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REZUMAT» -  Teoreme de medie de tip hiperbolic în form ă nediferenţială. în  lucrare sunt
stabilite mai moite teoreme de medie pentru funcţii definite pe un dreptunghi.

1. Introduction. Let 1 and J  be nonempty intervals of the real axis (R). Denote fir. 

simplicity K  = /  x J. By a (standard) rectangle of K we mean any subset A = [a,b\ * [c,d] 

of Kt where [a,b\9 [c,d] are closed sub-intervals of /  and Jf respectively. In this case, the 

points

A = {a,c\ B = (b,c\ C = (M > D = (a,d)

are called the vertices of A; correspondingly, the rectangle in question may be represented as 

[ABCD].

Let (JCI I) be a normed space and /  K Xy a mapping. For each rectangle A of K 

taken as above, denote

mf (A) -  /(A) -  f(B)  h- / (C )  -  /(D ). (1.1)

This will be referred to as the hyperbolic (Lebesque-Stieltjes) measure of A generated by this 

function. Note that, when X  = R, and

f ( t ,s )  « ts, t t s E  R 

then, this hyperbolic measure reduces to
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/w(A) = ac -  be + bd - ad  ■ (b-a) (d-c ) (1.2)

(the wswa/ Lebesgue measure of A). Finally, denote

(1.3)

These will be referred to as the variational quotients of f  with respect to A.

Now, by a mean value theorem/property for/ over A we mean an evaluation of/^(A) 

of *Sy(A) with the aid of some expressions depending on the objective to be attained. More 

precisely, we may distinguish between

i) mean value theorems of non-differential (relative) form;

ii) mean value theorems of differential form.

The second class of such properties was investigated-in the bi-dimensional sett: g we dealt 

with - by Nicolescu [12, ch.19, §2], under the lines in Bôgel [6,7]; see also Dobrescu [8]. The 

first class of such results was only tangentially discussed until now in the paper by Nicolescu 

[10]. It is our main aim in the present exposition to fill this gap, in a manner suggested by 

the one-dimensional developments in this area due to the authors [4,5]; see also Aziz and 

Diaz [1,2,3]. The imposed assumptions upon /  are intended to be the largest possible ones; 

details will be given in Section 3. All preliminary facts were collected in Section 2. And, in 

Section 4, some aspects involving the real case (X= R) will be considered. Finally, it is worth 

noting these developments are an essential tool to get mean value theorems under differential 

form. A detailed account of these will be made in a future paper.

2. Preliminaries. Let again I J  be real intervals and K = /  x J, We also give a nomied 

space (X9l I) and take a m apping/: K X. It is our aim in the following to investigate this 

function by means of the associated map A — /^(A).
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We start with an invariance property. By a hyperbolic constant over K we mean any 

map h : K X  of the form

A(/,$) -  <p(0 + (/,s) E  K

where <p : I  X  J  “** X  are given functions. This term is justified by the statement 

below. (The proof being evident, we do not give details.)

PROPOSITION 1. For each rectangle A o f K and each hyperbolic constant h over K, 

one has

“ m/(A) (2.1)

As an immediate consequence,

* /+a(A) -  Rf (A) (hence Sf.h(A) A)).

In other words, any property of /^(A) (or *Sy(A)) may be also tranferred to the function 

/  + h which, in principle, is no longer endowed with the properties of /  Some concrete 

examples in this direction will be given in Sections 3 and 4.

We are now passing to an additivity property. For any rectangle A = [afb] x [c,d\ of 

K, denote

int (A) = ]a,i[x]c,d[ (the interior of A)

This is of course related to the topological structure of the plane given, e.g., by the maximum 

norm. By a division of the rectangle A we mean any finite decomposition A m UAr of A into
t r

(standard) rectangles of K  with the family {int (Ar)} being mutually disjoint. Among these, 

we distinguish the divisions of A generated by corresponding divisions of the real intervals 

generating A. Precisely, given finite decompositions

[a,b] -  [c9d] -

of these intervals, the considered division may be written as A = UA/y, where
•j
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\  m f ^ i ï  x Isj y for all possible (ij). These will be referred to in the sequel as normal

divisions of the underlying rectangle.

PROPOSITION 2. Let {Ar} be a division o f the rectangle A. Then

OT/(A) " E m/ Ar) (2 2)
r

Proof Take any vertex, P, of an arbitrary rectangle in this decomposition, distinct 

from the vertices of A. A simple analysis shows that P belongs to either two or four 

rectangles in this family. (The proof being almost evident, we do not give details.) Let * be 

the ordering in R2 introduced in the usual way

* ('2,*2) iff /, £ t2, î , S 5r

In the first case, the point in question is extremal in one rectangle and non-*" tremal in 

another. In the second case, the considered point is two times extremal and two times non

extremal in the rectangles to which it belongs. Consequently, the contribution of f{P) in 

52 mf (Ar) is zero, by the definition of these expressions. In other words, only the vertices
r

of A are to be retained in this sum, and conclusion follows. ■

Remark. A different proof of this may be given along the following lines (cf. Tolstov 

[15, ch.2, §6]). Let V  be the set of all vertices for the rectangles in (Ar). The projection of 

V  over [a,b], respectively [cfd\ gives finite decompositions of such intervals. Let

A » U{ A,, ;(/,./) E T )

be the normal division of A induced by these. It clearly follows by the described construction 

that a partition T « UTr of the index set T may be found so that, for each r,
r

{A/y; ( i j )  E  r .)  is a normal division of Ar.

This, plus (2.2) being valid for normal divisions imply

"» /A) “  > ( ' J )  €  r } -  £  {OT/ V ;  ( 'V ) e  r r} " H  m/ ( Ar>
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and the assertion is proved.

Remark. Of course, the conclusion of this statement remains valid (via Proposition 1) 

in case /is  to be replaced by fr h y where h is any hyperbolic constant (over K).

Now, a useful semi-continuity result will be proved. For any pair of points P,Q in the 

plane, we denote by PQ  » {XP + (1 -  X)Q ; 0 ss X ss i} the segment between these points 

and by (PQ) -  {XP + (1 -  \)Q  ; X E  P} the line passing through P  and Q. Let A = [ABCD] 

be a rectangle in K, given by its vertices. Denote

/r(A ) * AB  U BC U CD U DA (the boundary of A).

Let P  be a point of fr (A), distinct from the vertices of A. There exists a unique line passing 

through P, which is orthogonal to the segment of fr (A), which contains P. This will be 

referred to as the normal to A at the considered point, and denoted vA(P). (That P  must be 

distinct from the vertices of A in this construction is a consequence of the fact that, otherwise, 

the normal in question would be not uniquely determined.) Now, call the underlying function 

f : K - * X y normally continuous at the point P  E  /r(A ) (distinct from A,B,C,D) when its 

restriction to vA(P) fl A is continuous at P. We also term /  normally continuous on/r(A) 

when it is normally continuous at any point P  E  fr (A) (distinct from the vertices of A).

With these conventions, let A be a rectangle in K. We also take a sub-rectangle A' of 

A in such a way that /r(A ') has at least a segment in common with /r(A).

PROPOSITION 3 Suppose that

(H. 1) f i s  continuous at the vertices o f A

(H.2) / is normally continuous at each vertex o f A' (if any) lying infr(A),

distinct from the vertices o f A.

Then, for each > 0, there exists a sub-rectangle A" o f A7, interior to A, with
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S/ ( A ^ ) ^ ( l - i i ) S / (A/ ). (2.3)

Proof. Without loss, one may assume mf { A) * 0 (hence Sf (&) * 0). We have several 

situations to discuss.

Case I. fr{h!) has a single segment in common with fr(A) This, e.g., corresponds 

to the choice A' « [A*Bl C *D ' ] where A*B'  C AB and C \ D f E  int(A); or, in other 

words (by the adopted notations for the rectangle A)

A'  -  ( a ' 9c)9 B'  » (b '9c)9 C'  -  (b '9r)9 D f « ( a ' 9r) 

with a < a '  < b'  < by c < r < d. We now consider the sub-rectangle Ax of K given by the 

vertices A[ , B l , C J yD ' , where

Al  -  (a '.c + X ), B 7 -  (A ',c+X ), X > 0 small enough.

Clearly, Â  is in A' H int(A) for all such X. Moreover, by (H.2), 

f ( A l )  -  f ( A ' ) 9 f ( B l )  -  f (B )  as X -  0+

This, combined with

m(b!x) -* as X 0+ (2.4)

shows

-  * ,(A ') (hence 5/ a£) -  S /A '))  as X -  0+. (2.5)

As a consequence, any A^, where X > 0 is sufficiently small, may be taken as the sub

rectangle A" in the statement.

Case 2. fr (A') has two segments in common with fr (A). This, for example, may be 

understood as the rectangle in question being represented in the form A' -  [ A B 'C 'D '  ], 

where

B* * (p ,c ) , C ' » (p,q ), £>' = (ayq)y a < p < b\ c < q < d 

Let us now construct a sub-rectangle /s!x of A by the vertices Ak, Bx , C *, /)>' , where

S
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A "  (a + K c + \ ) ,  Bl -  (#>,c + X), Dl - ( a  + K q l  

(As before, X > 0 is small enough). That A' fl int(A) includes Â  is clear.

We also have, by (H.l) + (H.2),

f ( A J  ^ f ( A ) 9f ( B ' ) ^ f ( B ' ) 9f ( D ' )  - + / ( D ' )  as k  -  0+.

This, in combination with (2.4) being valid in this context gives again (2.5). Hence, anyA^ 

like before - where X > 0 is sufficiently small - is a candidate for sub-rectangle A" in the 

statement.

Cases 3-4.fr(/S! ) has more than two segments in common with fr (A). (That is, either, 

fr(t±!) has three segments in common with fr (A) or else A' » A). The argument we just 

developed may be correspondingly modified to get a family of sub-rectangles {Â J of A7, 

interior to A, which in addition has the property (2.5). So, as before, it will suffice taking one 

of these as A7/, to get (2.3). Having explored all possible situations, the conclusion 

follows, fl

Remark. The working conditions (H.l) + (H.2) must be taken in a relative sense only. 

Because as results from Proposition 1, the statement above remains valid whenever f-h  fulfils 

(H.l) + (H.2) for some hyperbolic constant h. K X  (which, in particular, may be 

discontinuous at any point of the rectangle A).

As an immediate consequence of this, we have

COROLLARY 1. Suppose that the underlying junction fsatisfies (H.l) plus

(H.3) / is normally continuous over /r(A ).

Then, conclusion o f Proposition 2 is retainable.

In particular, a sufficient condition for (H.l) + (H.3) is

(H.3)' / is continuous over /r(A ).
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Of course, as already precised, these conditions may be put in an even more general 

framework, via Proposition 1; further details are not given.

Finally, a specific continuity property will be introduced for such functions. Given a 

pair P, •  (/,,« ,), P2 -  (fj,s2) of points (in K), denote by [P,;PJ the rectangle [a,b] * [c,d\, 

where

a -  m in(/,,f2), b ■ m ax(fj,/2); c ■ m in(s,,52), d  -  m ax(j,,.s2).

Of course, the order of these points is not essential, here; i.e., [P,;P2] is identical to [PiJP \̂- 

Let P be an interior point of K. We say the function f. K -*  X  is hyperbolic continuous at P 

whenever

( 3 ) - O a s e - *  Pi

or, in other words, for each e > 0 there exists a 6(e) > 0 such that 

\mf ([P-,Q\)\ < e provided \P ~Q \  < 6(e).

Likewise, the considered function is called hyperbolic continuous over a subset of K  when 

it is hyperbolic continuous at each point of that subset.

, The relationships between this notion and the standard continuity one are precised in 

PROPOSITION 4. The following are valid:

A) I f  the Junction f  K  —* X  is continuous at the point P E. int(A) then it is 

hyperbolic continuous at this point.

B) Suppose the fonction f. K -* X  is hyperbolic continuous at P E  int(A) Then, 

a continuous at P Junction g  = gP: K -*  X  and a hyperbolic constant h = hP. 

K -* X  may be found so that J  be represented as the sum g+h.

Proof The first part is evident. For the second one note that the hyperbolic continuity 

o f /a t  P = (l'o.Jo) may be also written as

10



HYPERBOLIC MEAN VALUE THEOREMS

f ( t 0,s0) ~ f ( t 0,s) + / ( / ,  s) — 0, as f — f0> s — S0.

Denote in this case

g(t>s) - f ( t , s )  - f t t 0,s) - f ( t , s 0), (t,s) G K.

HUs) - f ( t 0,s) + f ( t , s 0), (t ,s ) e K.

That g,h satisfy the above requirements is clear. Hence the conclusion. ■

Remark. This result does not admit, in general, a global counterpart. In other words, 

i f /  K -* X  is hyperbolic continuous over a part H  of K  then, a representation like/ =  g+A 

where g . K - * X  is continuous over H and A: K  -* X  is a hyperbolic constant (over K) is not 

obtainable, in general. For an example in this direction we refer to Nicolescu [12, ch.19, §2].

3. Main results (inequality form). Let the notations above be maintained. Letting I,J 

be real intervals, for each rectangle A = [a, A] x [c,d\ in K  = /  x J, denote 

diam(A) = max (b-a, d-c) (the diameter of A).

This notion is related to the normed structure of the plane (given by the maximum norm). Let 

also (x,| I), a normed space and f  \ K -* X, a mapping. As a consequence of the 

developments above, the first main result of the present paper is

THEOREM 1. Let Abe a (standard) rectangle in K. Then, for each e > 0, there is a 

sub-rectangle A, o f A with

d iam (A ,)< e , S; ( A ) s S ^ ) .  (3.1)

Proof Construct a (normal) division of A by

a  -  * ,< * ,< . . .< /_ ,< / .  -  b, c -  s0< < *„ .,< *„  -  d

max(/M -  r(, Sj^ -  Sj) < e , 0 ac i * n - 1, 0 « j  * m -1.

with
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Here, n,m 2 3 are positive integers. Precisely, if we put

x [ ţ . ţ j »  0 si s n-1, 0 sjs m- 1,

the normal division in question is {A^}. In addition, we have the supplementary property

diam(Atf) < «» for all possible (ij).

It is dear, via Proposition 2, that

where, by convention,

\

«,(A) -
i j

»»(A) ’
0 s i s  » - l ,  0 s j s  m - \ .

Therefore, by the triangle inequality,

s a 4 ) * E y / vij
The second of this relation is a convex combination of {*Sy(A/y)}. Hence The conclusion. ■

Now, by simply adding to this the remark in Section 2 concerning the alternative proof 

of Proposition 2, one gets

COROLLARY 2. Let A be a rectangle in K and {Ar} be a division o f A. Then, for 

each e > 0, there exists an index r = r(e) and a sub-rectangle A. o f Ar so that (3.1) be valid.

Note at this moment that no property is required for the function /  to get the 

conclusion in the statement. Nevertheless, the obtained assertion is not very sharp because the 

possibility that fr ( A#) should have a nonempty intersection with fr{A) cannot be avoided in 

general. It is natural to ask of whether is this removable. The answer is affirmative (via 

Proposition 3). To state it, we need a new convention. Let A be a rectangle in K. Take eight 

points systems {Eu ..., E%} on the boundary of A, distincts from the vertices of A, according 

to the condition:

there exists a sub-rectangle A; , interior to A such that {£j, .., E%) appears as the
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projection over fr{A) of the vertices of A'. (3.2)

Such systems will be termed admissible in what follows. Now, let again (A'J |)  be a normed 

space and f . K  -* X u  mapping. As a completion of Theorem 1, the second main result of this 

paper is

THEOREM 2. Suppose that f  satisfies (H.1) plus

(H.4) /  is normally continuous over at least one admissible eight points

system ft ifi ) .

Then, jbr each e > 0, there is a sub-rectangle A. interior to A, with the property (3.1).

Proof. Let the ambient rectangle A be represented as [ABCD]. Take also an admissible 

eight points system {£,,..., £,} in fr (A) (given by (H.4)). So, there exists a sub-rectangle Aq 

= [MNPQ] interior to A, such that {£,, ..., Et) appears as the projection oî V  = {M,N,P,Q} 

over /r(A ). This, e.g., may be understood as

MQ n ( ^ ) U  CD) -  {£ ,,£ ,} ; NP fl (AB U CD) -  {E2,E6} 

MN  n  (AD U BC) -  {£„ EL,) ; PQ H {AD U BC) -  £,}.

Now, the admissible system {£,,.... £,} generates a normal division (A,,,..., A,} of A. (Here, 

Ao is the above sub-rectangle and, e.g., A, = [AEfiEELj), A2 = [EtE ^M \, etc.) This gives at 

once

where, by convention,

So, by the triangle inequality,

^ ( A ) - E f t W1-0

m(A.)
H, -------- L , 0 * /  i  8.
' « ( A ) ’

tm0
As an immediate consequence of this,

(3 3)
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S / A) s  max SA A /  (3.4)
1 o«/*t J

We have two cases to discuss.

a) Relation (3.4) is holding with equality. Then, again combining with (3.3),

S /A )  -  £  ^ S /A ,),
i m0

wherefrom

Ê ̂ ( A )  - - o.
/-0

But, n„, ..., m are strictly positive. Therefore

S /A )  -  S /A ,), 0 s i s 8 ;  

and from this, conclusion is clear.

b) Relation (3.4) is holding strictly (with < in place of s). If one bn-'pens that 

S / A ) < S / A0), then we are done (by applying Theorem 1 to the same function f  and the 

rectangle A,,). Otherwise,

S / A )  < S/A.) ,  for some / e {1, ..., 8}.

By (H.4) plus Proposition 3, we must have that for each r| > 0 (small enough) there exists 

a sub-rectangle Ajn> of A,, interior to A, with

s / ^ )  * (i - n ) S / A t).

Choose t] > 0 in such a way that (1 -  7])Sf ( \ )  st Sf (A). (This is possible, by the 

strict inequality above.) Combining these, yields

S /A )  s  S / A«);

and this, again with Theorem 1 gives conclusion in the statement.

Now, a) + b) are the only possible situations in this discussion. Hence the result. M 

As a direct consequence of this, we have

COROLLARY 3. Let the rectangle A in K and the function f . K - * X b e  such that 

14
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conditions (H.l) + (H.3) are accepted. Then, conclusion o f Theorem 2 is retainable.

In particular, a sufficient condition for (H.l) + (H.3) is (H .3)'. A natural question 

appearing in this context is that of determining to what extent are these statements valid when 

(H.3 y is to be substituted by its weaker counterpart

(H.3)* / is hyperbolic continuous over fr (A ).

To give a partial answer, we note that, by Proposition 4, one has at each point P in fr{A), 

the representation /  = gP + hP where gP\ K -+ X  is continuous at P and hP\ K  -* X  is a 

hyperbolic constant. Hence the functions in this representation are depending on the points 

in /r(A). But, if this dependence would be removed (i.e., the underlying functions remain 

unchanged when P describes /r(A )) it follows by Proposition 1 that, in fact, (H .3 / is 

necessarily fulfilled under (H.3)*; and so, conclusion of Theorem 2 is retainable, in view of 

Corollary 3. Summing up, hyperbolic continuity conditions (over fr{A) or, even, the all of 

A) imposed upon / a r e  - generally - insufficient for the truth of such results. This, in 

particular, applied to the statement of Lemma 1 in Nicolescu [10], shows we must delete the 

word "hyperbolic" (as a weaker form of continuity for f)  to retain its conclusion. But then, 

the result in question reduced to Corollary 3 above.

Remark. From a methodological viewpoint, the developments above may be viewed 

as a bi-dimensional counterpart of the contributions in this area due to Bantaş and Turinici 

[4]; see also Aziz and Diaz [1].

Now, it would be of interest to determine of whether or not is (H.4) removable; or, 

in other words, to what extent can we diminish the cardinality of an admissible system (of 

points in fr{A)). The answer is affirmative: it is based on a few remarks about the associated 

sub-rectangles in the division of A. Let {Ex > E%) be an admissible eight points system in/r(A)
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generated by a sub-rectangle A' -  \MNPQ\ of A (and interior to A). We associate to each 

vertex of A' its closest projections over fr{A ). This generates a decomposition of our system 

into four groups of such projections. For example, under the notations encountered in the 

proof of Theorem 2, these groups may be depicted as

U, -  {£ „ £ ,} , U2 -  {E2,E3), U3 « {E4,E6}, Ut -  

Now, let us call a four points system {G,,Gj,G3,G4} in {£,, ..., E^}, admissible provided

G, E  Ur  1 s  i s  4.

There are24= 16 such admissible four points systems generated by an admissible eight points 

system. However, for symmetry reasons only 4 systems from these are essential. For example, 

taking AB as a basis, the systems in question are

{E,,E1,EA>Ei), {E7,E3,E„E6}, {£7,£ 3,£ 4,£,}

Now, given any admissible four points system G = {G,,G2,G3,G4}, there exists a division

A ■A0 U A 1UA î UA3 UA4

of the rectangle A, where Ag is the above one and (for 1 s  / s  4) the vertices of the sub

rectangle A, lyung in fr{A) and distinct from those of A are necessarily in G. (For example, 

to verify this for G = { E j ^ ^ J E ^ ,  it will suffice putting

A, -  [AEJŒÙ, Aj -  [E jB E f\, A, -  [EtCE,Q], \  -  [ E ^ D ] ,  

the remaining situations are treatable in a similar way.) As a direct consequence, the argument 

used in Theorem 2 is also applicable to this larger setting. We thus proved 

COROLLARY 4. Suppose that f  satisfies conditions (H.1) plus 

(H .4 / /  is normally continuous over at least one admissible four

points system o f fr (A).

Then, for each e > 0, there is a sub-rectangle A, interior to A, with the property (3 1).

16
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Concerning the further reduction of this number» call the two points system {E^E^} 

of/r(A ) (distinct from the vertices of A), admissible, when EltE2 are an opposite segments 

of fr (A) and the normals to Ex and E  ̂ are identical (e g., Ex E  ABt E  ̂ E  CD and Exf ^  is 

parallel to AD or BC). Suppose now (H.4y is to be replaced by

(H.4)M / is normally continuous over an admissible two points system o f fr(A ).

Let Aj and A2 be the division of A generated by EXE  ̂ (in the usual way) and assume 

(H.5) Sf (A) < ^(A ,), for some i E  {1,2}.

By Proposition 3, there must be a sub-rectangle of A„ interior to A, with»S/ (A) < Sf (A' ); 

this, plus Theorem 1 give us immediately conclusion of Theorem 2. Therefore, condition 

(H.4) - or its variants - has a relative character (from a cardinality viewpoint). This forces us 

to ask of whether or not is this condition effective in such statements. We conjecture that the 

answer is negative.

4. The real case. In the following, the choice X  = R will be considered, from an 

equality perspective. Precisely, let /, J be real intervals and put K = /  x J. L e t /  K R be 

a function and A, be a (standard) rectangle in AT. As a counterpart of Theorem 2, the third 

main result of the paper is

THEOREM 3. Suppose that 

(H.6) / is continuous over A.

Then, for each c > 0, there is a sub-rectangle A, interior to A, with the properties

diam(A#) < e , Rf (A) -  Rf (A.). (4.1)

Proof Let us construct an equi-distant division of A by

°  m t0 < tl < ~ < fn-l K (n m b ’ p “ " '/ < *> °  * '  * n~l

17



Gh. BANTAŞ, M. TURIN1CI

c " 5o < *i < -  < sm-i < s* ’  d > °  " ’  Sj< « , 0 s ;  s  m-\ .

(Here, n,m * 3 are fixed positive integers.) Denote for simplicity

A(/,s) “ [M+p] x ts ,s +o], a * t z  tn_yy c as s as sm_y 

Of course, A(/,, Sj) is, for 0 * / as n-1, 0 as / a; m-1, nothing but A,-, alluded to in Theorem 1. 

Denote also

<KM) " Æ/ACM», as(sl,.,,csss
It is clear that

* ,(A> - E  <4 2 >
i j

where (X,̂ ) are again as in Theorem 1. Two situations are now open before us.

Case 1. The set { (̂/,, j ); 0 as / as /i-l, 0 as j  * m -1} consists of e ctly one 

element. As a consequence,

Rf (A) * Rf (A(/lf j,))

and conclusion is clear (because A(/j, Jj) is interior to A and its diameter is inferior to e).

Case 2. The set {^(/p$ ); 0 as / as n -1, 0 * j  * m -1} has at least two distinct 

elements. Hence

min {<}> ( t„s .)} < max {$ (t., s )}. (4.3)
i j  U

On the other hand, by convexity arguments,

min {<|> (/,,«,)} s  Rf (A) s  max {$ (f,,*,)}. (4 4)
i j  i J

Suppose one of these relations holds with equality; e.q., the second. We have, by (4.2)

5  ̂ \ j (R/(A)  “ 4>(̂ /»*s/)) ■ 0
i j

As 0 as i * n - 1, 0 £ j  * m - 1} are stricly positive,

Rf (A) « ♦(/,,$,), 0 a: / as w-1, 0 a: y a; m-1, 

absurd by (4.3). Hence, both inequalities in (4.4) are strict. Suppose
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min {+(rf,5 )}  -  ♦ (/ ,* ), max ,)} -  ♦ (*„.*.)
ij ij

for some D enote for sim plic ity

A' ■ [a, x [c, sm_J, and let x = x(x), y  = yif), 0 ^ x as 1 be a continuous path luing in A' 

with

(i) (*(X),.KT)) €E int(A ') C int(A), 0 < x < 1

(ii) (*(0),.y(0)) -  ( ^ ,^ ) ,  (x (l),> (l))  -  (tutsv).

The composed function (from [0,1] to R)

ty(x) -  ♦(x(x)f<y(x)), O s x s  1

is continuous, by (H.6); and, in view of the assumptions we just made,

KO) < Rf (A) < K l) .

Hence, by the Cauchy intersection theorem, there must be some point x0 in ]0,1[, with 

i|)(x0) « Rf (A); or in other words,

Rf (A) -  ^ (A (x(x0),^(x0))).

It is now clear that Aa * A(x(x0) ,X \ ) )  has all the properties we need. This ends the 

argument. ■

As an immediate application, the following "weak” counterpart of Theorem 2 is 

available. Let (X,\ |)  be a normed space and f  K-> X , bl mapping. Let also A be a rectangle 

in K.

COROLLARY 5. Suppose that

(H.6)* /  is weakly continuous over A.

Then, for each e > 0, there is a sub-rectangle A. interior to A, such that (3.1) be fulfilled 

Proof By the Hahn-Banach theorem, we may find a linear continuous functional x* 

over X\ with
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1**1 "  1 ,* * (* ,(A ))  -S ,(A ).

The function g: K -+  R given by

g(t,s)  - x \ f ( t , s ) ) ,  (t,s) e  K

fulfils, by (H.6)*, conditions of Theorem 3. So, for each e > 0, there exists a sub-rectangle 

A, interior to A, with

diam(A.) < e , Rg(A) -  Rg(A,).

But, evidently,

R,(A) -  X \R /A)) -  Sf (A);

and, moreover,

' * (A .)  -  |x*(^(A .))| S

Combining these facts yields the desired conclusion.!

Remark. As already precised in Section 2, the continuity condition (H.6) is relative in 

nature. Because, as results from Proposition 1, conclusion of the above theorem is retainable 

whenever (H.6) is to be admitted for some function f-h  where A: K  -* R is a hyperbolic 

constant (which, in principle may be discontinuous over A).

Remark. These results are methodologically comparable with the statements in this 

direction due to Nicolescu [11]. And from a dimensional viewpoint, these may be deemed as 

direct extensions of the ones obtained in Bantaş and Turinici [4]; see also Aziz and Diaz 

[2,3]. The idea of the argument goes back to Bôgel [6] and, respectively, Pompeiu [13,14]. 

Further aspects of the problem may be found in the survey paper by Nashed [9].
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