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REZUMAT. - O solutie numerici pentru Fcuatin diferentiald de ordinul m folosind functii

spline. Se construieste un procedeu numeric folosind functii spline ‘polinomiale pentru

rezolvarea unei clase de ecuatii diferentiale neliniare de ordin m cu conditii initiale. Se

estimeazii eroarea gi se investigheazii stabilitatea metodei propuse.

L Introduction. In the last years, the probiem of approximating the solution of non
linear differential equations by spline functions has been of growing interest. Many authors
[1]-[6] have proposed various methods to approximate the solution by means of spline.

Recently, J. Gyorvari and Cs. Mihalyko [3] gave a spline algorithm to solve
numerically a differential equation with initial conditions. In this paper, using the idea of 7.
Fawzy in [1], [2] an improved algorithm is constructed using spline fuinctions and in addition,
the stability of the proposed method is given.

Consider the differential equation with initial condition

z™(x) = f(x,z(x),z'(x), ..., z2™(x)), x € [0,8], b >0 (1.1)
zN0) = 2", j=TmT
where f € C"([0,5] xR') and r E N.
We assume that f satisfies the following Lipschitz conditions

| /90, w) - fOCe, )| 5 Lu-v] (12)
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A. REVNIC

x€[0,8), uvER, q=0,r
The differential equation (1.1) can be reduced to a system of m differential equations
of first degree as follows:
One denote: y,(x): =z(x), y,(x): =z'(x), ..., y,_,(x): =z (x)
Then (1.1) is equivalent to
y'(x) = F(x,y(), x € [0,5] (13)
Y =(Yp»-rYuy):[0,5] = Rand
F(2,y09) = 040, ., Yo a1, M),
One have F@(x, y(x)) = (3 9x), ..., % (x),f @(x, y(x))) so the Lipschitz conditions
for f holds for F too:
|FO@,u) - FOx,v)I < Liu -v| (1.4
x €[0,8), uvER,q=07
One consider for the system (1.3) the initial conditions
N0) =y,
On [0,5] we define an uniform partition by the knots
A:0=x<x<.<x <x =b n€N

with the step h = x,, - x,, k = U,7-1 and one denote y,” = y(x,), k =T.n, j =TT

IL. The first approximation process. Let y be the exact solution of Cauchy problem

for the system (1.3). By integrating from x, to x we get

¥x) =y, + J‘F(:, wH)dt, x € [x,,x,,] 2.1
and for x: = x,,, we get .
Ve = Vi * j F(1, Mt))dt 2)
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This equality may be approximated with

T

Va= Pa [FC. @)t @3)

where *

rel 'U)
WO =Y €-xy 2 ! € Pl 23)
N
which corresponds to the Taylor expansion
1)

Y@ - 2 @- x.)' y; .2 &) (t-x )", 2.4

J=0 (r+1)!
‘e [xi'xhl]’ xl’ < E‘ <x bl

Now, we assume that the function fhas the modulus of continuity w,(h) associated to
the above defined mesh of points.
One will also use: 3, = ¥, 7' = Yo, » Ja D=y,

LEMMA 2.1 The inequality

1 = Veal s -7 (1 + ¢ h) + c 0 (h)h
holds for k = U, ni-1, where c, and c, are positive and independent of h.
Proof.

W= Vel = -y, + L j Y@ -y (hdt <

X

YOE) (v

sy, - y.I+L!IE-_(t x) + L )”'+E_(t—x)’|dts

s by, y,l LE lyk gL 'h"*-L h~

V) = 2)|“’(") eyl + Lhly, -yl +

o, (h) =

LE 1FO0, ) - FOw 30 g
a0 ¢+2) (r+2)!

SN Lic L

==yt + 1y, -yl U’*I)’t -yl-Le E @+2)! (r+2)l w (Hh" =
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s Iy, -y (1 +¢ch) + co (W)h™.
THEOREM 2.2 The convergence of the approximate value y,,, o the exact value y,,,
is given by the inequality
Wi = Yeul s ;o (M)A,
Proof. One apply succesively Lemma 2.1:
e = Vel = 1= %0 (1 +c,h) + cjo0, (B)h "™

Wit = Yeal (1 + k) = 1y, =y 0= (1 +c,h) + e, (B)h ™2 (1 + c,h)

1y = Veal (1 + SoB) < My, =y, 0= (1 +c By + o (W) R "2 (1+c h):
Adding the inequalities above one obtain

— k e AV 1
=Tk = cy0 7Y (1 + o = con(ynr L2 1
q=0

c, h

0

k+1 n

Because (1 +c h)*! = [l +%] s (l +%] < e’® = cosnstant, (1+ ! s
bounded, so 1y,,, - J,.,I = ;o (WA

THEOREM 2.3 The error for 3,5V is given by the inequality

s - i le, o)™, g = T7
Proof Iy&" - 58N = VFO(x, 1, ¥0,) = FOx L)l =
= L'WYy~ Vpal = 00, ()R

So, one obtained the approximative values y,,,, ...,y, € B corresponding to the
mesh of points 0 = x, <x, <. <x =b.

In x, one obtained the following approximations for the solution of (1.3):
Y=y, Y8y for  y®, q=T,7+T which correspond in (1.1) to
(z,'z’ s 2™ D),
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T aT 7 .aT SN, = . T/ Temel) = (D)
One denote: z,:= ¥, 1, 2 =Y, 50s Ze = Vems 2k - =Vioms 2k = Yem

THEOREM 2.4 The convergence of the approximative value z,5) to the exact valuez)

is given by the inequality

12 - 22| s c,0 ()h™, j = T, rem+1

Proof. This is a direct consequence of Theorems 2.1 and 2.3.

IIL The second approximation process. One obtain the following sets of approximate
values:

Z9: 29,2 q =0 rm

which correspond respectively to

ZD: 2@ 9 2P q =T,rm

We are going to construct a spline function S, interpolated to the set Z on the mash

A and approximating the solution of (1.1).

THEOREM 3.1 For a given mesh of points
A:0=x<x <.<x<x,<.<x =bx, -x =h k=0n"1

and for the given sets of values Z @. 29 2@, ..,29 q =T,r+m there is a unique spline

Junction S, interpolated to the set Z on the mesh and satisfying the following conditions:

@) SA(E', x) =S,(x) € C™[0,d]
(i) 520, =27 for ¢ =0, 7om, k =U,n
(iii) Forx, s x=sx,, k=0,n-1

rem ()

rem+1

z .
SA(x) - Z k—' (x "xk)’ + E ap(k) (x _xk)P"’m-
ISEwA Pt

Proof. From the continuity condition (i), for x = x,,,, using (ii) we get

W, ) =
S i) = Sen(x,,) = 2.

G.D
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- Substituting from (3.1) in (iii) we get the following linear system of equations:

reme+l _ rem-t Z'(J’O .
2 ne rm” :k)hl’-l - ptrml |7 (0 E "" h/t , I = U,'w-m 3.2
o T
for the unknowns a, , p = T, 7+*m+1. One denote
rem-1 500
® _ ptrml 3O _ %
FP=h [z,‘., Yy - h]. (33)
T
The system (3.2) has always (for 2 = 0) a unique solution because its determinant is
1 h#! h™m
Crﬂn*l 1 Cr‘bn‘.*p. l! hP’l Clr‘Zm'l. 1! hr'm
D =| C2.2° Clnp 2V B Caogm-2! B
Cloma(rem)! . CLr (r+m)! h?™ . Cy, . (r+m)! ™"
rem l(r*m)(r*m*'l) rem
IT t p1e2e-som | = g2 IIn=o0.
=0 t=0

So D, » 0 and the system (3.2) has always a unique solution for 4 > 0 i.e. the spline
function approximating the solution of (1.1) exists and is unique determined.
The coefficients are determined as follows.
One replace the column p in D, by the column
(FO,F®, . F®)

and we denote the determinant obtained by D,”. Then, the solution of system (3.2) will be

Df
ap(k). T’ p= |,r+m+|.
By factorising D, in terms of Fom,. ,F® we get
w. 1 W F® 4
a° = -z 2 opF, (€X)

where 1/h7" is a factor put in front of the sum so the coefficients c,, be independent of A.
Now we shall discuss the convergence of the spline function to the solution.
A
LEMMA 3.2 The inequalities |a,f")| s h_‘; o, (h) hold p = T, r+m+1 where A, are
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constants independent of h.

Proof. One estimate

rem-t ;U")
|F®l = b= 50 - 3 ——h'|.
, o J
One have the following Taylor expansion for z“(x), for x, = x < x,_, .
rem-1-t kzm) : ("")@m)
z9(x) = —_ X))t (x-x)"™" t =T, rm.
0= % S Eon) o)
and for x = x,,:
remel-t o U+1) z (r*m)
zkg)l - E k. hj + (gkl) hrom-t, t -U—,r+m.

A | (r+m-t)!
Using (3.5) and the t-th equation in the system (3.2) we get’
rem-t | z, U+) z‘(.l*')l
|F0| < hrrml |zh1-zk01| +E — k
j=0 J:
. 1z0mg,) - 2o

t-r-m-1 . rem-t
o < BT o ),

with ¢, > 0, ¢ = U,7+m, independent of h, so
o, (h)

F®<¢ Lt =0, rm

One substitute '(3.6) in (3.4) and one obtain

(k) l r+m (k) rem
a —_ cF, — c,c ‘o(h) - =
A= D) E ;o () ] ;

—w  (h) E c, ¢, =4 TQ, where 4,:= Y ¢, ¢, is a cosstant mdependent of h.

1=0

THEOREM 3.3 Let z be the exact solution of (1.1). If S, is the splme Junction
constructed in Theorem 3.1 then there exists a constant E independent of h for which the
inequalities

|z@(x) - S,(x)| s Ew (W) h™"%, q =T, 7+m

hold for any x € [0,b].
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Proof. Using the Taylor expansion previously constructed for z )(x) and condition (iii)

in Theorem 3.1 we get

|z@ O |"""°' 0 y z""E,.)
z9(x) - 5, (x)| = — (x-x) + —_— (xx,)" T -
S 2 I o
ME-Q PA 5 U+9) -("”‘) r'uEﬂ-q (k)
- CxY - R Y gl e (e x|
= T Y (rem-g)! = rrm s

rem+l-q I zk(m) - -k W)l

“ X

| z(*m (E (’ "")' rem-g-1
hi+ hrma 4 E q'c pmm ;‘1’ hpremee <

J! (r+m-2)!

sc, o(mh"m.

Taking E = max {c,"; ¢ = U, m+r}, the theorem is proved.
THEOREM 3.4 If we denote by S the function
s&@) = £x, S,(), S, ..., S(x)), x € [0, 5] and if S, is the spline function defined
in Theorem 3.1 then for any x € [0,b]
15.70) - S{™)| = Mo (B) "
where M is a positive constant independent of h (i.e. the spline function verifies the equation
while n — © or h — 0).
Proof. |5,7() - 5" = |5,70) - 2™ @)| + |x () - S )| =
= /6, 8,00, .. SV @) - e, 209, ., 2P| + |2 0) - S, ()|
< LK|S,(x) - z(x)] + LK|S'(x) -z/(x)| + ...+
+ LK|S,"@) - 2@ + 1270) - 57| =
s LKEo (h)h™" + LKEw (hB)h™"" + ..+ LKEw (h)h™' + E® (h)h " =
= (LKEh™ + LKER™"' + . +LKEh + E)h" o (h) < Mw (h)h",
where M > 0 is independent of A.
‘ Remark. If f€ C=([0, 5] x "), as the error is O(h"™™) we may choose r € N
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suitable so that the method is available.

IV. The stability of the method. A change in one of the calculated values fromy,

to u, will lead us to solve

X1

0, =+ J'F(t u'(0)) dt. @n

Let e, := |u, - y,l, the introduced error.

THEOREM 4.1 If any of the calculated values y, is changed into u, then the
inequality |u -y} = c,e, holds for any i =¥+, n and t = U, 7+T.

Proof. Substracting (2.3) from (4.1) and proceeding as in the proof of Lemma 2.1 we
get

e, se(l+ch)=(l+ch)*e < e""ek < ce,

where c is independent of h. Also, for ¢ = 0,7 we get

=(g*1) _ = (e*D) - = - -
12,7 = y ) = | FO%x,u) - FO%x,y) = Llu,-y|l < Lce, s c,e,

$0
1 -y < c,e,, t =T, 7T
As we did in paragrapf II., we shall denote
—;, 1';“, v - '7);.2 ;k(m-l) 17 ‘7"( ). o uhm —k(m...l) “;::m)
So

v -2 s lu, -yl s ce, for t =T, m-T
19,9 -9 s 4u,"" -5, """ s c,e, for t =m, mar+l.
and thus the theorem is proved.

THEOREM 4.2 If any of the calculated values y, is changed into u, and

consequently, the spline function approximating the solution of (1.1) is changed from S into
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s, then for any x € [x,,x,,], i = k,n-1, the inequality
|s(x) - S(x)| = c,qe, holds.
Proof. Consider the interval [x,x, ] where i = X, n+I. Then, analogously to the

spline function S, introduced Theorem 3.1, the new spline function due to the variation ofy,

to u, will be
—U) rem+1
5,(x) = ):_(x x,) + 2 b (x - x ) 4.3)
and will satisfy the condmons
(')(xhl) st*l( ol) vlf;): n-l(x ) - v © (44)

fori =%, n-2.

Then the linear system corresponding to (3.2) will be

rem+l

2 1C, 0 h7 = G, t =T F+m @.5)
where
rem=-t ‘7 G+
GO = h 159 -Y L_h/|, t =0, 7m 4.6)
=
and corresponding to (3.4) we get
0 o
b, h — Cpe G, @7
rem 5 0) rem+l

l5.6) - 5@1 = 133 —-@-xY + 32 87 =y -

rem ) rem+l

E_(x x) - E al(x -x)y"™| s
J=0

rem ';'U) - EIU)l reme+l

h'!+ E ‘b(f) (’)lhponm.
0 7

From (3.4) and (4.7) we get
1 rem

lb:') - a;i)l < F§cpl |G,‘0 ~ F'(')l
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From (3.3) and (4.6) we get
_ remet o U+ _ rem-t 70
IG‘(I) _ F‘(l)l = fptrml Iv’f;) 2 h/’ _z”(’l) + E _h/| <

J-OJ

rem-t I;,‘(I’O _z-(l'f)l
S— =y 1 i
sh""llv101-210||+h"m‘ - h’! <
j=0 J:

rtm-t j
< htrmt [c.ek + Yy c.ek%) s c,e hm!
=0 :

and so we get
rtm
b(!) (l)l < — EC,CP,C ptrm1
Using Theorem 4.1 we get

rem rem+l r+l

|sl(x) - S,(x)l 2 C.Ck___ + E hi’"”" E c9cpt¢kh t-r-m-1

rem+l 4l

= c.e, +cek2 Ech‘sce
J

which is a bounded multiple of the mtroduced €ITOr.
THEOREM 4.3 Under the assumptions of Theorem 4.2 the inequalities
|5°0) - $x)| = c, e,
hold for any t =0, m and i = K, n-1.
Proof. Following the same procedure as in Theorem 4.2 one obtain the requested

inequalities.

Conclusion. As any variation of the calculated error is a bounded multiple of the

introduced error, the method is stable.
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