COMMON FIXED POINTS OF COMPATIBLE MAPPINGS OF TYPE (A)

Valeriu POPA ${ }^{*}$ and Hemant Kumar PATHAK*

Received: May 31, 1994
AMS subject classification: $\mathbf{5 4 H 2 5}$

REZUMAT. - Puncte fixe comune pentru functii compatibile de tipul (A). In aceasta lucrare vom da unele teoreme de punct fix pentru funçii compatibile de tipul (A) extinzând unele rezultate din [4]-[7].

Abstract. In this paper, we give some common fixed point theorems for compatible mappings of type (A) extinding some results from [4] - [7].

Rhoades [8] summarized contractive mappings of some types and discussed on fixed points. Wang, Li Gao and Iseki [10] proved some fixed point theorems on expansion mappings, which correspond some contractive mappings. Rhoades [9] generalized the results for pairs of mappings. Recently, Popa [4] -[7] proved some theorems on unique fixed point for expansion mappings.

The purpose of this paper is to prove some fixed point theorems on expansion mappings extending some results from [4], [5], [6] and [7] for compatible mappings of type (A).

Let R_{+}be the set all non-negative reals numbers and $\psi: R_{+}^{3} \rightarrow R_{+}$be a real function. Throughout this paper: (X, d) denotes a metric space.

[^0]DEFINITION 1. $\psi: R_{+}^{3} \rightarrow R_{+}$satisfies property (h) if there exists $h \geq 1$ such that for every $u, v \in R_{+}$with $u \geq \psi(v, u, v)$ or $u \geq \psi(v, v, u)$, we have $u \geq h \nu$.

DEFINITION 2 ([6]). $\psi: R_{+}^{3} \rightarrow R_{+}$satisfies property (u) if $\psi(u, 0,0)>0, u>0$.
DEFINITION 3 ([1]). Let $S, T:(X, d) \rightarrow(X, d)$ be mappings, S and T are said to be compatible if

$$
\lim _{n \rightarrow \infty} d\left(S T x_{n}, T S x_{n}\right)=0
$$

wheneyer $\left\{x_{n}\right\}$ is a sequence in X such that $\lim _{n \rightarrow \infty} S x_{n}=\lim _{n \rightarrow \infty} T x_{n}=t$ for some t in X.
DEFINITION 4 ([2]). Let $S, T:(X, d) \rightarrow(X, d)$ be mappings, S and T are said to be compatible of type (A) if

$$
\lim _{n \rightarrow \infty} d\left(T S x_{n}, S S x_{n}\right)=0 \text { and } \lim _{n \rightarrow \infty} d\left(S T x_{n}, T T x_{n}\right)=0
$$

whenever $\left\{x_{n}\right\}$ is a sequence in X such that $\lim _{n \rightarrow \infty} S x_{n}=\lim _{n \rightarrow \infty} T x_{n}=t$ for some t in X.
Remark. By ex. 2.1 of [2], it follows that the notions of "compatible mappings" and "compatible mappings of type (A)" are independent.

LEMMA 1 ([2)]. Let $S, T:(X, d) \rightarrow(X, d)$ be compatible mappings of type (A). If one of S and T is contimuous, then S and T are compatible.

LEMMA 2 ([1]). Let S and T be compatible mappings from a metric space (X, d) into itself. Suppose that $\lim _{n \rightarrow \infty} S x_{n}=\lim _{n \rightarrow \infty} T x_{n}=t$ for some t in X. Then $\lim _{n \rightarrow \infty} T S x_{n}=S t$ if S is continuous.

LEMMA 3 ([2]). Let $S, T:(X, d) \rightarrow(X, d)$ be mappings. If S and T are compatible of type (A) and $S(t)=T(t)$ for some $t \in X$, then $S T(t)=T T(t)=S S(t)=T S(t)$.

LEMMA 4 ([7]). Let (X, d) be a metric space, A, B, S, T four mappings of X satisfying the inequality

$$
\begin{equation*}
d(A x, B y) \geq \psi(d(S x, T y), d(A x, S x), d(B y, T y)) \tag{1}
\end{equation*}
$$

COMMON FIXED POINTS

for all x, y in X, where ψ satisfies property (u). Then A, B, S, T have at most one common fixed point.

THEOREM 1. Let A, B, S and T be mappings from a complete metric space (X, d) into itself satisfying the conditions:
(1 $\left.{ }^{\circ}\right) \quad A$ and B are surjective,
(2 $\left.{ }^{\circ}\right) \quad$ One of A, B, S, T is continuous,
($\left.3^{\circ}\right) \quad A$ and S as well B and T are compatible of type (A),
(4) The inequality (1) holds for all x, y in X, where ψ satisfied property (h) with $h>1$.

If property (u) holds and ψ is continuous, then A, B, S and T have a unique common fixed point.

Proof. Let $x_{0} \in X$ be arbitrary. By (1°) we choose a point x_{1} in X such that $A x_{1}=T x_{0}=y_{0}$ and for this point x_{1}, there exists a point x_{2} in X such that $B x_{2}=S x_{1}=y_{1}$. Inductively, we can define a sequence $\left\{y_{n}\right\}$ in X such that

$$
\begin{equation*}
A x_{2 n+1}=T x_{2 n}=y_{2 n} \text { and } B x_{2 n+2}=S x_{2 n+1}=y_{2 n+1} \tag{2}
\end{equation*}
$$

By (1) and (2) we have

$$
\begin{gathered}
d\left(y_{0}, y_{1}\right)=d\left(A x_{1}, B x_{2}\right) \geq \psi\left(d\left(S x_{1}, T x_{2}\right), d\left(S x_{1}, A x_{1}\right), d\left(T x_{2}, B x_{2}\right)\right) \\
=\psi\left(d\left(y_{1}, y_{2}\right), d\left(y_{1}, y_{0}\right), d\left(y_{2}, y_{1}\right)\right) .
\end{gathered}
$$

Then by property (h), we have

$$
d\left(y_{0}, y_{1}\right) \geq h \cdot d\left(y_{2}, y_{1}\right), \text { where } h>1
$$

Thus $d\left(y_{2}, y_{1}\right) \leq \frac{1}{h} d\left(y_{0}, y_{1}\right)$. Similarly, we have

$$
d\left(y_{n}, y_{n+1}\right) \leq\left(\frac{1}{h}\right)^{n} \cdot d\left(y_{0}, y_{1}\right)
$$

Then by a routine calculation we can show that $\left\{y_{n}\right\}$ is a Cauchy sequence and since X is
complete, there is a $z \in X$ such that $\lim y_{n}=z$. Consequently, the subsequences $\left\{A x_{2 n+1}\right\}$, $\left\{B x_{2 n}\right\},\left\{S x_{2 n+1}\right\}$ and $\left\{T x_{2 n}\right\}$ converges to z.

Now, suppose that A is continuous. Since A and S are compatible of type (A) and A is continuous by Lemma $1 A$ and S are compatible. Lemma 2 implies $A^{2} x_{2 n+1} \rightarrow A z$ and $S A x_{2 n+1} \rightarrow A z$ as $n \rightarrow \infty$. By (1), we have

$$
d\left(A^{2} x_{2 n+1}, B x_{2 n}\right) \geq \psi\left(d\left(S A x_{2 n+1}, T x_{2 n}\right), d\left(S A x_{2 n+1}, A^{2} x_{2 n+1}\right), d\left(T x_{2 n}, B x_{2 n}\right)\right)
$$

Letting n tend tọ infinity we have by continuity of ψ

$$
d(A z, z) \geq \psi(d(A z, z), 0,0)
$$

By property (u) follows $d(A z, z)>d(A z, z)$ if $A z \neq z$. Thus $z=A z$. By (1) we have

$$
d\left(A z, B x_{2 n}\right) \geq \dot{\psi}\left(d\left(S x, T x_{2 n}\right), d(S z, A z), d\left(T x_{2 n}, B x_{2 n}\right)\right)
$$

Letting n tend to infinity we have by continuity of ψ

$$
\text { 妾 } d(A z, z) \geq \psi(d(S z, z), d(S z, z), 0) \text {. }
$$

 Then we have by (1)

Letting n tend to infint

By definition (1) we have $0 \geq h \cdot d(z, T u)$ which implies $z=T u$. Since B and T are compatible of type (A) and $B u=T u=z$ Lemma $3 B z=B T u=T B u=T z$, moreover by (1), we have

$$
d\left(A x_{2 n+1}, B z\right) \geq \psi\left(d\left(S x_{2 n+1}, T z\right), d\left(S x_{2 n+1}, A x_{2 n+1}\right), d(T z, B z)\right)
$$

Letting \boldsymbol{n} tend to infinity we have by continuity of ψ

$$
d(z, T z) \geq \psi(d(z, T z), 0,0)
$$

From property (u) it follows that $d(z, T z)>d(z, T z)$ if $z \neq T z$. Thus $z=T z$. Therefore, z is a common fixed point of A, B, S, T. Similarly, we can complete the proof in the case of the continuity of B.

Next, suppose that S is continuous. Since A and S are compatibly of type (A) and S is continuous by Lemma $1 A$ and S are compatible. Lemma 2 implies $S^{2} x_{2 n+1} \rightarrow S z$ and $A S x_{2 n+1} \rightarrow S z$ as $n \rightarrow \infty$. By (1), we have

$$
d\left(A S x_{2 n+1}, B x_{2 n}\right) \geq \psi\left(d\left(S^{2} x_{2 n+1}, T x_{2 n}\right), d\left(S^{2} x_{2 n+1}, A S x_{2 n+1}\right), d\left(T x_{2 n}, B x_{2 n}\right)\right) .
$$

Letting n tend to infinity we have by continuity of ψ

$$
d(S z, z) \geq \psi(d(S z, z) ; 0,0)
$$

By property (u) we have $d(S z, z)>d(S z, z)$ if $z \neq S z$. Thus $z=S z$. Let $z=A v$ and $z=B w$ for some v and w in X, respectively. Then by (1) we have

$$
d\left(A S x_{2 n+1}, B w\right) \geq \psi\left(d\left(S^{2} x_{2 n+1}, T w\right), d\left(S^{2} x_{2 n+1}, A S x_{2 n+1}\right), d(T w, B w)\right)
$$

Letting n tend to infinity we have by continuity of ψ

$$
0=d(S z, z) \geq \psi(d(S z, T w), 0, d(B w, T w))=\psi(d(z, T w), 0, d(z, T w))
$$

By Definition (1) we have $0 \geq h \cdot d(z, T w)$ which implies $z=T w$. Since B and T are compatible of type (A) and $B w=T w=T z$ by Lemma $3 B z=B T w=T B w=T z$. Moreover, by (1), we have

$$
d\left(A x_{2 n+1}, B z\right) \geq \psi\left(d\left(S x_{2 n+1}, T z\right), d\left(S x_{2 n+1}, A x_{2 n+1}\right), d(B z, T z)\right)
$$

Letting n tend to infinity we have by continuity of ψ

$$
d(z, T z)=d(z, B z) \geq \psi(d(z, T z), 0,0)
$$

By property (u), it follows that $d(z, T z)>d(z, T z)$ if $z \neq T z$. Thus $z=T z$. Further, we have by (1)

$$
d(A v, B z) \geq \psi(d(S v, T z), d(A v, S v), d(T z, B z)) \text { and }
$$

$0=d(z, z) \geq \psi(d(S v, z), d(z, S v), 0)$. By Definition 1 we have $0 \geq h \cdot d(S v, z)$ and thus $S v=z$. Since A and S are compatible of type (A) and $A v=S v=z$ by Lemma $3 A z=A S v$ $=S A v=S z$. Therefore, z is a common fixed point of A, B, S and T. Similarly, we can complete the proof in the case of continuity of T.

From Lemma 4 it follows that z is the unique common fixed point of A, B, S and T.
DEFINITION 5 ([3]). $\psi: R_{+}^{3} \rightarrow R_{+}$satisfies property (B) if for every $u, v \in R_{+}$such $u \geq \psi(v, u, v)$ we have $u \geq h v$, where $\psi(1,1,1)=h \geq 1$.

DEFINITION 6 ([7]). $\dot{\psi}: R_{+}^{3} \rightarrow R_{+}$satisfies property (B^{*}) if for every $u, v \in R_{+}$such that $u \geq \psi(v, v, u)$, we have $u \geq h v$, where $\psi(1,1,1)=h \geq 1$.

COROLLARY 1. Let A, B, S and T be mappings from a complete metric space (X, d) into itself satisfying:
(1) the conditions $\left(1^{\circ}\right),\left(2^{\circ}\right),\left(3^{\circ}\right)$ of Theorem 1 ,
(2) The inequality (1) holds for all x, y in X where ψ satisfies property (B) and (B*) with $h \geq 1$.

If property (u) holds and ψ is contimuous, then A, B, S and T have a unique common fixed point.

THEOREM 2. Let A, B, S and T be mappings from a complete metric space (X, d) into itself satisfying conditions $\left(1^{\circ}\right),\left(2^{\circ}\right)$ and. $\left(3^{\circ}\right)$ of Theorem 1 . If there exist non negative reals a, b, c, d with $a+b+c+d>1$ such that

$$
\begin{gather*}
d^{k}(A x, B y) \geq a \cdot d^{k}(S x, T y)+b \cdot d^{m}(A x, S x) \cdot d^{k-m}(B y, T y)+ \\
c \cdot d^{k-p}(S x, T y) \cdot d^{p}(A x, S x)+d \cdot d^{q}(B y, T y) \cdot d^{k-q}(S x, T y) \tag{3}
\end{gather*}
$$

where $k \geq 1, q \geq 0, m \geq 0, p \geq 0$ and $q \leq k, p \leq k, m \leq k$ hold for all x and y in X, then A, B, S and T have a common unique fixed point if $a>1$.

Proof. Let

$$
\psi\left(t_{1}, t_{2}, t_{3}\right)=\left[a \cdot t_{1}^{k}+b \cdot t_{2}^{m} \cdot t_{3}^{k-m}+c \cdot t_{2}^{p} \cdot t_{1}^{k-p}+d \cdot t_{3}^{q} \cdot t_{1}^{k-q}\right]^{1 / k}
$$

Let u, v such that $u \geq \psi(v, u, v)$, then

$$
\begin{aligned}
& a \geq\left[a, v^{k}+b u^{m} v^{k-m+c u p_{i} \downarrow-}+d v^{k}\right]^{1 / k} \text { and } \\
& a_{k} \geq a v^{k}+b u^{m} v^{k-m}+c u^{p} \cdot v^{k-p}+d v^{k} .
\end{aligned}
$$

Thus $(a+d) \cdot t^{k}+b \cdot t^{m}+c \cdot t^{p}-1 \leq 0$ where $t=v / u$. Let $g_{1}(t):[0, \infty) \rightarrow R$ the function $g_{1}(t)=(a+d) t^{k}+b t^{m}+c t^{p}-1$. Then $g_{1}^{\prime}(t)>0$ for $t>0, g_{1}(0)<0$ and $g_{1}(1)=a+b+c+d-1>0$. Let $r_{1} \in(0,1)$ be the root of the equation $g_{1}(t)=0$, then $g_{1}(t)<0$ for $t<r_{1}$. Let u, v be such that $u \geq \psi(v, v, u)$, then

$$
u \geq\left[a v^{k}+b v^{k-m} u^{m}+c v^{k}+d u^{q ; k-q}\right]^{1 / k}
$$

Similarly, we have

$$
(a+c) t^{k}+b t^{k-m}+d t^{k-q}-1 \leq 0
$$

where $t=v / u$. Let $g_{2}:[0, \infty) \rightarrow R$ be the function $g_{2}(t)=(a+c) t^{k}+b \cdot t^{k-m}+d t^{k-q}-1$. Let $r_{2} \in(0,1)$ the root of the equation $g_{2}(t)=0$, then $g_{2}(t)<0$ for $t<r_{2}$. Thus $g_{1}(t)<0$ and $g_{2}(t)$ <0 for $t<\min \left\{r_{1}, r_{2}\right\}=r, r \in(0,1)$. Then $(v / u)<r$ and $u>(1 / r) v$. Thus $h=(1 / r)>1$ and $u \geq h v$ with $h>1$.

On the other hand we have $\psi(u, 0,0)=a^{1 / k} u>u$. By Theorem 1, it follows that A, B, S and T have a unique common fixed point.

COROLLARY $2([4])$. Let (X, d) be a complete metric space and $f .(X, d) \rightarrow(X, d) a$ surjective mapping. If there exist non-negative reals a, b, c, d with $a+b+c+d>1$ such that

$$
\begin{gather*}
d^{k}(f x, f y) \geq a \cdot d^{q}(x, f x) \cdot d^{k-q}(x, y)+b \cdot d^{m}(y, f y) \cdot d^{k-m}(x, y)+ \\
c \cdot d^{p}(x, f x) \cdot d^{k-p}(y, f y)+d \cdot d^{k}(y) \tag{4}
\end{gather*}
$$

where $k \geq 1, q \geq 0, m \geq 0, p \geq 0$ anl $l q \leq k, m \leq k, p \leq k$ for each x, y in X with $x \cdots y$, and

V. POPA, H.K. PATHAK

if $d>1$, then f has a unique fixed point.
CORROLARY 3 ([5]). Let (X, d) be a complete metric space and $f .(X, d) \rightarrow(X, d)$ a surjective mapping. If there exist non-negative a, b, c with $a<1$ and $c>1$, then f has a unique fixed point.

THEOREM 3. Let S, T and $\left\{f_{i}\right\}_{i \in N}$ be mappings from a complete metric space (X, d) into itself satisfying the conditions:
(1°) $\left\{f_{i}\right\}_{f \in N}$ are surjective,
$\left(2^{\circ}\right) \quad S$ or T or f_{1} is contimuous,
(3) $\quad S$ and $\left\{f_{i}\right\}_{\in \in N}$ are compatible of type (A) and T and $\left\{f_{i}\right\}_{\in N}$ are compatible of type (A).
(4) The inequality

$$
\begin{equation*}
d\left(f_{i} x, f_{i+1} y\right) \geq \psi\left(d(S x, T y), d\left(f_{i} x, S x\right), d\left(f_{i+1} y, T y\right)\right) \tag{5}
\end{equation*}
$$

hold for all x and y in $X, \forall i \in N$, where ψ is continuous, satisfies property (h) with $h>1$ and property (u), then $\left\{f_{i}\right\}_{i \in N}, A$ and B have a unique common fixed point.

Proof. It is similar to the proof of [7, Theorem 4].
COROLLARY 4. Let S, T and $\left\{f_{i}\right\}_{i \in N}$ be mappings from a complete metric space (X, d) into itself satisfying the conditions $\left(1^{\circ}\right),\left(2^{\circ}\right),\left(3^{\circ}\right)$ of Theorem 3 and

$$
\begin{equation*}
d^{k}\left(f_{i} x, f_{i+1} y\right) \geq a \cdot d^{k}(S x, T y)+b \cdot d^{k}\left(f_{i} x, S x\right)+c \cdot d^{k}\left(f_{i+1} y, T y\right) \tag{6}
\end{equation*}
$$

where $k \geq 1,0 \leq b, c<1, a>1$ hold for all x and y in $X, \forall i \in N$, then S, T and $\left\{f_{i}\right\}_{r \in N}$ have a unique common fixed point.

We conclude this paper with the following example, which shows that "surjectivity of A and $B^{\prime \prime}$ is a necessary condition in Theorem 1.

Example 1. Let $X=[0, \infty)$. Define A, S, B and $T: X \rightarrow X$ given by $A x=k x+1, S x$

COMMON FIXED POINTS

$x+1, B x=T x=1$ for x in X and $2 \geq k>1$. Note that the following mapping satisfies properties (h) and (u):

$$
\psi\left(t_{1}, t_{2}, t_{3}\right)=k \cdot \max \left\{t_{1}, t_{2}, t_{3}\right\}, \text { where } k>1 .
$$

Now, $d(A x, B y)=k x=k \cdot \max \{x,(k-1) x, 0\}=k \cdot \max \{d(S x, T y), d(A x, S x)$, $d(B y, T y)\}=\psi(d(S x, T y), d(A x, S x), d(B y, T y))$, for all x, y in X, where $2 \geq k>1$. Consider a sequence $\left\{x_{n}\right\} \subset X$ such that $x_{n} \rightarrow 0$. Then it is to see, by routine calculation, that A, S and B, T are compatible of type (A). Moreover, A, B, S and T are all continuous. Therefore, we see that all the hypothesis of Theorem 1 are satisfied except surjectivity of A and B, but the mappings A, B, S and T have no fixed point in X.

REFERENCES

1. Jungck, G., Compatible mappings and fixed points, J. Math. and Math. Sci. 9(1986), 771-779.
2. Jungck, G., Murthy, P.P. and Cho. J.J., Compatible mappings of type (A) and common fixed points, Math. Japonica, 38, 2(1993), 381-390.
3. Khan M.A., Khan, S. and Sessa, S., Some theorems on expansion mapping and their fixed points, Demonstratio Mathematica 19(1986), 673-683.
4. Popa, V. Some fixed point theorems of expansion mappings, Demonstratio Mathematica 19, 3(1986), 699-702.
5. Popa, V., Fixed point theorems for expansion mappings, Babeş-Bolyai Univ. Fac. Math. Phys., Research Semin., Seminar on fixed point theory, Preprint nr. 3(1987), 25-30.
6. Popa, V., Theorems of unique fixed point for expansion mappings, Demonstratio Mathematica 23(1990), 213-218.
7. Popa, V., Common fixed points of compatible mappings, Demonstratio Mathematica 26, 3-4(1993), 803809.
8. Rhoades, B.E., A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226(1977), 257-290.
9. Rhoades, B.E., Some fixed point theorems for pairs of mappings, Jnānābh 15(1985), 151-158.
10. Wang, S.Z., Li, B.Y., Gao, Z.M. and Iséki, K., Some fixed point theorems on expansion mappings, math. Japonica 29(1984), 631-636.

[^0]: - University of Bacău, Department of Mathematics, 5500 Bacău, Romania
 "Kalyan Mahavidyalaya, Department of Mathematics, Bhilai Nagar (M.P.), 490006 India

