av Then A -  A thus no preconditioning occurs. Condition (57) will hold if, 

for example Ax is strictly diagonally dominant, i.e.
n-p

v, ■ aH~ Y ,  K l  > °.» " 1. (89)

Then, we can take y from (57) to be (from Gershgorin’s theorem, [19])

Y " min {v,,i «* 1, (90)

The interpolation operator will be given by (see also [13]).

v -
-a ; 'b

(91)

The following result gives us a way for constructing without inverting the matrix 

Ay Firstly we have to observe that, the matrix A being positive definite (tmd symmetric) we 

can perform the Gaussian elimination algorithm without pivoting ([16]) and making 1 on the 

diagonal of Au for the first n-p columns. After that we obtain a matrix Ă of the form (in 

block notation)

A -
At B 

O X
(92)
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or elementwise

T  a n a !3 .. • A r , ^ l,n-p+l * A

o 1 ^ ln -p + 1  *•• A

0 0 0  .... 1 n
n-p,n-p* 1 * ^n-pjn (9 3 )

0 0 0  .... 0
s

**n-p+l,n-p+1 ’ • à  .n -p*ltn

0 0 0 ... 0 n,n-p*l

For k = 1 , n-p we define the matrices Hk of dimension (n-k) * (n-A+1) and H  of dimension

p  x n by

and

~^kjk+1 1 0 . . 0

0 1 ... 0

~ ă Kn 0 0 . . 1

H - H H  ....H..n-p n -p -1 1

(94)

(95)

Observation. The first column of Hk (without minus sign) is the k - row of the matrix [ Â, i f i ]

from (93) without the 1 on the diagonal.

THEOREM 4. With the above considerations we have

I f  -  H  (96)

Proof. It results from (94) and (9S) that the matrix H  has the structure

H - [ Ü i I 2], (97)

where I2 is the identity on R ' and f t  is a p  * (n-p) real matrix. We observe that the first
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column of Hx is given by

axk "  <Va n> * " 2 > (98)

Thus, in block notation,

HtA -  [ 0*Am], (99)

or elementwise

HXA
® ° 22~ (a2ia U^a il "• ah> â2\a\r)’a\\ 

0 a32-(a3.a .2)/a.l ain-(a3iaJ laU

0 a*2 - ( a«an>/an a» - K i a i > . .

(100)

From the symmetry of i4 it results that the matrix 4̂(1) from (100) is the same with the square 

matrix of dimension (w-1) x (w-1) obtained after the first step of the Gaussian elimination by 

neglecting the first row and column. Recursively we obtain that

(101)

But, from (101), (20) and (97) it results

HAX + B ‘ •  O, (102)

which gives us

f i  -  -B 'A ;1, (103)

COROLLARY 2. The interpolation operator I ” and the coarse grid matrix Ap are 

given by

/ ;  -  H ‘H i . .H i py (104)

h 2 h xa h ; h ; (105)
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Remark. We observe that for the construction of I*  (or / / )  we must perform the 

Gaussian elimination only on the matrix Ax (i.e. only for the n~p rows of A). 

n. Al -  diag(</1></2> ...,dn_p) where we suppose that

d, > 0, / -  (106)

Then
l l

Ll -  I / -  diagW7, ^ , .  , ^ ) (107)

and the interpolation 1 p is given by

V -
-l ; ' l ; ' b

( 108)

In order to obtain the product LxlB  (with Lx the Cholesky factor of Ax, from (21)) we 

make a Gaussian elimination (Without pisoting and making 1 on the diagonal) on the first n-p 

rows of A. In this way we obtain the matrix

A -
i ,  È

B ‘ A,
(109)

where

Al ~ L l Ăl (110)

is an (LU) - decomposition of Ax (^ , is upper triangular with 1 on his diagonal) and

Ë - L ? B  (111)

Then, if D, -  diag (£,) -  diag(7„, ln , ..., l„-p n.p) it is obvious that

Lx -  D,l/2i ,  (112)
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Then elements of the matrix ù x can be recursively obtained by the formulas
/-I

aM "  7»» au ■ l ,  + 5 Vkk‘al> i -  2, ...,n -p  (113)
A-l

(where ăv are the elements of Ăx ). Then we have

Li 'S  -  Dxin-S  (114)

The constant y from (57) can be taken as

y -  m inty,*/,, i -  1 ,...,»-/>} (115)

HI. Ăx -  Ax + Rx where

Ax -  Âx -  Rx (116)

is an incomplete Cholesky decomposition of Ax (if Ax is supposed to be an M  - matrix, cf. 

[11]). The factor Lx is obtained during this decomposition. We know from [11] that

p -  p ( i 1' 1« 1) < 1 (117)

From (116) we obtain

ÂxlAx -  I  -  Ax lRx (118)

Thus, if X G C is an eigenvalue of A~lAx, 1-X will be an eigenvalue for AxlRx and 

(using (117))

| 1 - | X | |  « | 1 - X |  * p  (119)

From (119) it results that for every eigenvalue X of Ax lAx

1 - p  *  |X |  *  1 + p  ( 1 2 0 )

In particular

1-p * p ^ , " ^ , )  * IĂ ;'AX1 * (121)

97



C. POPA

and

M , I
Thus, y from (57) can be taken as

—=Tf" * “ţ----  * "Ï-----ÏÀ *11 1-P 1-p
0 2 2 )

y -  min min{v,,i -  l , . . ,w -p} , M ,L
l - p

(123)

Remark. Relation (123) tells us that the number l-p must not depend on the dimension 

of the matrix Av Thus, the ILU-decomposition (116) must not be ’too incomplete’, i.e. the 

matrix Rx must not have too much nonempty entries, the ’ideal* case being

*1 = 0, (124)

i.e. our particular case I.

6. Nummerical examples. We considered the following plane problems:

tv • ui * -An -  /  in QDinchlet n ™ ann * 0 on o£2

Anisotropic Poisson
.  d'u —£ • _

dx2 9y2
n -  0 on dfi

it i l n An + k 2u -  /  in QHelmholtz A 'u -  0 on dQ

with Q « (0,1) x (0,1) C ■?, discretized by a classical 5-point stencil finite differences (see 

e.g. [8]). We used two different initial (finest grid) discretizations (corresponding to meshsizes 

h = 1/14 and h = 1/32) and a 5 - grids V - cycle algebraic multigrid (see section 1). We
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applied the preconditioning methods from cases I and II (section S). As relexation we used 

the classical Gauss - Seidel method ([19]). The stopping criterion of the multigrid algorithm 

was

| | | « " - « | | | I * KT4 (125)

where u is the exact solution and t/ 1 the corresponding approximation (N is the minimum 

number of iteration such that (125) holds).

In tables 1-4 we indicated the worst norm reduction factor per iteration step, p, 

computed with the formula

.'♦«I
p -  sup' - , j  -  1.....W -1 ' (126)

for Dirichlet and anisotropic Poisson problems and

p ■ sup j  -  I AM
u > i , J  .....

(127)

for Helmholtz equation {e1 = vf - u is the error at the j-th  iteration* of the multigrid algorithm).

Remarks 1. For coarsening we used the algorithm presented in the paper [16].

2. In the case of Helmoltz equation the algebraic system is symmetric but not more 

positive definite. But following the results of Mandel ([10]), the condition (33), w ith X .^ ^ )  

not depending on the dimension of the initial matrix A, ensures the convergence of the two 

grid algorithm even in the indefinite case.

3. Some improvements in order to avoid the fill - in process appearing sometimes in
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the coarses grids matrices were presented in [7].

4. The values of e (table 2) and A2 (tables 3 and 4) were selected accordingly to 

similar examples solved in papers [17] and [5] respectively.

Acknowledgement. The author thanks to Mr. Gabriel Golubovici, Departement of 

Mathematics, Univ. of Constanţa, for his help preparation of numerical examples.

h 1/14 1/32
p for case I 0.051 0078

o for case II 0.19 0.4
Table 1. The Dirichlet problem
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