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Inner amenable hypergroups, invariant
projections and Hahn-Banach extension
theorem related to hypergroups
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Abstract. Let K be a hypergroup with a Haar measure. In the present paper
we initiate the study of inner amenable hypergroups extending amenable hy-
pergroups and inner amenable locally compact groups. We also provide charac-
terizations of amenable hypergroups by hypergroups having the Hahn-Banach
extension or monotone projection property. Finally we focus on weak*-invariant
complemented subspaces of L∞(K).
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1. Introduction

The classified theory of topological hypergroups have been well established in
the 1970’s by the works of Dunkl [6], Jewett [12] and Spector [29] independently. The
history then observed a good interest in the study of this object in diverse areas of
mathematics such as compact quantum hypergroups [2] weighted hypergroups [8, 9],
amenable [13, 15, 31, 32] and commutative hypergroups [14, 24, 25]. A complete
history of hypergroups can be found in [26].

Inner amenable locally compact groups G are ones possessing a mean m on
L∞(G) such that m(RgLg−1f) = m(f), for all f ∈ L∞(G) and g ∈ G. This concept
was introduced by Effros in 1975 for discrete groups and was studied by several authors
[3, 4, 7, 17, 19, 21, 22]. It has been shown by Losert and Rindler that the existence of
an inner invariant mean on L∞(G) is equivalent to the existence of an asymptotically
central net in L1(G) which is in the case of groups equivalent to the existence of a
quasi central net in L1(G).
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In section 3 we define the notion of inner amenable hypergroups extending
amenable hypergroups and inner amenable locally compact groups. We say that a
hypergroup K is inner amenable and m is an inner invariant mean if m is a mean on
L∞(K) and m(Lgf) = m(Rgf) for all f ∈ L∞(K) and all g ∈ K. An inner invariant
mean m on a discrete hypergroup K is nontrivial if m(f) 6= f(e) for f ∈ l∞(K). In the
process of constructing a discrete hypergroup with no nontrivial inner invariant mean
we also define the concept of strong ergodicity of an action of a locally compact group
on a hypergroup. Then we prove a relation between nontrivial inner invariant means
on bounded functions of the semidirect product K oτ G of a discrete hypergroup K
and a discrete group G and strong ergodicity of the action τ . If K is commutative
and τ is not strongly ergodic, then l∞(Koτ |S S) possesses a nontrivial inner invariant
mean for each subgroup S of G, however, if τ is strongly ergodic and l∞(G) has no
nontrivial inner invariant mean, then l∞(K oτ G) has no nontrivial inner invariant
mean (Theorem 3.5).

Then we prove that inner amenability is an asymptotic property; there is a
positive norm one net {φα} in L1(K) such that ||Lgφα − ∆(g)Rgφα||1 → 0, for all
g ∈ K if and only if K is inner amenable (Lemma 3.2), while the existence of a positive

norm one net {φα} in L2(K) such that ||Lgφα − ∆
1
2 (g)Rgφα||2 → 0, for all g ∈ K

only implies the inner amenability of K (Lemma 3.6) and implies the existence of a

state m on B(L2(K)) such that m(Lg) = m(∆
1
2 (g)Rg), for all g ∈ K (Theorem 3.8).

Furthermore, in Corollary 3.14 we characterize inner amenability of a hypergroup K
in terms of compact operators; K is inner amenable if and only if there is a non-zero
positive compact operator T in B(L∞(K)) such that TLg = TRg, for all g ∈ K.

Classical Hahn-Banach extension theorem and monotone extension property are
well known and are widely used in several areas of mathematics. As one deals with
(positive normalized) anti-actions of a semigroup on a real (partially ordered) topo-
logical vector space (with a topological vector unit), it is also interesting to know the
condition under which the extension of an invariant (monotonic) linear functional is
also invariant (and monotonic). In 1974 Lau characterized left amenable semigroups
with these properties ([16], Theorems 1 and 2).

In section 4 we shall be concerned about hypergroup version of Hahn-Banach
extension and monotone extension properties and we prove in Theorem 4.1 that
RUC(K) has a right invariant mean if and only if whenever {Tg ∈ B(E) | g ∈ K} is a
separately continuous representation of K on a Banach space E and F is a closed TK-
invariant subspace of E. If p is a continuous seminorm on E such that p(Tgx) ≤ p(x)
for all x ∈ E and g ∈ K and Φ is a continuous TK-invariant linear functional on F
such that |Φ(x)| ≤ p(x), then there is a continuous TK-invariant linear functional Φ̃

on E extending Φ such that |Φ̃(x)| ≤ p(x), for all x ∈ E, if and only if for any positive
normalized separately continuous linear representation T of K on a partially ordered
real Banach space E with a topological order unit 1, if F is a closed T -invariant
subspace of E containing 1, and Φ is a T -invariant monotonic linear functional on
F , then there exists a T -invariant monotonic linear functional Φ̃ on E extending Φ.

The three statements above are also equivalent to an algebraic property: for any
positive normalized separately continuous linear representation T of K on a partially
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ordered real Banach space E with a topological order unit 1, E contains a maximal
proper T -invariant ideal. As an application of these important geometric properties
we provide a new proof of the known result; if K is a commutative hypergroup, then
UC(K) has an invariant mean (Corollary 4.4).

Let X be a weak*-closed left translation invariant subspace of L∞(K). The con-
centration of section 5 is mainly on weak*-weak*-continuous projection from L∞(K)
onto X commuting with left translations. It turns out that similar to the locally com-
pact groups ([18], Lemma 5.2), if X is an invariant complemented subspace of L∞(K),
then there is a weak*-weak*-continuous projection from L∞(K) onto X commuting
with left translations if and only if X ∩ C0(K) is weak∗-dense in X (Theorem 5.1).
This theorem has two major consequences; if K is compact, then X is invariantly
complemented in L∞(K) if and only if there is a weak*-weak*-continuous projection
from L∞(K) onto X commuting with left translations (Corollary 5.2) and if K is com-
mutative with connected dual, then there is no non-trivial weak*-weak*-continuous
projections on L∞(K) commuting with left translations (Corollary 5.6). Furthermore,
we also characterize compact hypergroups; K is compact if and only if K is amenable
and for every weak*-closed left translation invariant, invariant complemented sub-
space X of L∞(K), there exists a weak*-weak*-continuous projection from L∞(K)
onto X commuting with left translations (Corollary 5.4).

Finally, in section 6 we provide some remarks and related open problems.

2. Preliminaries and some notations

Throughout this manuscript, K denotes a hypergroup with a left Haar measure
λ. For basic notations we refer to [12, 1]. The involution on K is denoted by x 7→ x̌.
Let Lx and Ry denote the left and right translation operators for x, y ∈ K given
by Ryf(x) = Lxf(y) =

∫
f(u)dδx ∗ δy(u), for any Borel function f on K, if this

integral exists. Let φ ∗µ(g) =
∫
Rǩφ(g)dµ(k) and φ~µ(g) =

∫
∆(ǩ)Rǩφ(g)dµ(k), for

µ ∈M(K) and φ ∈ L1(K). Then (φ~µ)λ = φλ∗µ. We note that φ~µ is denoted by
φ ∗ µ in the group setting. A closed subhypergroup N of K is a Weil subhypergroup
if the mapping f 7→ TNf , where (TNf)(g ∗ N) =

∫
Rnf(g)dλN (n) and λN is a left

Haar measure on N is a well defined map from Cc(K) onto Cc(K/N) [11]. It is well
known that any subgroup and any compact subhypergroup is a Weil subhypergroup
([11], p 250). If N is a closed normal subhypergroup, then K/N is a hypergroup if the
convolution δg∗N ∗ δk∗N (f) =

∫
f(u ∗ N)dδg ∗ δk(u) (f ∈ Cc(K/N)) is independent

of the choice of the representatives g ∗N and k ∗N [33]. The locally compact space
K/N is a hypergroup if and only if N is a closed normal Weil subhypergroup of K
([33], Theorems 2.3 and 2.6). Let (K, ∗) and (J, .) be hypergroups. Then a continuous
mapping p : K → J is said to be a hypergroup homomorphism if δp(g).δp(k)ˇ =
p(δg ∗ δǩ), for all g, k ∈ K. The modular function ∆ is defined by λ ∗ δǧ = ∆(g)λ,
where λ is a left Haar measure on K and g ∈ K.

Let CB(K) denote the space of all bounded continuous complex-valued functions
on K and Cc(K) the space of all continuous bounded functions on K with compact
support. Let LUC(K) (RUC(K)) be the space of all bounded left (right) uniformly
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continuous functions on K, i.e. all f ∈ CB(K) such that the map g 7→ Lgf (g 7→
Rgf) from K into CB(K) is continuous when CB(K) has the norm topology. Then
LUC(K) (RUC(K)) is a norm closed, conjugate closed, translation invariant subspace
of CB(K) containing constant functions.

Let X be a closed translation invariant subspace of L∞(K) containing constants.
Then a left invariant mean on X is a positive norm one linear functional, which is
invariant under left translations and a hypergroup K is said to be amenable if there
is a left invariant mean on L∞(K). It is known that all compact and commuta-
tive hypergroups are amenable [28]. Furthermore, a closed left translation invariant
complemented subspace Y of L∞(K) is called invariant subspace, if there is a con-
tinuous projection P from L∞(K) onto Y commuting with left translations. If Y is
weak*-closed and P is weak*-weak*-continuous, then we say that Y is weak*-invariant
complemented subspace of L∞(K).

The representation T = {Tg | g ∈ K} is said to be a separately continuous
representation of K on a Banach space X if Tg : X → X, Te = I, ||Tg|| ≤ 1, for
each g ∈ K, the mapping (g, x) 7→ Tgx from K × X to X is separately continuous,
and Tg1Tg2x =

∫
Tuxdδg1 ∗ δg2(u), for x ∈ X and g1, g2 ∈ K. If T is a continuous

representation of K on X, then for g ∈ K, µ ∈ M(K), f ∈ X∗ and φ ∈ X define
f . g = Mgf by < f . g, φ >=< f, Tgφ > and f . µ = Mµf by < f . µ, φ >=

∫
<

f, Tgφ > dµ(g). Then f . µ ∈ X∗, f . δg = f . g and (f . µ) . ν = f . (µ ∗ ν), for
µ, ν ∈ M(K). Moreover, let < Ngm, f >=< m,Mgf >, < Nµm, f >=< m, f . µ >
and Nφ = Nφλ, for µ ∈ M(K), φ ∈ L1(K), m ∈ X∗∗, f ∈ X∗ and g ∈ K. Then
NµNν = Nµ∗ν and NφNµ = Nφ~µ, for each µ, ν ∈ M(K). In addition, ||Mg|| ≤ 1,
||Ng|| ≤ 1, ||Mµ|| ≤ ||µ|| and ||Nµ|| ≤ ||µ||, for all µ ∈M(K) and g ∈ K.

3. Inner amenable hypergroups

Let G be a locally compact group. A mean m on L∞(G) is called inner invariant
and G is called inner amenable if m(LgRg−1f) = m(f), for all g ∈ G and f ∈ L∞(G)
(see [7] for discrete case) which is equivalent to saying that L∗gm = R∗gm, for all g ∈ G.
However, this equivalence relation breaks down when one deals with hypergroups.

We say that a hypergroup K is inner amenable if there exists a mean m on
L∞(K) such that m(Rgf) = m(Lgf) for all g ∈ K and f ∈ L∞(K). Of course
amenable hypergroups are inner amenable since each invariant mean is also an inner
invariant mean. An inner invariant mean m on a non-trivial discrete hypergroup is
called non-trivial if m 6= δe, the point evaluation function on l∞(K). If this is the

case, then m1 = m−m({e})δe
1−m({e}) is an inner invariant mean on l∞(K) and m1({e}) = 0.

Any invariant mean on l∞(K) is a non-trivial inner invariant mean and hence any
non-trivial discrete amenable hypergroup possesses a non-trivial inner invariant mean.

Example 3.1. Let H be a nontrivial discrete amenable hypergroup and J be a discrete
non-amenable hypergroup. Then K = H×J is a non-amenable hypergroup and l∞(K)
has a non-trivial inner invariant mean.

Proof. Let H be a discrete nontrivial amenable hypergroup and J be a discrete non-
amenable hypergroup. Let K = H × J with the identity (e1, e2). If m is an invariant
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mean on l∞(H) and f ∈ l∞(K), then for each k ∈ J define a function fk ∈ l∞(H)
via fk(g) = f(g, k). Furthermore, define a mean m1 on l∞(K) by m1(f) = m(fe2).
Then m1(f) = m(fe2) 6= fe2(e1) = f(e1, e2). In addition, for (g1, g2) ∈ K and k ∈ H
we have

(L(g1,g2)f)e2(k) = L(g1,g2)f(k, e2)
=
∑

(u,v)∈K f(u, v)δ(g1,g2) ∗ δ(k,e2)(u, v)

=
∑
u∈H

∑
v∈J f(u, v)δg1

∗ δk(u)δg2
∗ δe2(v)

=
∑
u∈H fg2

(u)δg1
∗ δk(u)

= Lg1
fg2

(k).

Hence, (L(g1,g2)f)e2 = Lg1
fg2

. Similarly, (R(g1,g2)f)e2 = Rg1
fg2

. Thus,

m1(L(g1,g2)f) = m((L(g1,g2)f)e2)
= m(Lg1

fg2
)

= m(Rg1
fg2

)
= m((R(g1,g2)f)e2)
= m1(R(g1,g2)f).

�

The following result shows that similar to the locally compact groups ([22],
Proposition 1), inner amenability of a hypergroup is also an asymptotic property.

Lemma 3.2. The following are equivalent:

1. K is inner amenable.
2. There is a net {φα} in L1(K) with φα ≥ 0 and ||φα||1 = 1 such that

||Lgφα −∆(g)Rgφα||1 → 0,

for all g ∈ K.
3. There is a net {ψβ} in L1(K) with ψβ ≥ 0 such that

1

||ψβ ||
||Lgψβ −∆(g)Rgψβ ||1 → 0,

for all g ∈ K.

Proof. For 3 ⇒ 2 put φα = ψα
||ψα|| . We will prove the equivalence of 1 and 2. Let m

be a mean on L∞(K) such that m(Lgf) = m(Rgf), for f ∈ L∞(K) and g ∈ K.
Then there is a net of positive norm one elements {qγ} in L1(K) such that < Lgqγ −
∆(g)Rgqγ , f >→ 0, for each f ∈ L∞(K). Let T be a map from L1(K) into L1(K)K

defined by Tφ(g) = ∆(g)Rgφ − Lgφ, for f ∈ L∞(K), φ ∈ L1(K) and g ∈ K. Thus,

0 ∈ T (P1(K)), where P1(K) = {φ ∈ L1(K) | φ ≥ 0, ||φ|| = 1}. Therefore, there is a
net of positive norm one elements {φα} in L1(K) such that ||Lgφα−∆(g)Rgφα|| → 0.
Conversely, let m be any weak*-cluster point of {φα} in L∞(K)∗. Then m is a mean
on L∞(K) such that m(Rgf) = m(Lgf) for all g ∈ K and f ∈ L∞(K). �

Corollary 3.3. Let K be a discrete hypergroup. Then the following are equivalent:

1. There is an inner invariant mean m on l∞(K) such that m({e}) = 0.
2. There is a net {φα} in l1(K) with φα ≥ 0 and ||φα||1 = 1 such that φα(e) = 0

and that ||Lgφα −∆(g)Rgφα||1 → 0, for all g ∈ K.



200 Nazanin Tahmasebi

LetG be a locally compact group and let τ be a continuous group homomorphism
from G into the topological group Aut(K) of all hypergroup homomorphisms on K.
The semidirect product K oτ G of K and G is the locally compact space K × G
equipped with the product topology, the convolution δ(k1,g1) ∗δ(k2,g2) = δk1 ∗δτg1 (k2)⊗
δg1g2

and a natural embedding of the tensor product M(K)⊗M(G) into M(K ×G)
[34]. In this case, there is a natural action τ of G on Lp(K) (1 ≤ p ≤ ∞) defined by
τgf(k) = f(τgk) for f ∈ Lp(K), g ∈ G and k ∈ K. If G and K are discrete, then we
say that τ is strongly ergodic if the condition ||τgφα − φα||2 → 0, for some positive
norm one net {φα} in l2(K) and all g ∈ G implies that φα(e1) → 1, where e1 is
the identity of K. In addition, a mean m on l∞(K) is τ -invariant if m(τgf) = m(f),
for all g ∈ G and f ∈ l∞(K). The trivial τ -invariant mean on l∞(K) is given by
δe1(f) = f(e1), for f ∈ l∞(K) ( for the corresponding definitions in the countable
group setting see [4]).

The following three results are inspired by [4].

Lemma 3.4. Let G be a discrete group and let τ be a continuous group homomorphism
from G into the topological group Aut(K) of all hypergroup homomorphisms on a
discrete hypergroup K. Then there is a non-trivial τ -invariant mean m on l∞(K) if
and only if τ is not strongly ergodic.

Proof. Let m be a non-trivial τ -invariant mean on l∞(K). Without loss of generality
assume m(δe) = 0, where e is the identity of K. By a standard argument (see the
proof of Lemma 3.2 for example) find a positive norm one net {ψα} in l1(K) such

that ||τgψα−ψα|| → 0 for all g ∈ G and limα ψα(e) = 0. Then {φα = ψ
1
2
α} is a positive

norm one net in l2(K), limα φα(e) = 0 and for g ∈ G

||τgφα − φα||22 = ||τg(ψ
1
2
α )− ψ

1
2
α ||22 = ||(τgψα)

1
2 − ψ

1
2
α ||22 ≤ ||τgψα − ψα||1 → 0.

Therefore, τ is not strongly ergodic. Conversely, let {φα}α∈I be a positive norm
one net in l2(K) such that ||τgφα − φα||22 → 0 and that limα φα(e) 6= 1. Choose
α0 ∈ I such that φα(e) 6= 1 for all α ≥ α0 and put I1 = {α ∈ I | α ≥ α0}. Then

{ψα = φα−φα(e)δe
1−φα(e) }α∈I1 is a positive norm one net in l2(K) such that ||τgψα−ψα||22 → 0

and ψα(e) = 0 for all α ∈ I1. Let m be a weak*-cluster point of {ψ2
α}α∈I1 in l∞(K)∗

and by passing possibly to a subnet assume m(f) = lim < ψ2
α, f >. Then m is a

nontrivial τ -invariant mean on l∞(K). �

Theorem 3.5. Let KoτG be the semidirect product hypergroup of a discrete hypergroup
K and a discrete group G.

1. If K is commutative and τ is not strongly ergodic, then for each subgroup S of
G, l∞(K oτ |S S) possesses a non-trivial inner invariant mean.

2. If τ is strongly ergodic and l∞(G) has no non-trivial inner invariant mean, then
l∞(K oτ G) has no non-trivial inner invariant mean.

Proof. 1. Assume that there exists a subgroup S of G such that l∞(K oτ |S S)
has no non-trivial inner invariant mean. Let m be a mean on l∞(K) such that
m(τgf) = m(f), for all g ∈ S and f ∈ l∞(K). We will show that m is trivial. For
f ∈ l∞(K oτ |S S) and g ∈ S define a function fg ∈ l∞(K) by fg(k) = f(k, g),



Inner amenable hypergroups, invariant projections 201

(k ∈ K). Let M(f) = m(fe2), for f ∈ l∞(K oτ |S S). Then M is a mean on
l∞(K oτ |S S). For f ∈ l∞(K oτ |S S), (k1, g1) ∈ K oτ |S S and k ∈ K

(L(k1,g1)f)e2(k) = L(k1,g1)f(k, e2)
=
∑

(u,v) f(u, v)δ(k1,g1) ∗ δ(k,e2)(u, v)

=
∑
u

∑
v f(u, v)δk1

∗ δτg1k(u)δg1e2(v)
=
∑
u f(u, g1)δk1 ∗ δτg1k(u)

=
∑
u fg1

(u)δk1
∗ δτg1k(u)

= Lk1
fg1

(τg1
k)

= τg1
(Lk1

fg1
)(k).

Moreover,

(R(k1,g1)f)e2(k) = R(k1,g1)f(k, e2)
=
∑

(u,v) f(u, v)δ(k,e2) ∗ δ(k1,g1)(u, v)

=
∑
u

∑
v f(u, v)δk ∗ δτe2k1

(u)δe2g1
(v)

=
∑
fg1(u)δk ∗ δk1(u)

= Lk1
fg1

(k),

since K is commutative. Hence,

M(L(k1,g1)f) = m((L(k1,g1)f)e2)
= m(τg1

(Lk1
fg1

))
= m(Lk1

fg1
)

= m((R(k1,g1)f)e2)
= M(R(k1,g1)f).

Therefore, M is inner invariant. Then M is trivial, i.e, M(f) = f(e1, e2). For f ∈
l∞(K) let f1(k, g) = f(k) if g = e2 and zero otherwise, ((k, g) ∈ Koτ |S S). Then
(f1)e2(k) = f1(k, e2) = f(k). Thus, f(e1) = f1(e1, e2) = M(f1) = m((f1)e2) =
m(f) which means that m is trivial. Consequently, τ is strongly ergodic by
Lemma 3.4.

2. Suppose m is a non-trivial inner invariant mean on l∞(K oτ G) and assume
without loss of generality that m(δ(e1,e2)) = 0, where (e1, e2) is the identity
of K oτ G. Then m(R(e1,g−1)L(e1,g)h) = m(h), for all h ∈ l∞(K oτ G) and
(e1, g) ∈ Koτ G. For f ∈ l∞(K) let f1(k, g) = f(k) if g = e2 and zero otherwise,
((k, g) ∈ K oτ G). Then f1 ∈ l∞(K oτ G). We will show that m(χKoτe2) = 0.
If not, then m1 with

m1(f) =
m(f1)

m(χKoτe2)
, (f ∈ l∞(K))

is a mean on l∞(K) and m1(δe1) = 0. For (k1, g1), (e1, g) ∈ K oτ G and f ∈
l∞(K)

R(e1,g)(τgf)1(k1, g1) =
∑

(u,v)(τgf)1(u, v)δ(k1,g1) ∗ δ(e1,g)(u, v)

=
∑
u

∑
v(τgf)1(u, v)δk1

∗ δe1(u)δg1g(v)
= (τgf)1(k1, g1g)
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Hence,

R(e1,g)(τgf)1(k1, g1) =

{
τgf(k1) = f(τg(k1)) if g1g = e2,
0 if g1g 6= e2.

(1)

In addition,

L(e1,g)f1(k1, g1) =
∑

(u,v) f1(u, v)δ(e1,g) ∗ δ(k1,g1)(u, v)

=
∑
u

∑
v f1(u, v)δe1 ∗ δτg(k1)(u)dδgg1

(v)
= f1(τg(k1), gg1)

Thus,

L(e1,g)(f)1(k1, g1) =

{
f(τg(k1)) if gg1 = e2,
0 if gg1 6= e2.

(2)

Therefore, R(e1,g)(τgf)1 = L(e1,g)f1. In other words

(τgf)1 = R(e1,g−1)L(e1,g)f1.

Now observe that

m1(τgf) =
m((τgf)1)
m(χKoτ e2 )

=
m(R(e1,g

−1)L(e1,g)f1)

m(χKoτ e2 )

= m(f1)
m(χKoτ e2 )

= m(f).

A contradiction with the strong ergodicity of τ (Lemma 3.4). Consequently,
m(χKoτe2) = 0. For a subset C of G let m2(χC) = m(χKoτC) and let m3 be
an extension of m2 to a mean on l∞(G). Then m3 is a mean on l∞(G) and
m3(δe2) = m(χKoτe2) = 0. Furthermore, m3 is also inner invariant since m3 is
an extension of m2 and

(K × gCg−1) = (e1, g)(K × C)(e1, g
−1)

for each g ∈ G and each subset C of G.
�

Lemma 3.6. The following conditions hold:

1. If there is a net {φα} in L2(K) with φα ≥ 0 and ||φα||2 = 1 such that ||Lgφα −
∆

1
2 (g)Rgφα||2 → 0, for all g ∈ K, then K is inner amenable.

2. If K is unimodular and there is a net {Vα} of Borel subsets of K with 0 <

λ(Vα) <∞ such that ||LgχVαλ(Vα) −
RgχVα
λ(Vα) ||1 → 0 for all g ∈ K, then there is a net

{ψα} in L2(K) with ψα ≥ 0 and ||ψα||2 = 1 such that ||Lgψα − Rgψα||2 → 0,
for all g ∈ K.

Proof. (1): For each α put ψα = φ2
α. Then for g, k ∈ K∫ ∫

(φα(u)−∆
1
2 (g)φα(v))2dδg ∗ δk(u)dδk ∗ δg(v)

= Lgφ
2
α(k) + ∆(g)Rgφ

2
α(k)− 2∆

1
2 (g)Lgφα(k)Rgφα(k)

= (Lgφα(k)−∆
1
2 (g)Rgφα(k))2 + Lgφ

2
α(k)

+∆(g)Rgφ
2
α(k)− (Lgφα)2(k)−∆(g)(Rgφα)2(k)
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Hence,

−[
∫ ∫ ∫

(φα(u)−∆
1
2 (g)φα(v))2dδg ∗ δk(u)dδk ∗ δg(v)dλ(k)]

= −[
∫

(Lgφα(k)−∆
1
2 (g)Rgφα(k))2dλ(k)

+
∫
Lgφ

2
α(k)dλ(k) +

∫
∆(g)Rgφ

2
α(k)dλ(k)

−
∫

(Lgφα)2(k)dλ(k)−
∫

∆(g)(Rgφα)2(k)dλ(k)]

≤ −||Lgφα(k)−∆
1
2 (g)Rgφα(k)||22 − ||φα||22

−||φα||22 + ||φα||22 + ||φα||22 → 0,

because ∫
∆(g)(Rgφα)2(k)dλ(k) =< ∆(g)Rgφα, Rgφα >

=< φα, RǧRgφα >
≤ ||φα||22

and each φα is positive. In addition,

∆
1
2 (g)Lgφα(k)Rgφα(k)−∆(g)Rgφ

2
α(k)

≤ ∆
1
2 (g)Lgφα(k)Rgφα(k)−∆(g)(Rgφα)2(k)

= [Lgφα(k)−∆
1
2 (g)Rgφα(k)] ∆

1
2 (g)Rgφα(k),

by Holder’s inequality. Thus,∫
|∆ 1

2 (g)Lgφα(k)Rgφα(k)−∆(g)Rgφ
2
α(k)|dλ(k)

≤ ∆
1
2 (g)||Rgφα||2 ||Lgφα(k)−∆

1
2 (g)Rgφα(k)||2 → 0.

Therefore,

||Lgψα −∆(g)Rgψα||1
=
∫
|Lgφ2

α(k)−∆(g)Rgφ
2
α(k)|dλ(k)

≤
∫
|
∫ ∫

(φα(u)−∆
1
2 (g)φα(v))2dδg ∗ δk(u)dδk ∗ δg(v)|dλ(k)

+
∫
|2∆

1
2 (g)Lgφα(k)Rgφα(k)− 2∆(g)Rgφ

2
α(k)|dλ(k)→ 0,

since, ∫ ∫
(φα(u)−∆

1
2 (g)φα(v))2dδg ∗ δk(u)dδk ∗ δg(v)

=
∫ ∫

[φ2
α(u) + ∆(g)φ2

α(v)− 2∆
1
2 (g)φα(u)φα(v)]dδg ∗ δk(u)dδk ∗ δg(v)

= Lgφ
2
α(k)−∆(g)Rgφ

2
α(k) + 2∆(g)Rgφ

2
α(k)− 2∆

1
2 (g)Rgφ

2
α(k)Lgφ

2
α(k).

By Lemma 3.2 then K is inner amenable. The rest follows by a similar argument as
in ([28], Theorem 4.3) if K is unimodular. �

Remark 3.7. Let K be a discrete hypergroup. If there is a positive norm one net {φα}
in l2(K) with φα(e)→ 0 such that ||Lgφα−∆

1
2 (g)Rgφα||2 → 0, for all g ∈ K, l∞(K)

has a non-trivial inner invariant mean.

Theorem 3.8. The following are equivalent:

1. There is a net {φα} in L2(K) with φα ≥ 0 and ||φα||2 = 1 such that

||Lgφα −∆
1
2 (g)Rgφα||2 → 0, for all g ∈ K.
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2. There is a net {φα} in L2(K) with φα ≥ 0 and ||φα||2 = 1 such that for each
g ∈ K

| ||Lgφα||22 −∆
1
2 (g)Lgφα ∗ Lǧφ̌α(e)| → 0

and

| ||∆ 1
2 (g)Rgφα||22 −∆

1
2 (g)Lgφα ∗ Lǧφ̌α(e)| → 0.

In this case K is inner amenable and there is a state m on B(L2(K)) such that

m(Lg) = m(∆
1
2 (g)Rg), for all g ∈ K, where Lg (Rg) is the left (right) translation

operator on L2(K).

Proof. If (1) holds, then for g ∈ K

| ||Lgφα||22 −∆
1
2 (g)Lgφα ∗ Lǧφ̌α(e) |

= | < Lgφα, Lgφα > − < Lgφα,∆
1
2 (g)Rgφα > |

= | < Lgφα, Lgφα −∆
1
2 (g)Rgφα > |

≤ ||Lgφα −∆
1
2 (g)Rgφα|| → 0.

Similarly, | ||∆ 1
2 (g)Rgφα||22 −∆

1
2 (g)Lgφα ∗ Lǧφ̌α(e) | → 0, for g ∈ K. Conversely, for

each g ∈ K we have

||Lgφα −∆
1
2 (g)Rgφα||22

=< Lgφα −∆
1
2 (g)Rgφα, Lgφα −∆

1
2 (g)Rgφα >

= ||Lgφα||22 + ||∆ 1
2 (g)Rgφα||22 − 2 < Lgφα,∆

1
2 (g)Rgφα >

= ||Lgφα||22 + ||∆ 1
2 (g)Rgφα||22 − 2∆

1
2 (g)Lgφα ∗ Lǧφ̌α(e)

≤ | ||Lgφα||22 −∆
1
2 (g)Lgφα ∗ Lǧφ̌α(e) |

+| ||∆ 1
2 (g)Rgφα||22 −∆

1
2 (g)Lgφα ∗ Lǧφ̌α(e) | → 0.

For each T ∈ B(L2(K)) let mαT =< Tφα, φα > and let m be a weak*-cluster
point of the net {mα} in B(L2(K))∗. Without loss of generality assume that mT =
limαmα(T ). Then m is a state on B(L2(K)) and for g ∈ K

|m(Lg)−m(∆
1
2 (g)Rg)|

= | limα < Lgφα, φα > − limα < ∆
1
2 (g)Rgφα, φα > |

= | limα < Lgφα −∆
1
2 (g)Rgφα, φα > |

≤ limα ||Lgφα −∆
1
2 (g)Rgφα|| = 0.

In addition, K is inner amenable by Lemma 3.6. �

It is known that the amenability of a locally compact group G can be charac-
terized by the existence of a state m on B(L2(K)) with m(Lg) = 1, for all g ∈ G
([3], Theorem 2). By a similar method as in the proof of Theorem 3.8 we have the
following:

Remark 3.9. If K satisfies Reiter’s condition P2, then there is a state m on B(L2(K))
such that m(Lg) = 1, for all g ∈ K.
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Let G be a locally compact group. Then G is an [IN ]-group if and only if G
possesses a compact neighborhood V of e with LgχV = RgχV , for all g ∈ G. However,
one may not expect this equivalence relation to hold in the hypergroup setting. A
hypergroup K is called [IN ]-hypergroup if there is a compact neighborhood V of
e such that g ∗ V = V ∗ g, for all g ∈ K. It is easy to see that each of compact or
commutative hypergroups are [IN ]-hypergroups and possess a compact neighborhood
V of e with LgχV = RgχV , for all g ∈ K. For a discrete hypergroup K the situation
is quite different: although K is an [IN ]-hypergroup, we have that Lgδe = Rgδe, for
all g ∈ K if and only if δg ∗ δǧ(e) = δǧ ∗ δg(e), for all g ∈ K.

Corollary 3.10. Let K be a hypergroup possessing a compact neighborhood V of e
with LgχV = RgχV , for all g ∈ K. Let QV be the operator on L2(K) given by
QV f =< f, χV > .χV for f ∈ L2(K). Then the following are equivalent:

1. There is a net {φα} in L2(K) with φα ≥ 0, < φα, χV >= 0 and ||φα||2 = 1 such
that

||Lgφα −∆
1
2 (g)Rgφα||2 → 0,

for all g ∈ K.
2. There is a net {φα} in L2(K) with φα ≥ 0, < φα, χV >= 0 and ||φα||2 = 1 such

that for g ∈ K

| ||Lgφα||22 −∆
1
2 (g)Lgφα ∗ Lǧφ̌α(e)| → 0,

and

||∆ 1
2 (g)Rgφα||22 −∆

1
2 (g)Lgφα ∗ Lǧφ̌α(e)| → 0.

In this case

a. There is an inner invariant mean m on L∞(K) with

m(χV ) = 0.

b. There is a state m on B(L2(K)) such that m(QV ) = 0 and

m(Lg) = m(∆
1
2 (g)Rg),

for all g ∈ K.
c. The operators id − QV and id + QV are not in the C∗-algebra generated by
{Lg −∆

1
2 (g)Rg | g ∈ K}.

Proof. We will show b ⇒ c, for all other parts we refer to the proof of Theorem 3.8.
Let

T =

n∑
i=1

λi(Lgi −∆
1
2 (gi)Rgi).

Then m(T ) = 0 and hence

||T − (id−QV )|| ≥ |m(T )−m(id−QV )| = 1.

Similarly, ||T − (id+QV )|| ≥ 1. Thus, id−QV and id+QV are not in the C∗-algebra

generated by {Lg −∆
1
2 (g)Rg | g ∈ K}. �
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Remark 3.11. Let K be a unimodular hypergroup possessing a compact neighborhood
V of e with LgχV = RgχV , for all g ∈ K and let 1 ≤ p <∞. Then there is a compact
operator T in B(Lp(K)) such that LgT = RgT , LǩTLg = RǩTRg and TLg = TRg,
for all g, k ∈ K.

Proof. Let Tf :=< χV , f > χV . Then for f ∈ Lp(K) and g, k ∈ K,

LǩTLgf =< χV , Lgf > LǩχV
=< LǧχV , f > LǩχV
=< RǧχV , f > RǩχV
=< χV , Rgf > RǩχV
= RǩTRgf.

Hence, LǩTLg = RǩTRg, for all g, k ∈ K. Similarly we can prove other parts. �

Example 3.12. 1. Let K = H ∨J be the hypergroup join of a compact group H and
a discrete commutative hypergroup J . Then there is a compact neighborhood V
of e with LgχV = RgχV , for all g ∈ K.

2. Let K = H ∨ J be the hypergroup join of a finite commutative hypergroup H
and a discrete group J . Then δg ∗ δǧ(e) = δǧ ∗ δg(e), for all g ∈ K and hence
Lgδe = Rgδe, for all g ∈ K. since

δǰ ∗ δj(e) =
∑
g∈H

1

δǧ ∗ δg(e)
δg = δj ∗ δǰ(e),

for j ∈ J .

Lau and Paterson in ([19], Theorem 2) proved that a locally compact group G is

inner amenable if and only if there exists a non-zero compact operator in A
′

∞, where

A
′

∞ = {T ∈ B(L∞(G)) | Lg−1RgT = TLg−1Rg, ∀g ∈ G}.
We note that

A
′

∞ = {T ∈ B(L∞(G)) | RgTRg−1 = LgTLg−1 , ∀g ∈ G}
which is not the case as we step beyond the groundwork of locally compact groups.
The following is an extension of ([19], Theorem 2):

Remark 3.13. The following conditions hold:

1. If K is inner amenable, then there is a compact operator T in B(L∞(K)) such
that T (h) = 1, for some h ∈ L∞(K),

LňTLg = Rm̌TRg, TLg = TRg,

for all g, n,m ∈ K and T (f) ≥ 0, for f ≥ 0.
2. If there is a non-zero operator T in B(L∞(K)) such that

TLg = TRg,

for all g ∈ K and T (f) ≥ 0, for f ≥ 0, then K is inner amenable and T (f) ≥ 0,
for f ≥ 0.

Proof. 1. If m is an inner invariant mean on L∞(K), then the operator T in
B(L∞(K)) defined by T (f) = m(f)1, for f ∈ L∞(K) is the desired operator.
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2. Let m be a mean on L∞(K). Then m ◦ T is an inner invariant positive linear
functional on L∞(K). Let f0 ∈ L∞(K) such that T (f0) > 0. Then f0 can be
decomposed into positive elements and if f ≥ 0, then T (f) ≤ ||f ||T (1). Hence,
m ◦ T (1) 6= 0 and m◦T

m◦T (1) is an inner invariant mean on L∞(K).

�

Corollary 3.14. K is inner amenable if and only if there is a non-zero compact operator
T in B(L∞(K)) such that TLg = TRg, for all g ∈ K and T (f) ≥ 0, for f ≥ 0.

Corollary 3.15. Let G be a locally compact group. Then G is inner amenable if and
only if there is a non-zero operator T in A

′

∞ such that TLg = TRg, for all g ∈ G and
T (f) ≥ 0, for f ≥ 0.

We say that K satisfies central Reiter’s condition P1, if there is a net {φα} in
L1(K) with φα ≥ 0 and ||φα||1 = 1 such that

||Lgφα −∆(g)Rgφα||1 → 0

uniformly on compact subsets of K. By Lemma 3.2 if K satisfies central Reiter’s
condition P1, then K is inner amenable. Sinclair ([27], page 47) in particular called a
net {φα} in L1(G) quasi central if ||µ ∗ φα − φα ∗ µ|| → 0, for all µ ∈M(G), where G
is a locally compact group. We say that the net {φα} in L1(K) is quasi central if

||µ ∗ φα − φα ~ µ|| → 0,

for all µ ∈M(K).
One note the distinction between the condition ||Lgφα −∆(g)Rgφα||1 → 0 uni-

formly on compacta and the (equivalent for groups, but not for hypergroups) condition
||φα−∆(g)LǧRgφα||1 → 0 uniformly on compacta. For the group case please see ([30],
Theorem 4.2).

Remark 3.16. If the net {φα} in L1(K) satisfies central Reiter’s condition P1, then

1. For given {ψi}ni=1 ⊆ L1(K) and ε > 0, there is an element φ ∈ L1(K) such that
||ψi ∗ φ− φ ∗ ψi|| < ε, for i = 1, 2, ..., n.

2. The net {φα} is a quasi central net in L1(K).

Proof. (1): Let ε > 0 be given and let Ci be compact subsets of K such that∫
K\Ci |ψi|(g)dλ(g) < ε. Let C =

⋃n
i=1 Ci and let α ∈ I be such that ||Lǧφα(k) −

∆(ǧ)Rǧφα(k)|| < ε, for all g ∈ C. Then

||ψi ∗ φα − φα ∗ ψi||1
=
∫
|
∫
ψi(g)Lǧφα(k)dλ(g)−

∫
ψi(g)∆(ǧ)Rǧφα(k)dλ(g)|dλ(k)

≤
∫
|ψi(g)|

∫
|Lǧφα(k)−∆(ǧ)Rǧφα(k)|dλ(k) dλ(g)

=
∫
K\C |ψi(g)|

∫
|Lǧφα(k)−∆(ǧ)Rǧφα(k)|dλ(k) dλ(g)

+
∫
C
|ψi(g)|

∫
|Lǧφα(k)−∆(ǧ)Rǧφα(k)|dλ(k) dλ(g)

< ε2 + ε Maxi=1,...,n||ψi||1

(2): Without loss of generality assume that µ ∈ M(K) has a compact support
C. Let ε > 0 be given and let α ∈ I be such that ||Lǧφα − ∆(ǧ)Rǧφα|| < ε, for all
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g ∈ C. Then
||µ ∗ φα − φα ~ µ||
=
∫
|
∫

(Lǧφα(k)−∆(ǧ)Rǧφα)dµ(g)|dλ(k)
≤
∫ ∫

C
|Lǧφα(k)−∆(ǧ)Rǧφα|dµ(g)dλ(k)

+
∫ ∫

K\C |Lǧφα(k)−∆(ǧ)Rǧφα|dµ(g)dλ(k)

≤ ε||µ||.
�

Losert and Rindler called a net {φα} in L1(G), G is a locally compact group,
asymptotically central if 1

||φα|| (∆(g)RgLg−1φα − φα)→ 0 weakly for all g ∈ G [21].

We say that the net {φα} in L1(K) is asymptotically central if

1

||φα||
(∆(g)RgLǧφα − φα)→ 0

weakly for all g ∈ K. In addition, we say that the net {φα} in L1(K) is hypergroup
asymptotically central if

1

||φα||
(∆(g)Rgφα − Lgφα)→ 0

weakly for all g ∈ K. The reason for our definition is that

Z(L1(K)) = {φ ∈ L1(K) | ∆(g)Rgφ = Lgφ, ∀g ∈ K},
where Z(L1(K)) is the algebraic center of the hypergroup algebra L1(K). Then it is
easy to see that ifK is discrete and unimodular or commutative, then any approximate
identity in L1(K) is hypergroup asymptotically central and hence L1(K) is Arens
semi-regular (see [10], page 45 for the definition).

Remark 3.17. If L1(K) has an asymptotically central bounded approximate identity,
then K is an inner amenable locally compact group.

Proof. Let {φα} be an asymptotically central bounded approximate identity for
L1(K) and m be a weak*-cluster point of {φα} in L∞(K)∗. Without loss of gen-
erality assume that φα’s are real-valued and limα < φα, f >=< m, f > for each
f ∈ L∞(K). Then m(LgRǧf) = m(f), for each f ∈ L∞(K) and g ∈ K. In addition,

m(φ ∗ f) = lim < φα, φ ∗ f >= lim < ∆̌φ̌ ∗ φα, f >=< ∆̌φ̌, f >= φ ∗ f(e),

for φ ∈ L1(K) and f ∈ L∞(K). Thus, m(f) = f(e), for each f ∈ C0(K) ([28], Lemma
2.2). Therefore,

δg ∗ δǧ(f) = Rǧf(g) = LgRǧf(e) = m(LgRǧf) = m(f) = δe(f),

for f ∈ C0(K). i.e. δg ∗ δǧ = δe, for all g ∈ K and hence G(K) = K. It follows then
by the proof of ([21], Theorem 2) that the locally compact group K is also inner
amenable. �

In 1991, Lau and Paterson characterized inner amenable locally compact groups
G in terms of a fixed point property of an action of G on a Banach space ([17],
Theorem 5.1). This characterization can be extended naturally to hypergroups and
we have:
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Remark 3.18. The following are equivalent:

1. K is inner amenable.
2. Whenever {Tg ∈ B(E) | g ∈ K} is a separately continuous representation of K

on a Banach space E as contractions, there is some

T ∈ {Nφ | φ ∈ L1(K), ||φ|| = 1, φ ≥ 0}
w∗.o.t

such that
NgT = TNg,

for all g ∈ K.

Remark 3.19. Let N be a closed normal Weil subhypergroup of K. If K is inner
amenable, then K/N is also inner amenable.

Proof. Define a linear isometry φ from L∞(K/N) to the subspace

{f ∈ L∞(K) | Rgf = Rkf, g ∈ k ∗N, k ∈ K}
of L∞(K) by φ(f) = f ◦ π, where π is the quotient map from K onto K/N . Then∫

|Lg(φf)(k)− φ(Lg∗Nf)(k)|dλ(k)
=
∫
|
∫
f(u ∗N)dδg ∗ δk(u)− (Lg∗Nf) ◦ π(k)|dλ(k)

=
∫
|
∫
f(u ∗N)dδg∗N ∗ δk∗N (u ∗N)− Lg∗Nf(k ∗N)|dλ(k)

= 0,

since N is a Weil subhypergroup. Thus, φ(Lg∗Nf) = Lg(φf) for f ∈ L∞(K/N) and
g ∈ K. Similarly, φ(Rg∗Nf) = Rg(φf) for f ∈ L∞(K/N) and g ∈ K. Let m be an
inner invariant mean on L∞(K) and define m1(f) = m(φf), f ∈ L∞(K/N). Then
m1 is a mean on L∞(K/N). In addition, for f ∈ L∞(K/N) and g ∈ K

m1(Lg∗Nf) = m(φ(Lg∗Nf))
= m(Lgφf)
= m(Rgφf)
= m(φ(Rg∗Nf))
= m1(Rg∗Nf).

�

4. Hahn-Banach extension and monotone extension properties

It is the purpose of this section to provide a hypergroup version of Hahn-Banach
extension property and monotone extension property by which amenable hypergroups
can be characterized.

Let E be a partially ordered Banach space over R. An element 1 ∈ E is called
a topological order unit if for each f ∈ E there exists λ > 0 such that −λ1 ≤ f ≤ λ1
and the set {f ∈ E | 1 ≤ f ≤ 1} is a neighbourhood of E and a proper subspace I
of E is said to be a proper ideal if [0, f ] ⊆ I, for each f ∈ E. Moreover, a separately
continuous linear representation T = {Tg | g ∈ K} of K on E is positive if Tgf ≥ 0
for all g ∈ K and f ≥ 0. T is normalized if Tg1 = 1 for all g ∈ K.

Theorem 4.1. The following are equivalent:
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1. RUC(K) has a right invariant mean.
2. Let {Tg ∈ B(E) | g ∈ K} be a separately continuous representation of K on

a Banach space E and let F be a closed TK-invariant subspace of E. Let p
be a continuous seminorm on E such that p(Tgx) ≤ p(x) for all x ∈ E and
g ∈ K and Φ be a continuous linear functional on F such that |Φ(x)| ≤ p(x)
and Φ(Tgx) = Φ(x) for g ∈ K and x ∈ F . Then there is a continuous linear

functional Φ̃ on E such that
(a) Φ̃|F ≡ Φ.

(b) |Φ̃(x)| ≤ p(x) for each x ∈ E.

(c) Φ̃(Tgx) = Φ̃(x) for g ∈ K and x ∈ E.
3. For any positive normalized separately continuous linear representation T of K

on a partially ordered real Banach space E with a topological order unit 1, if
F is a closed T -invariant subspace of E containing 1, and Φ is a T -invariant
monotonic linear functional on F , then there exists a T -invariant monotonic
linear functional Φ̃ on E extending Φ.

4. For any positive normalized separately continuous linear representation T of K
on a partially ordered real Banach space E with a topological order unit 1, E
contains a maximal proper T -invariant ideal.

Proof. 1 ⇒ 2: By Hahn-Banach extension theorem there is a continuous linear func-
tional Φ1 on E such that |Φ1(x)| ≤ p(x) for each x ∈ E and Φ1|F ≡ Φ. For each
f ∈ E define a continuous bounded function hΦ1,f on K via hΦ1,f (g) = Φ1(Tgf). Let
{gα} be a net in K converging to e. Then

||RgαhΦ1,f − hΦ1,f || = supg∈K |RgαhΦ1,f (g)− hΦ1,f (g)|
= supg∈K |

∫
Φ1(Tuf)dδg ∗ δgα(u)− Φ1(Tgf)|

= supg∈K |Φ1(TgTgαf) + Φ1(−Tgf)|
≤ supg∈K p(TgTgαf − Tgf)
≤ p(Tgαf − f)→ 0,

since Φ1 ∈ E∗. Hence, hΦ1,f ∈ RUC(K) ([28], Remark 2.3). Let m be a right invari-

ant mean on RUC(K) and let Φ̃(f) = m(hΦ1,f ), for f ∈ E. Then Φ̃|F ≡ Φ since

hΦ1,f (g) = Φ1(Tgf) = Φ(f), for f ∈ F . Furthermore, |Φ̃(f)| ≤ supg∈K |Φ1(Tgf)| ≤
p(f), for f ∈ E and

hΦ1,Tgf (k) = Φ1(TkTgf)
=
∫

Φ1(Tuf)dδk ∗ δg(u)
=
∫
hΦ1,f (u)dδk ∗ δg(u)

= RghΦ1,f (k).

Thus,

Φ̃(Tgf) = m(hΦ1,Tgf ) = m(RghΦ1,f ) = m(hΦ1,f ) = Φ̃(f).

2 ⇒ 1: Let E = RUC(K), F = C.1 and consider the continuous representation
{Rg | g ∈ K} of K on RUC(K). Define a seminorm p on E by p(f) = ||f ||. Then
p(Rgf) ≤ p(f), for f ∈ E and g ∈ K. In addition, δa is a left invariant mean on F
for a given a ∈ K with |δa(f)| ≤ p(f). Therefore, there is some m ∈ RUC(K)∗ such
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that m|F ≡ δa, m(f) ≤ ||f || and m(Rgf) = m(f), for f ∈ E and g ∈ K. Then m is a
right invariant mean on RUC(K) because m(1) = δa(1) = 1 = ||m||.

For all other parts we refer to ([16], Theorem 2) and a similar argument as
above. �

Let CBR(K) denote all bounded continuous real-valued functions on K and
UCR(K) (RUCR(K)) denote all functions in CBR(K) which are (right) uniformly
continuous. It is easy to see that UCR(K) and RUCR(K) are norm-closed translation
invariant subspace of CBR(K) containing constants. However, in contrast to the group
case, RUCR(K) need not be a Banach lattice in general. The following result is a
consequence of Theorem 4.1 and the proof of ([16], Theorem 1).

Remark 4.2. Let K be a hypergroup such that RUCR(K) is a Banach lattice. Then
the following are equivalent:

1. RUC(K) has a right invariant mean.
2. For any linear action T of K on a Banach space E, if U is a T -invariant open

convex subset of E containing a T -invariant element, and M is a T -invariant
subspace of E which does not meet U , then there exists a closed T -invariant
hyperplane H of E such that H contains M and H does not meet U .

3. For any contractive action T = {Tg ∈ B(E) | g ∈ K} of K on a Hausdorff
Banach space E, any two points in {f ∈ E | Tgf = f, ∀g ∈ K} can be separated
by a continuous T -invariant linear functional on E.

Example 4.3. 1. Let K be a hypergroup such that the maximal subgroup G(K) is
open. Then RUCR(K) is a Banach lattice.

2. Let K = H ∨J be the hypergroup join of a compact hypergroup H and a discrete
hypergroup J . Then RUCR(K) = CBR(K) is a Banach lattice.

Proof. To see 1, let f, h ∈ RUCR(K) and {gα} be a net in K converging to e. Then
gα ∈ G(K), for some α0 and all α ≥ α0 since G(K) is open. Thus, Rgα(f ∨ h) =
Rgαf ∨Rgαh for α ≥ α0. Therefore, the mapping

g 7→ (Rgf,Rgh) 7→ Rgf ∨Rgh
from K to CBR(K) is continuous at e and hence f ∨ h ∈ RUCR(K). �

Next we use Theorem 4.1 to prove that UC(K) has an invariant mean, for any
commutative hypergroup K.

Corollary 4.4. Let K be a commutative hypergroup. Then UC(K) has an invariant
mean.

Proof. Let T = {Tg ∈ B(E) | g ∈ K} be a separately continuous representation of
K on a real Banach space E and let F be a closed T -invariant subspace of E. Let p
be a continuous sublinear map on E such that p(Tgx) ≤ p(x) for all x ∈ E and g ∈ K
and φ be a continuous T -invariant linear functional on F such that φ(x) ≤ p(x) for
x ∈ F . Define a representation {Tµ ∈ B(E) | µ ∈M c

1 (K)} of M c
1 (K), the probability

measures with compact support on K, on E via

Tµx =

∫
Tgxdµ(g).
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Then Tµ∗ν = TµTν , for µ, ν ∈M c
1 (K). In addition,

p(Tµx) = p(

∫
Tgxdµ(g)) ≤

∫
p(Tgx)dµ(g) ≤ p(x).

Define a real valued function q on E via

q(x) = inf{ 1

m
p(Tµ1

x+ ...+ Tµmx)},

where the inf is taken over all finite collection of probability measures with compact
support {µ1, ..., µm} on K. Then q(x) ≤ p(x) for x ∈ E since for each m ∈ N,

1
mp(Tµ1x+ ...+ Tµmx) ≤ 1

m

[
p(Tµ1x) + ...+ p(Tµmx)

]
≤ p(x).

Moreover, q is sublinear. In fact for m ∈ N, α ∈ R+ and x ∈ E,

1
mp(Tµ1(αx) + ...+ Tµm(αx)) = 1

mαp(Tµ1x+ ...+ Tµmx).

Thus, q(αx) = αq(x) for α ∈ R+ and x ∈ E. To see that q(x + y) ≤ q(x) + q(y), let
x, y ∈ E and ε > 0 be given. Choose probability measures µ1, ..., µm, ν1, ..., νn on K
with compact support such that

1

m
p(Tµ1x+ ...+ Tµmx) ≤ q(x) + ε,

and
1

n
p(Tν1

x+ ...+ Tνnx) ≤ q(y) + ε.

Consider the set K = {νj ∗ µi | j = 1, ..., n, i = 1, ...,m}. Then

1
nmp

[∑n
j=1

∑m
i=1 Tνj∗µix

]
= 1

nmp
[∑n

j=1 Tνj (
∑m
i=1 Tµix)

]
≤ 1

nm

∑n
j=1 p

[
Tνj (

∑m
i=1 Tµix)

]
≤ 1

nm

∑n
j=1 p

[∑m
i=1 Tµix

]
= 1

mp
[∑m

i=1 Tµix
]

≤ q(x) + ε,

and similarly, 1
nmp

[∑n
j=1

∑m
i=1 Tνj∗µiy

]
≤ q(y) + ε. Hence,

1
nmp

[∑n
j=1

∑m
i=1 Tνj∗µi(x+ y)

]
= 1

nmp
[∑n

j=1

∑m
i=1 Tνj∗µix+

∑n
j=1

∑m
i=1 Tνj∗µiy

]
≤ 1

nmp
[∑n

j=1

∑m
i=1 Tνj∗µix

]
+ 1

nmp
[∑n

j=1

∑m
i=1 Tνj∗µiy

]
≤ q(x) + q(y) + 2ε.

Therefore,

q(x+ y) ≤ q(x) + q(y).

For µ ∈M c
1 (K), x ∈ E and m ∈ N,

1
mp(Tµ1Tµx+ ...+ TµmTµx)
= 1

mp(TµTµ1
x+ ...+ TµTµmx)

≤ 1
mp(Tµ1x+ ...+ Tµmx).
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Hence, q(Tµx) ≤ q(x). Furthermore, for each m ∈ N
1
mp(Tµ1

x+ ...+ Tµmx) ≤ 1
m [p(Tµ1

x) + ...+ p(Tµmx)] ≤ p(x).

Thus, q(x) ≤ p(x). By Hahn-Banach extension theorem there is a continuous linear

functional φ̃ on E such that φ̃(x) ≤ q(x) for each x ∈ E and φ̃|F ≡ φ. For x ∈ E,
n ∈ N and µ ∈M c

1 (K)

q(x− Tµx)

≤ 1
n+1p

[(
Te(x− Tµx) + Tµ(x− Tµx)

+TµTµ(x− Tµx) + ...+ TµTµ...Tµ︸ ︷︷ ︸
n times

(x− Tµx)
)]

= 1
n+1p(x+ TµTµ...Tµ︸ ︷︷ ︸

n+1 times

(−x))

≤ 1
n+1 [p(x) + p(−x)]→ 0.

Therefore, φ̃(x− Tµx) ≤ q(x− Tµx) ≤ 0. Since φ̃ is linear By replacing x by −x, one

has φ̃(Tµx) = φ̃(x). In particular, φ̃(Tgx) = φ̃(x) for g ∈ K and x ∈ E. Therefore,
UC(K) has an invariant mean (Theorem 4.1). �

5. Weak*-invariant complemented subspaces of L∞(K)

Let X be a weak*-closed left translation invariant, invariant complemented sub-
space of L∞(K). Then this section provides a connection between X being invariantly
complemented in L∞(K) by a weak*-weak*-continuous projection and the behavior
of X ∩ C0(K).

Theorem 5.1. Let X be a weak∗-closed, left translation invariant, invariant comple-
mented subspace of L∞(K). Then the following are equivalent:

1. There exists a weak*-weak*-continuous projection Q from L∞(K) onto X com-
muting with left translations.

2. X ∩ C0(K) is weak* dense in X.

Proof. Let P be a continuous projection from L∞(K) onto X commuting with left
translations. We first observe that P (LUC(K)) ⊆ LUC(K). In fact if f ∈ LUC(K)
and {gα} is a net in K such that gα → g ∈ K, then

||LgαPf − LgPf || = ||P (Lgαf − Lgf)|| ≤ ||P || ||Lgαf − Lgf || → 0.

Thus, P |C0(K) is a bounded operator from C0(K) into CB(K). Define a bounded

linear functional on C0(K) by ψ1(f) := (P f̌)(e). Let µ ∈ M(K) be such that
(Pf)(e) =

∫
f̌(x)dµ(x), for each f ∈ C0(K). Then for x ∈ K and f ∈ C0(K),

(Pf)(x) = LxPf(e) = PLxf(e) =
∫
Lxf(y̌)dµ(y) = f ∗ µ(x).

Hence, P (f) = f ∗ µ, for f ∈ C0(K). Define an operator T : L1(K) → L1(K) via
T (h) := h ∗ µ̌.
Then Q = T ∗ is weak*-weak*-continuous and < Qf, h >=< f, h ∗ µ̌ >=< f ∗ µ, h >,
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for h ∈ L1(K) and f ∈ C0(K). Thus, Q(f) = f ∗ µ for f ∈ C0(K). In addition, Q
commutes with left translations on L∞(K), since for h ∈ L1(K) and f ∈ L∞(K)

< QLxf, h > =< Lxf, h ∗ µ̌ >
=< f, (Lx̌h) ∗ µ̌ >
=< Q(f), Lx̌h >
=< LxQ(f), h > .

We will show that Q is a projection. For f ∈ C0(K) ∩X, and h ∈ L1(K),

< f ∗ µ, h > = [(f ∗ µ) ∗ ȟ](e)
= [f ∗ (h ∗ µ̌)ˇ](e)

= [(h ∗ µ̌) ∗ f̌ ](e)

=
∫

(h ∗ µ̌)(x)f̌(x̌)dx
=< f, h ∗ µ̌ > .

Hence,

< Q(f), h > =< f, h ∗ µ̌ >=< f ∗ µ, h >=< P (f), h >=< f, h > .

If X ∩C0(K) is weak* dense in X, let {fα} be a net in X ∩C0(K) such that fα → f
in the weak*-topology of L∞(K). Then, Q(f) = f since Q is weak*-continuous.

Moreover, for f ∈ C0(K) and h ∈ X⊥,

< Q(f), h > =< f, h ∗ µ̌ >=< f ∗ µ, h >=< P (f), h >= 0.

Thus, < Q(f), h >= 0, for each f ∈ L∞(K) and h ∈ X⊥, since C0(K) is weak*-dense
in L∞(K). i.e. Q(f) ∈ X.

Conversely, if Q is a weak*-weak*-continuous projection from L∞(K) onto
X commuting with left translations, then there exists some µ ∈ M(K) such that
Q∗|L1(K)(h) = h ∗ µ, for h ∈ L1(K) ([1], Theorem 1.6.24). Hence, for f ∈ C0(K) we
have Q(f) = f ∗ µ̌ which is in C0(K)∩X ([1], Theorem 1.2.16, iv). Then C0(K)∩X
is weak*-dense in X = {Q(f) | f ∈ L∞(K)} since C0(K) is weak*-dense in L∞(K)
and Q is weak*-weak*-continuous. �

As a direct consequence of Theorem 5.1 we have the following result:

Corollary 5.2. Let K be a compact hypergroup and let X be a weak*-closed left trans-
lation invariant subspace of L∞(K). Then X is invariantly complemented if and only
if there is a weak*-weak*-continuous projection from L∞(K) onto X commuting with
left translations.

Corollary 5.3. Let K be a compact hypergroup and let X be a left translation invariant
w∗-subalgebra of L∞(K) such that X ∩CB(K) has the local translation property TB.
Then X is the range of a weak*-weak*-continuous projection commuting with left
translations.

Proof. This follows from ([31], Corollary 3.13, Lemma 3.9) and Theorem 5.1. �

Corollary 5.4. The following are equivalent:

1. K is compact.
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2. K is amenable and for every weak*-closed left translation invariant, invariant
complemented subspace X of L∞(K), there exists a weak*-weak*-continuous pro-
jection from L∞(K) onto X commuting with left translations.

Proof. If K is compact, then item 2 follows from ([31], Lemma 3.9) and ([28], Example
3.3). Conversely, consider the one-dimensional subspace X = C.1. Then X is a weak*-
closed left translation invariant, invariant complemented subspace of L∞(K), since
K is amenable. If P is a weak*-weak*-continuous projection from L∞(K) onto C.1
commuting with left translations, then there is some φ ∈ L1(K) such that P (f) =
δφ(f) for f ∈ L∞(K). Hence, δφ(1) = 1 and < δφ, Lgf >=< δφ, f >. i.e., Lgφ = φ,
for g ∈ K. In particular, Lgφ(e) = φ(g) = φ(e), for all g ∈ K. Therefore, 1 = δφ(1) =∫
K
φ(g)dλ(g) = φ(e)λ(K) which means that K is compact. �

Commutative hypergroups with connected dual can be found in the study of
hypergroups constructed on R+. In fact any Sturm-Liouville hypergroup on R+ asso-
ciated with a function A : R+ → R+ satisfying certain conditions falls in this range

([36], Theorem 4.4). If K is a commutative hypergroup, then K̂ carries a dual hy-

pergroup structure if K̂ can be equipped with a hypergroup structure such that the

functions δg with δg(ξ) = ξ(g), for ξ ∈ K̂ are characters of K̂ for all g ∈ K. In

addition, K is said to be a Pontryagin hypergroup if K̂ carries a dual hypergroup

structure and
̂̂
K can be identified with K. One knows that all Bessel-Kingman hy-

pergroups are Pontryagin hypergroup. ([35], p 483). Let M0(K) denote the class of
all closed subsets of K which contain a support of a non-zero measure in M(K) with

the Fourier-Stieltjes transform vanishing at infinity and let ∆(X) = K̂ ∩X.

Lemma 5.5. Let K be a commutative hypergroup such that the dual space K̂ is con-
nected and let X be a weak∗-closed translation invariant, invariant complemented
subspace of L∞(K). Then X = L∞(K) or C0(K) ∩X = {0}.

Proof. Let P be a continuous projection from L∞(K) onto X commuting with left
translations. Then it follows from the proof of Theorem 5.1 that P |C0(K)(f) = f ∗µ ∈
C0(K), for some µ ∈ M(K). Hence, µ̂ = (µ ∗ µ)ˆ = µ̂.µ̂ ([12], 7.3.E). Therefore,

µ̂(ξ) = 0 or 1, for ξ ∈ K̂. Then µ̂ ≡ 0 or µ̂ ≡ 1, since ξ 7→ µ̂(ξ) is continuous on K̂

([12], 7.3.E) and K̂ is connected. Consequently, X∩C0(K) = {0} or X = L∞(K). �

Corollary 5.6. Let K be a commutative hypergroup such that K̂ is connected. Then
there is no non-trivial weak*-weak*-continuous projection from L∞(K) into L∞(K)
commuting with translations.

Proof. This follows from Theorem 5.1 and Lemma 5.5. �

Corollary 5.7. Let K be a commutative Pontryagin hypergroup such that K̂ is con-
nected. Then there is no proper weak*-closed translation invariant, invariant comple-

mented subspace X of L∞(K) with ∆(X) ∈M0(K̂).

Proof. This follows from Lemma 5.5. �

Corollary 5.7 has the following immediate consequence:
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Corollary 5.8. Let K be a commutative Pontryagin hypergroup such that K̂ is con-
nected. Then there is no non-trivial, invariant complemented ideal I of L1(K) with

∆(I⊥) ∈M0(K̂).

6. Miscellaneous Remarks and Open Problems

Let A be a closed translation invariant subalgebra of L∞(K) containing constant
functions. In what follows we provide an equivalent condition for A to possess a
multiplicative left invariant mean. This equivalence is given in terms of a fixed point
property which is a generalization of Mitchell fixed point theorem ([23], Theorem 1).

Definition 6.1. Let A be a closed translation-invariant subalgebra of L∞(K) containing
constant functions. Let E be a separated locally convex topological vector space and
Y be a compact subset of E. Let X be the space of all probability measures on Y .
Let {Tg | g ∈ K} be a continuous representation of K on X. Suppose that B :=
{y ∈ Y | Tgy ∈ Y, ∀g ∈ K} 6= ∅ and for each y ∈ B, define hy,φ(g) = φ(Tgy), for
g ∈ K and φ ∈ CB(Y ). It is easy to see that hy,φ is continuous and ||hy,φ|| ≤ ||φ||.
Therefore, hy : φ 7→ hy,φ is a bounded linear operator from CB(Y ) into CB(K). Let
Y1 := {y ∈ B | hy(CB(Y )) ⊆ A}.

The family T is an E −E-representation of (K,A) on X if B 6= ∅ and Y1 6= ∅,

Definition 6.2. The pair (K,A) has the common fixed point property on compacta with
respect to E − E-representations if, for each compact subset Y of a separated locally
convex topological vector space E and for each E − E-representation of K, A on X,
there is in Y a common fixed point of the family T .

Remark 6.3. Let A be a closed translation-invariant subalgebra of L∞(K) containing
constant functions. Then the following are equivalent:

1. A has a multiplicative left invariant mean.
2. The pair (K,A) has the common fixed point property on compacta with respect

to E − E-representations.

Proof. Let T be an E−E-representation of (K,A) on X. Then there exists an element
y ∈ Y such that hy(CB(Y )) ⊆ A and Tgy ∈ Y for all g ∈ K. Let h∗y be the adjoint of
hy and let m be a multiplicative left invariant mean on A. Then < h∗ym, 1 >= 1, where
1 is the constant 1 function on Y . Also hy(f1f2) = (hy,f1

)(hy,f2
), for f1, f2 ∈ CB(Y )

and g ∈ K. In addition, since m is multiplicative, h∗ym is a nonzero multiplicative

linear functional on CB(Y ) and < h∗y(m), h̄ >= < h∗y(m), h >, Thus, there exists an
element xy ∈ Y such that f(xy) =< h∗ym, f >=< m,hy,f >, for all f ∈ CB(Y ).

For each g ∈ K, define a map Ψg : E∗ → CB(Y ) via (Ψgf)(z) =< f, Tgz >, for
f ∈ E∗, z ∈ Y . Then hy,Ψgf = Lg[hy,f ] since f ∈ E∗. Hence, Tgxy = xy, for each
g ∈ K since m is left translation invariant and E∗ separates point of E.

Conversely, let E = A∗ and Y be the set of all multiplicative means on A. Then
X = Mean(A). Define (g,m) 7→ L∗gm from K × Mean(A) into Mean(A), where
Mean(A) has the weak*-topology of A∗. Then T = {L∗g | g ∈ K} is a separately
continuous representation of K on X. We note that each φ ∈ CB(Y ) corresponds
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to an element fφ ∈ A such that φ(m) = m(fφ), for m ∈ Y . Let P (K) = {g ∈
K | δk ∗ δg is a point mass measuse, δkg, ∀k ∈ K}, g ∈ P (K) and k ∈ K. Then

δgLKφ(k) = φ(L∗kδg) = φ(δkg) = δkg(fφ) = Rgfφ(k).

Hence, δgLKφ ∈ A, since A is right translation invariant. i.e, δgLK (CB(Y )) ⊆ A, for

g ∈ P (K). Thus, T is an E − E-representation of K, A on X. Therefore, there is
some m0 ∈ Y such that L∗gm0 = m0, for all g ∈ K. �

Let T be a bounded linear operator from L∞(K) into L∞(K). Then T commutes
with convolution from the left if T (φ∗f) = φ∗T (f), for all φ ∈ L1(K) and f ∈ L∞(K).
The following can be proved by a similar argument as in ([20], Theorem 2).

Remark 6.4. The following are equivalent:

1. K is compact.
2. Any bounded linear operator from L∞(K) into L∞(K) which commutes with

convolution from the left is weak∗-weak∗ continuous.

Using bounded approximate identity of L1(K), one can show that any bounded
linear operator from L∞(K) into L∞(K) which commutes with convolution from the
left also commutes with left translations. However, the converse is not true in general.
For instance, if K is a direct product G×J of any locally compact non-discrete group
G which is amenable as a discrete group and a finite hypergroup J , then for any
left invariant mean m on L∞(K) which is not topological left invariant, the operator
T (f) := m(f).1 commutes with left translations but not with convolutions from the
left.

It is important to note that in contrast to the group case, there is a class of com-
pact commutative hypergroups for which any bounded linear operator from L∞(K)
into L∞(K) commuting with convolution is weak∗-weak∗ continuous:

Example 6.5. Fix 0 < a ≤ 1
2 and let Ha be the hypergroup on Z+ ∪ {∞} given

by δm ∗ δn = δmin(n,m), for m 6= n ∈ Z+, δ∞ ∗ δm = δm ∗ δ∞ = δm and δn ∗
δn = 1−2a

1−a δn+
∑∞
k=n+1 a

kδk [5]. Then any bounded linear operator from L∞(Ha) into

L∞(Ha) commuting with translations is weak∗-weak∗ continuous.

Proof. Let T be a bounded linear operator from L∞(Ha) into L∞(Ha) commuting
with translations. For each φ ∈ L1(K) and n ∈ Z+ define a function φn on K which
coincide with φ on {0, 1, ..., n} and zero otherwise. Then ||φn − φ||1 → 0. In addition,
for each f ∈ L∞(K) we have ||T (φn ∗ f)−T (φ ∗ f)|| → 0 and ||φn ∗Tf −φ ∗Tf || → 0
([12], 6.2 C). For each f ∈ L∞(K)

T (φn ∗ f) = T (
∑n
k=0 φ(k)(1− a)akLǩf)

=
∑n
k=0 φ(k)(1− a)akT (Lǩf)

=
∑n
k=0 φ(k)(1− a)akLǩTf

= φn ∗ Tf

we have that T (φ ∗ f) = φ ∗ Tf . Now the result follows from Remark 6.4. �

The following problems are still open:
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Question 6.6. Let K be a compact hypergroup such that L∞(K) has a unique left
invariant mean. Let T be a bounded linear operator from L∞(K) into L∞(K) which
commutes with left translations. Can we conclude that T commutes with convolution
from the left?

Question 6.7. Let G be a locally compact group. Then L1(G) is Arens semi-regular if
and only if G is abelian or discrete ([21], Theorem 1). Can we characterize hypergroups
for which L1(K) is Arens semi-regular?

Question 6.8. Is there any non-inner amenable hypergroup K such that Z(L1(K)) is
non-trivial?

Question 6.9. Let K be a hypergroup such that L1(K) has a positive non-trivial center.
Is there a compact neighbourhood V of the identity with ∆(g)RgχV = LgχV ?

Question 6.10. Let K be a connected, inner amenable hypergroup. Is K amenable?

We say that a hypergroup K is topologically inner amenable if there exists a
mean m on L∞(K) such that m((∆φ)ˇ ∗ f) = m(f ∗ φ̌) for any positive norm one
element φ in L1(K) and any f ∈ L∞(K). It is easy to see that any inner invariant
mean on UC(K) is topologically inner invariant since

m(f ∗ φ̌) =
∫
< m,Rgfφ(g) > dλ(g)

=
∫
< m,Lgfφ(g) > dλ(g)

=< m,
∫
Lgfφ(g)dλ(g) >

=< m,
∫
Lgfφ(g)∆(g)dλ̌(g) >

= m((∆φ)ˇ ∗ f).

. However, on the space L∞(K) the relation between topological inner invariant means
and inner invariant means is not clear.

Question 6.11. Let m be a topological inner invariant mean on L∞(K). Is m also an
inner invariant mean?

Question 6.12. Let K be an inner amenable hypergroup. Is there any topological inner
invariant mean on L∞(K)?

Question 6.13. Let K be an inner amenable hypergroup. Does K satisfy central Reiter’s
condition P1? (see ([22], Remark) for the group case).

Question 6.14. Let K be a compact hypergroup. Can we have an exact description of
weak*-closed left translation invariant complemented subspaces of L∞(K)?
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