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REZUMAT. - Operatori liniari pozitivi probabilistici. Pentru un sir de operatori
probabilistici se indic# un algoritm de tip Casteljau. Se prezint# apoi céteva aplicatii.
1. Introduction. For every x in an interval ] of the real axis let us consider a sequence

of independent and identically distributed random variables _(Y,,‘)

nxl"’

Letp,20,i=1, .., n,
such that p,, + ... + p,,= 1 foreachn 2 1.

For a continuous function f on the real line let us denote

Lfe) - Ef(’Zj; P Y,‘] )
provided that the expectation is finite.

Many classical positive linear operators (in particular Bemnstein, Szdsz, Gamma,
Weierstrass and Baskakov operators) are of the form (1). The probabilistic positive linear
operators have been e;ctensively studied; see [1], [3], [7], [8] and the references therein.

Our approach is based on a recursive algorithm related to Casteljau’s algorithm. It
t;llows us to deduce some properties of L, from those of L,. Finally we shall generalize a
result from [7] concerning monotonic convergence under convexity. Other results of this type

are to be found in [4] and [13].
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2. The algorithm. Let fbe a given continuous function on R. Forx € Iand ¢,, .., ¢,
€ R denote
o, ....t) = f(p b, +..+p.1)
L, =BG, ot V), k=1, -1,
Then we have
Lfx)=ERYS, . .Y)=ERX, . Y,)=. =
= Ef5() = LfA() . Q)
Examples. (a) Let p,=1/n,nz1,i=1,.,n Let (X,),,, be & sequence; of

independent and on [0,1] uniformly distributed random variables. Let ¥, =

Kax)? O<sxsl,

where I, denbtu the ihdicator function of C. Then L_f(x) coincides with the Bernstein
operator B f(x); see [1].
Forx€[0,1], f€C[0,1), k=1, .,m1, ¢, .., 1, € {0,1} we have
Lo, ....t) = f((t,+...+1 )n)
L@, ) = A-050, .., 1,,,0) + x50, ...1,.1)
Lfx) = (1-2)£50) + xf5(1)
It follows that the computation of L_f(x) by means of (2) is equivalent to the
computation of B_f(x) by means of the Casteljau algorithm [9] (see also [11] and [14])).
(b) In the case of the Szasz operator (see [7]) we have forx 20, k=1, .., n-1, {, =
01,..,

ft, . t) = (4 + ... +1,)n)

£ nty) =e™ Y iy, by )X

J=0 :

Sf0) = e™ Y ()l

7=0
34
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(c) Let p,,= 1/n and let ¥,* be uniformly distributed on [x-1, x+1]. Then L_f(x) is
the operator of Petari¢ and Zwick [12). We have for k=1, .., n-1,

L@, ....t) = f((@t,+..+1)n)

x+1
fE@, nt,) = (12) f 5@, .t Dat
x=1

x+1

L f() = (1/2) f ()t
Remark 1. Let p,, = 1/n. Denote g," = f:lnd
&) = Ef(n-k)um + Y, n+...+Y)n), k=1, .., n-1

Then £, ... 1,,) = &°((1,+ ... + ¢ )(n-k)). -

Consider again the above example (c) and express L f(x) by means of a divided
difference (see [12]); we deduce

Lfe = Ig::.(u) By (w)du = ,[g.t,(u) Bl(w)du = ... =
- ’[g.,‘(u)B * (u)du

where B/, is the B-spline function [9] of degree j-1 corresponding to the equidistant points
¥l=t,<f<.<f=x+l,j=1,.,n

In particular, L_f(0) = I f(u) BY,(4) du. This means that the probability density of
X +..+YVn is the.spline function B_,. The characteristic function of the same variable
is

@{f) = ((n/t) sin (t/n))"

It follows that the Fourier transform of By, is @ (see also [5]).

3. Applications. For M > 0 denote

Lip@; 1) = {f € C): | f6) -fO)] < Mlx-»|, x,y € I},

35



I. RASA

The following lemma can be proved by induction and we omit the details.
LEMMA 1. (i) If f € Lip (M;R) then
5@, ..t ,,)ELip(Mp, , ;R), k=0, . ,n-1

(ii) If fis increasing, then f(t,, ...t _,_,, ") is increasing, k=0, ..., n-1.

THEOREM 1. Let M\N > 0. If L, transforms the functions from Lip(M;R) [the
increasing functions) into functions from Lip(N;]) [increasing functions], then the same is true
Joreach L, n> 1.

| Proof. Let x,y € I, f€ Lip(M;R), n > 1 and ¢ = |x-y|. Then, by (), /(. ... 7, °)

isin Lip(Mp, ,_,; R), hence LAa.,..,t_,,, ) isin Lip(Np, k> 7). This means that the
function ¢ — Ef (AR S Y.\l isin Lip(Np, ,,:1) foreach k=0, .., n-1.

Let F, be the distribution function of ¥,". Since f; = f;”, we have

Lfx) =EfY, .. 1) = EFQY, .. Y1) =
- J"Ej{,’(tl, ot W YIYAF(1) . dF(1,) <

P LE/{(:,, ot ¥))AE (). dF () + Ngp,, =
n[:f]’(tl, ot )dF(t)..dF,(t,_,) + Ngp,, =

= Ef(YS, .., Y5) + Ngp, .
By repeating this argument we obtain finally
Lf®) s Ef(Y)) + Nq(p,,* . +p,;) = EfL(Y)) + Nq.
By virtue of (2) we have L f(x) = L f(y) + Ngq. It follows immediately that
|L,f(x) =L f(»)| = N|x-y|, hence L f € Lip(N;I).

The assertion concerning increasing functions can be proved similarly.
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4. Monotonic convergence. In what follows we put p, ., = 0, n = 1 and we shall

suppose that

(Po 1> 5Py o) majorizes (P,., 1s s Py, o) 3)
‘(Concenling majorization, see [10]).
THEOREM 2. Under the above hypothesis we have L f = L_,, f if f is convex.

Proof Let x € I If fis convex then the function

n+l

(qp seey u#l) - Ef quY"'
i=1

is convex and symmetric, hence it is Schur-convex [10; 3.C.2]. Now from (3) it follows that

n+1 n+l

Ef\Y. p. Y| = Ef|Y P, X7
i=1

i=1

This means that L_f(x) = L_,, f(x) and the proof is finished.

Remark 2. The above proof is suggested by Theorems 3.7 and 3.8 of [6). From
Theorem 2 with p,, = 1/n we obtain the inequality contained in [7; Theorem 3] (see also [2])
and proved there by means of a martingale-type property and the conditional version of

Jensen’s inequality.
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