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Local C-semigroups and complete second order
abstract Cauchy problems

Chung-Cheng Kuo

Abstract. Let C : X → X be an injective bounded linear operator on a Ba-
nach space X over the field F(=R or C) and 0 < T0 ≤ ∞. Under some suit-
able assumptions, we deduce some relationship between the generation of a lo-

cal (or an exponentially bounded)

(
C 0
0 C

)
-semigroup on X × X with sub-

generator (resp., the generator)

(
0 I
B A

)
and one of the following cases:

(i) the well-posedness of a complete second-order abstract Cauchy problem
ACP(A,B, f, x, y): w′′(t) = Aw′(t)+Bw(t)+f(t) for a.e. t ∈ (0, T0) with w(0) = x
and w′(0) = y; (ii) a Miyadera-Feller-Phillips-Hille-Yosida type condition; (iii) B
is a subgenerator (resp., the generator) of a locally Lipschitz continuous local
C-cosine function on X for which A may not be bounded; (iv) A is a subgener-
ator (resp., the generator) of a local C-semigroup on X for which B may not be
bounded.

Mathematics Subject Classification (2010): 47D60, 47D62.

Keywords: Integrated C-semigroups, generator, subgenerator, abstract Cauchy
problem.

1. Introduction

Let X be a Banach space over the field F(=R or C) with norm ‖ · ‖, and let
L(X) denote the family of all bounded linear operators from X into itself. For each
0 < T0 ≤ ∞, we consider the following two abstract Cauchy problems:

ACP(A, f, x)

{
u′(t) = Au(t) + f(t) for a.e. t ∈ (0, T0)

u(0) = x

and

ACP(A,B, f, x, y)

{
w′′(t) = Aw′(t) +Bw(t) + f(t) for a.e. t ∈ (0, T0)

w(0) = x,w′(0) = y,
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where x, y ∈ X, A : D(A) ⊂ X → X and B : D(B) ⊂ X → X are closed linear
operators, and f ∈ L1

loc([0, T0), X) (the family of all locally Bochner integrable func-
tions from [0, T0) into X). A function u is called a (strong) solution of ACP(A, f, x) if
u ∈ C([0, T0), X) satisfies ACP(A, f, x) (that is u(0) = x and for a.e. t ∈ (0, T0), u(t)
is differentiable and u(t) ∈ D(A), and u′(t)=Au(t)+f(t) for a.e. t ∈ (0, T0)). For each
α > 0 and each injection C ∈ L(X), a subfamily S(·)(= {S(t)|0 ≤ t < T0}) of L(X)
is called a local α-times integrated C-semigroup on X if it is strongly continuous,
S(·)C = CS(·) and satisfies

(1.1) S(t)S(s)x = 1
Γ(α)

[∫ t+s
0
−
∫ t

0
−
∫ s

0

]
(t+ s− r)α−1S(r)Cxdr

for all x ∈ X and 0 ≤ t, s ≤ t + s < T0 (see [1-2,12-14,18-21,28,30,32,35]) or called
a local (0-times integrated) C-semigroup on X if it is strongly continuous, S(·)C =
CS(·) and satisfies

(1.2) S(t)S(s)x = S(t+ s)Cx

for all x ∈ X and 0 ≤ t, s ≤ t + s < T0 (see [4,6,13,23,29]), where Γ(·) denotes the
Gamma function. Moreover, we say that S(·) is

(1.3) locally Lipschitz continuous, if for each 0 < t0 < T0 there exists a Kt0 > 0 such
that ‖S(t+ h)− S(t)‖ ≤ Kt0h for all 0 ≤ t, h, t+ h ≤ t0;

(1.4) exponentially bounded, if T0 = ∞ and there exist K,ω ≥ 0 such that ‖S(t)‖ ≤
Keωt for all t ≥ 0;

(1.5) nondegenerate, if x = 0 whenever S(t)x = 0 for all 0 ≤ t < T0.

A nondegenerate local α-times integrated C-semigroup S(·) on X implies that
S(0) = C if α = 0, and S(0) = 0 (zero operator on X) otherwise, and the (in-
tegral) generator A : D(A) ⊂ X → X of S(·) is a closed linear operator in X

defined by D(A) ={x ∈ X |S(·)x − jα(·)Cx=S̃(·)yx on [0, T0) for some yx ∈ X}
and Ax = yx for all x ∈ D(A) (see [6,13-14,23]), which is also equal to the lin-
ear operator A in X defined by D(A) = {x ∈ X | lim

h→0+
(S(h)x − Cx)/h ∈ R(C)}

and Ax = C−1 lim
h→0+

(S(h)x − Cx)/h for x ∈ D(A) when α = 0 (see [4,23,27]). Here

jβ(t) = tβ

Γ(β+1) and S̃(t)z =
∫ t

0
S(s)zds. In general, a local C-semigroup is called

a C-semigroup if T0 = ∞(see [2,4,14,26,32]) or a C0-semigroup if C = I (iden-
tity operator on X) (see [1,5]). It is known that the theory of local C-semigroup
is related to another family in L(X) which is called a local C-cosine function (see
[2,4,8-9,24,28-29,32]). Perturbation of local (integrated) C-semigroups has been ex-
tensively studied by many authors appearing in [1,6-7,10-12,15-16,22,30-32]. Some
interesting applications of this topic are also illustrated there. The well-posedness
of ACP(A,B, f, x, y) had been studied by many authors when f = 0 (see [3,6,9,17-
18,20,25,32-34]). Some relationship between the well-posedness of ACP(A,B, 0, x, y),
a Miyadera-Feller-Phillips-Hille-Yosida type condition (see (1.6) below), and the gen-

eration of a C0-semigroup on X × X with generator

(
0 I
B A

)
have been estab-

lished in [25] when A and B are commutable on D(B) ∩ D(A), in [20] and [32]
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for A ∈ L(X), in [32] for B ∈ L(X), and in [17] for the general case. In partic-

ular, Xiao and Liang [32, Theorems 2.6.1, 2.5.2 and 2.5.1] show that

(
0 I
B A

)
generates a C0-semigroup on X × X (if and) only if B ∈ L(X) (and A generates
a C0-semigroup on X), but the conclusion may not be true when C0-semigroups
are replaced by local C-semigroups; and the well-posedness of ACP(A,B, 0, x, y) is
equivalent to A generates a C0-semigroup on X if B ∈ L(X), and equivalent to B
generates a cosine function on X if A ∈ L(X). Unfortunately, a local C-semigroup
may not be exponentially bounded and is not necessarily extendable to the half line

[0,∞), and

(
0 0
B A

)
may not be the generator of a local

(
C 0
0 C

)
-semigroup

on X × X whenever

(
0 I
B A

)
is. Moreover, λ ∈ ρC(A,B) may not imply that

(λ2 − λA−B)−1C(λ−AD(B)∩D(A)) and (λ2 − λA−B)−1CBD(B)∩D(A) are bounded
even though D(B) ∩D(A) is dense in X and C = I, and λ ∈ ρC(T ) implies that λ ∈
ρC(A,B), (λ2 − λA−B)−1C(λ−AD(B)∩D(A)) and (λ2 − λA−B)−1CBD(B)∩D(A)

are bounded, but may not be bounded on X even though C = I. In particular, they
are bounded on X when the assumption of D(B) ∩D(A) is dense in X is added (see
[17] for the case C = I). In this paper, we will extend the aforementioned results to
the case of local C-semigroup by different methods (see Theorems 2.2 and 2.3 below).
We show that for each (x, y) ∈ D ACP(A,B, 0, Cx,Cy) has a unique solution z which
depends continuously differentiable on (x, y) and satisfies Bz + Az′ ∈ C([0, T0), X)
if and only if T is a subgenerator of a local C-semigroup on X × X if and only if
for each (x, y) ∈ D ACP(A,B,CBx, 0, Cy) has a unique solution w which depends
continuously differentiable on (x, y) and satisfies Bw+Aw′ ∈ C([0, T0), X) (see The-

orem 2.5 below). Here T =

(
0 I
B A

)
, C =

(
C 0
0 C

)
, and D is a fixed subspace

of D(B) × D(A) that is dense in X ×X. We then prove two important lemmas (see
Lemmas 2.7 and 2.8 below) which can be used to show that there exist M,ω > 0 so
that for each pair x, y ∈ D(B) ∩ D(A) ACP(A,B,CBx, 0, Cy) has a unique solution
w with ‖w(t)‖, ‖w′(t)‖ ≤Meωt(‖x‖+‖y‖) for all t ≥ 0 and Bw+Aw′ ∈ C([0,∞), X)
if and only if T is a subgenerator of an exponentially bounded C-semigroup on X×X
if and only if there exist M,ω > 0 so that λ ∈ ρC(A,B) and

(1.6) ‖[λ(λ2 − λA−B)
−1
C]

(k)
‖, ‖[(λ2 − λA−B)−1CBD(B)∩D(A)]

(k)
‖ ≤ Mk!

(λ−ω)k+1

for all λ > ω and k ∈ N ∪ {0} if and only if there exist M,ω > 0 so that for
each pair x, y ∈ D(B) ∩ D(A) ACP(A,B, 0, Cx,Cy) has a unique solution z with
‖z(t)‖, ‖z′(t)‖ ≤Meωt(‖x‖+ ‖y‖) for all t ≥ 0 and satisfies Bz +Az′ ∈ C([0,∞), X)
(see Corollary 2.6 and Theorem 2.9 below). Here ρC(A,B)={λ ∈ F |λ2 − λA − B
is injective, R(C) ⊂ R(λ2 − λA − B), and (λ2 − λA − B)−1C ∈ L(X)}. When ρ(T )
(resolvent set of T ) is nonempty, we can combine Lemma 2.4 with [23, Corollary 3.6]
to show that for each (x, y) ∈ D(B) × D(A) ACP(A,B,CBx, 0, Cy) has a unique
solution w such that Bw + Aw′ ∈ C([0, T0), X) if and only if T is the generator of
a local C-semigroup S(·) on X × X if and only if for each (x, y) ∈ D(B) × D(A)
ACP(A,B, 0, Cx,Cy) has a unique solution z such that Bz+Az′ ∈ C([0, T0), X) (see
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Theorem 2.11 below). We then apply the modifications of [12, Theorem 2.12 and The-
orem 3.2] concerning the bounded and unbounded perturbations of a locally Lipschitz
continuous local once integrated C-semigroup on X (see Theorem 2.12 below) and a
basic property of local C-cosine function (see [6, Theorem 2.1.11]) to obtain two new
equivalence relations concerning the generations of a local C-semigroup on X × X

with subgenerator (resp., the generator)

(
0 I
B A

)
and either a locally Lipschitz

continuous local C-cosine function on X with subgenerator (resp., the generator) B
for which A may not be bounded (see Theorem 2.13 below) or a local C-semigroup
on X with subgenerator (resp., the generator) A for which B may not be bounded
(see Theorem 2.16 below). Under some suitable assumptions, which can be used to
show those preceding equivalence conditions which are equivalent to B is the gener-
ator of a locally Lipschitz continuous local C-cosine function on X for which A may
not be bounded (see Corollaries 2.14 and 2.15 below), and are also equivalent to A
is the generator of a local C-semigroup on X for which B may not be bounded (see
Corollaries 2.17 and 2.18 below).

2. Abstract Cauchy problems

In this section, we consider the existence of solutions of the abstract
Cauchy problem ACP(A,B, f, x, y). A function u is called a (strong) solution of
ACP(A,B, f, x, y) if u ∈ C1([0, T0), X) satisfies ACP(A,B, f, x, y) (that is u(0) = x,
u′(0) = y, and for a.e. t ∈ (0, T0), u′(t) is differentiable and u′(t) ∈ D(A), and
u′′(t)=Au′(t)+Bu(t)+f(t) for a.e. t ∈ (0, T0)). A linear operator A in X is called a
subgenerator of a local α-times integrated C-semigroup S(·) if S(t)x − jα(t)Cx =∫ t

0
S(r)Axdr for all x ∈ D(A) and 0 ≤ t < T0, and

∫ t
0
S(r)xdr ∈ D(A) and

A
∫ t

0
S(r)xdr=S(t)x − jα(t)Cx for all x ∈ X and 0 ≤ t < T0. Moreover, a sub-

generator A of S(·) is called the maximal subgenerator of S(·) if it is an extension
of each subgenerator of S(·) to D(A). We next note some basic properties of a local
C-semigroup, and then deduce some results about connections between the unique

existence of solutions of ACP(A,B,CBx, 0, Cy), ACP

(
T ,
(

0
0

)
,

(
Cx
Cy

))
, and

ACP(A,B, 0, Cx,Cy).
Proposition 2.1. (see [4,13,23]) Let A be the generator of a local C-semigroup S(·) on
X. Then

(2.1) S(t)S(s) = S(s)S(t) for 0 ≤ t, s, t+ s < T0;
(2.2) A is closed and C−1AC = A;
(2.3) S(t)x ∈ D(A) and S(t)Ax = AS(t)x for x ∈ D(A) and 0 ≤ t < T0;

(2.4)
∫ t

0
S(r)xdr ∈ D(A) and A

∫ t
0
S(r)xdr = S(t)x− Cx for x ∈ X and 0 ≤ t < T0;

(2.5) R(S(t)) ⊂ D(A) for 0 ≤ t < T0;
(2.6) A is the maximal subgenerator of S(·);
(2.7) C−1A0C is the generator of S(·) for each subgenerator A0 of S(·).
Theorem 2.2. (see [13,23]) Let A be a closed linear operator in X such that CA ⊂ AC.
Then A is a subgenerator of a local C-semigroup S(·) on X if and only if for each
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x ∈ X ACP(A,Cx, 0) has a unique (strong) solution u(·, x) in C1([0, T0), X). In this

case, we have u(t, x) = j0 ∗S(t)x(=
∫ t

0
S(s)xds) for all x ∈ X. By slightly modifying

the proof of [23, Corollary 3.5], the next theorem concerning the well-posedness of
ACP(A, f, x)is attained, and so its proof is omitted.
Theorem 2.3. Let A be a closed linear operator in X such that CA ⊂ AC and D dense
in X for some subspace D of D(A). Then the following are equivalent:

(i) A is a subgenerator of a nondegenerate local C-semigroup S(·) on X;
(ii) For each x ∈ D ACP(A, 0, Cx) has a unique solution u(·;Cx) in

C([0, T0), [D(A)]) which depends continuously on x. That is, if {xn}∞n=1 is a
Cauchy sequence in (D, ‖ · ‖), then {u(·;Cxn)}∞n=1 converges uniformly on com-
pact subsets of [0, T0).

In this case, u(·, Cx) = S(·)x.
In the following, we always assume that A and B are biclosed linear operators

in X such that CA ⊂ AC and CB ⊂ BC.
Lemma 2.4. Assume that D is a subspace of D(B) × D(A). Then the following are
equivalent:

(i) For each (x, y) ∈ D ACP(A,B,CBx, 0, Cy) has a unique solution w such that
Bw +Aw′ ∈ C([0, T0), X);

(ii) For each (x, y) ∈ D ACP

(
T ,
(

0
0

)
,

(
Cx
Cy

))
has a unique solution

(
u
v

)
in C([0, T0), [T ]);

(iii) For each (x, y) ∈ D ACP(A,B, 0, Cx,Cy) has a unique solution z such that
Bz +Az′ ∈ C([0, T0), X).

In this case, w = j0 ∗ v and z = u.
In particular, z, w ∈ C1([0, T0), [D(A)])∩C([0, T0), [D(B)]) if either A or B is bounded.

Here T =

(
0 I
B A

)
and C =

(
C 0
0 C

)
.

Proof. Since the biclosedness of A and B with CA ⊂ AC and CB ⊂ BC implies
that T is a closed linear operator in X × X so that CT ⊂ T C. Suppose that

(x, y) ∈ D and

(
u
v

)
denotes the unique solution of ACP

(
T ,
(

0
0

)
,

(
Cx
Cy

))
in C([0, T0), [(T ]). Then v and Bu + Av are continuous on [0, T0), and u′ = v and
v′ = Bu + Av+ a.e. on [0, T0), so that u = j0 ∗ v + Cx on [0, T0), j0 ∗ v(t) ∈ D(B)
for all t ∈ [0, T0), and v′ = Bj0 ∗ v + CBx a.e. on [0, T0). Hence, w = j0 ∗ v is a
solution of ACP(A,B,CBx, 0, Cy) such that Bw +Aw′ ∈ C([0, T0), X). The unique-

ness of solutions of ACP(A,B,CBx, 0, Cy) follows from the fact that

(
0
0

)
is the

unique solution of ACP

(
T ,
(

0
0

)
,

(
0
0

))
in C([0, T0), [T ]). Conversely, suppose

that (x, y) ∈ D and w denotes the unique solution of ACP(A,B,CBx, 0, Cy) such
that Bw +Aw′ ∈ C([0, T0), X). We set u = w + Cx and v = w′ on [0, T0). Then(

u(0)
v(0)

)
=

(
Cx
Cy

)
,

(
u(t)
v(t)

)
∈ D(B)×D(A) = D(T )



226 Chung-Cheng Kuo

for all t ∈ [0, T0) and T
(
u
v

)
is continuous on [0, T0), and for a.e. t ∈ (0, T0)

(
u(t)
v(t)

)
is differentiable and(

u′(t)
v′(t)

)
=

(
w′(t)
w′′(t)

)
=

(
w′(t)

Aw′(t) +Bw(t) + CBx

)

=

(
v(t)

Av(t) +Bu(t)

)
= T

(
u(t)
v(t)

)
,

and so

(
u
v

)
is a solution of ACP

(
T ,
(

0
0

)
,

(
Cx
Cy

))
in C([0, T0), [T ]). The

uniqueness of solutions follows from the fact that 0 is the unique solution of
ACP(A,B, 0, 0, 0). Similarly, we can show that (ii) and (iii) are equivalent. �

Just as an application of Theorem 2.3, the next theorem concerning the well-
posedness of ACP(A,B, f, x, y) is also attained.

Theorem 2.5. Assume that D is dense in X×X for some subspace D of D(B)×D(A).
Then the following are equivalent:

(i) For each (x, y) ∈ D ACP(A,B,CBx, 0, Cy) has a unique solution w which de-
pends continuously differentiable on (x, y) (that is, if {xn}∞n=1 is a Cauchy se-
quence in (D(B), ‖ · ‖) and {yn}∞n=1 a Cauchy sequence in (D(A), ‖ · ‖), and wn
denotes the unique solution of ACP(A,B,CBxn, 0, Cyn), then {wn(·)}∞n=1 and
{w′n(·)}∞n=1 both converge uniformly on compact subsets of [0, T0)) and satisfies
Bw +Aw′ ∈ C([0, T0), X);

(ii) T is a subgenerator of a local C-semigroup S(·) on X ×X;
(iii) For each (x, y) ∈ D ACP(A,B, 0, Cx,Cy) has a unique solution z which depends

continuously differentiable on (x, y) and satisfies Bz +Az′ ∈ C([0, T0), X).

Here T =

(
0 I
B A

)
and C =

(
C 0
0 C

)
.

Proof. Since for each (x, y) ∈ D
(
u
v

)
is the unique solution of

ACP

(
T ,
(

0
0

)
,

(
Cx
Cy

))
in C([0, T0), [T ]) if and only if for each (x, y) ∈ D u = w + Cx and v = w′ on
[0, T0), and w is the unique solution of ACP(A,B,CBx, 0, Cy) such that Bw+Aw′ ∈

C([0, T0), X). By Theorem 2.3, we also have

(
u
v

)
= S(·)

(
x
y

)
. Consequently, T

is a subgenerator of a local C-semigroup on X ×X if and only if for each (x, y) ∈ D
ACP(A,B,CBx, 0, Cy) has a unique solution w which depends continuously differ-
entiable on (x, y). Similarly, we can show that (ii) and (iii) are equivalent. �

Corollary 2.6. Assume that D is dense in X×X for some subspace D of D(B)×D(A).
Then the following are equivalent:
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(i) There exist M,ω > 0 such that for each (x, y) ∈ D ACP(A,B,CBx, 0, Cy) has
a unique solution w with ‖w(t)‖, ‖w′(t)‖ ≤ Meωt(‖x‖ + ‖y‖) for all t ≥ 0 and
Bw +Aw′ ∈ C([0,∞), X);

(ii) T is a subgenerator of an exponentially bounded C-semigroup on X ×X;
(iii) There exist M,ω > 0 such that for each (x, y) ∈ D ACP(A,B, 0, Cx,Cy) has

a unique solution z with ‖z(t)‖, ‖z′(t)‖ ≤ Meωt(‖x‖ + ‖y‖) for all t ≥ 0 and
satisfies Bz +Az′ ∈ C([0, T0), X).

Lemma 2.7. Assume that λ ∈ ρC(T ) (C-resolvent set of T ). Then

(i) λ ∈ ρC(A,B);
(ii) (λ2 − λA − B)−1C(λ − AD(B)∩D(A)) and (λ2 − λA − B)−1CBD(B)∩D(A) are

closable, and their closures are bounded and have the same domain;

(iii) (λ− T )−1C =

(
(λ2 − λA−B)−1C(λ−AD(B)∩D(A)) (λ2 − λA−B)−1C

(λ2 − λA−B)−1CBD(B)∩D(A) λ(λ2 − λA−B)−1C

)
on D((λ2 − λA−B)−1C(λ−AD(B)∩D(A)))×X, and on X ×X if D(B)∩D(A)
is dense in X.

Proof. To show that λ2 − λA − B is closed. Suppose that {xn}∞n=1 is a sequence in
D(B) ∩ D(A) which converges to x in X and {(λ2 − λA − B)xn}∞n=1 converges to y

in X. Then

(
xn
λxn

)
∈ D(T ),

(
xn
λxn

)
→
(

x
λx

)
, and

(λ− T )

(
xn
λxn

)
=

(
0

(λ2 − λA−B)xn

)
→
(

0
y

)
.

By the closedness of λ− T , we have

(
x
λx

)
∈ D(T ) and(

0
(λ2 − λA−B)x

)
= (λ− T )

(
x
λx

)
=

(
0
y

)
,

and so (λ2− λA−B)x = y. Hence, λ2− λA−B is closed. To show that λ2− λA−B
is injective. Suppose that (λ2 − λA−B)x = 0. Then

(λ− T )

(
x
λx

)
=

(
0

(λ2 − λA−B)x

)
=

(
0
0

)
,

and so

(
x
λx

)
=

(
0
0

)
. Hence, x = 0, which implies that λ2 − λA−B is injective.

To show that R(C) ⊂ R(λ2 − λA−B). Suppose that z ∈ X is given. Then

(λ− T )

(
x
y

)
=

(
0
Cz

)
for some (x, y) ∈ D(T ) = D(B)×D(A), so that λx−y = 0 and −Bx+(λ−A)y = Cz.
Hence, x ∈ D(B)∩D(A)(= D(λ2−λA−B)) and (λ2−λA−B)x = Cz, which implies
that R(C) ⊂ R(λ2 − λA−B). Consequently, λ ∈ ρC(A,B).
To show that (λ2− λA−B)−1C(λ−AD(B)∩D(A)) and (λ2− λA−B)−1CBD(B)∩D(A)

are closable, we need only to show that (λ2 − λA − B)−1C(λ − AD(B)∩D(A)) or

(λ2 − λA−B)−1CBD(B)∩D(A) is closable. We will show that
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(2.8) (λ− T )−1C =

(
(λ2 − λA−B)−1C(λ−A) (λ2 − λA−B)−1C

(λ2 − λA−B)−1CB λ(λ2 − λA−B)−1C

)
on D(B) ∩D(A) first or equivalently,

(λ− T )

(
(λ2 − λA−B)−1C(λ−A) (λ2 − λA−B)−1C

(λ2 − λA−B)−1CB λ(λ2 − λA−B)−1C

)(
x
y

)
=

(
Cx
Cy

)

= C
(
x
y

)
for all x, y ∈ D(B) ∩D(A). Suppose that x, y ∈ D(B) ∩D(A) are given. Then by the
fact B(λ2 − λA−B)−1C(λ−A)x=(λ−A)(λ2 − λA−B)−1CBx that we have

(λ− T )

(
(λ2 − λA−B)−1C(λ−A) (λ2 − λA−B)−1C

(λ2 − λA−B)−1CB λ(λ2 − λA−B)−1C

)(
x
y

)
=

(
λ −I
−B λ−A

)(
(λ2 − λA−B)−1C(λ−A) (λ2 − λA−B)−1C

(λ2 − λA−B)−1CB λ(λ2 − λA−B)−1C

)(
x
y

)
=

(
λ −I
−B λ−A

)(
(λ2 − λA−B)−1C(λ−A)x+ (λ2 − λA−B)−1Cy

(λ2 − λA−B)−1CBx+ λ(λ2 − λA−B)−1Cy

)
=

(
Cx
Cy

)
.

Suppose that xn ∈ D(B)∩D(A), xn → 0 in X, and (λ2−λA−B)−1C(λ−A)xn → y
in X. Then

(λ2 − λA−B)−1CB)xn = (λ2 − λA−B)−1C(B + λA− λ2))xn

+ (λ2 − λA−B)−1C(λ2 − λA)xn

= Cxn + (λ2 − λA−B)−1C(λ2 − λA)xn

→ λy,

and so

(λ− T )−1C

(
xn
0

)
=

(
(λ2 − λA−B)−1C(λ−A) (λ2 − λA−B)−1C

(λ2 − λA−B)−1CB λ(λ2 − λA−B)−1C

)(
xn
0

)
=

(
(λ2 − λA−B)−1C(λ−A)xn

(λ2 − λA−B)−1CBxn

)
→
(

y
λy

)
= (λ− T )−1C

(
0
0

)
.

Hence, y = 0, which implies that (λ2 − λA−B)−1C(λ−AD(B)∩D(A)) is closable.

To show that (λ2 − λA−B)−1CBD(B)∩D(A) is bounded.

Let x ∈ D((λ2 − λA−B)−1CBD(B)∩D(A)) be given.

Then (xn, (λ
2 − λA − B)−1CBxn) → (x, (λ2 − λA−B)−1CBD(B)∩D(A)x) for some

xn ∈ D(B) ∩D(A), and so

(λ− T )−1C
(
xn
0

)
=

(
(λ2 − λA−B)−1C(λ−A)xn

(λ2 − λA−B)−1CBxn

)
→ (λ− T )−1C

(
x
0

)
.
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Hence, {(λ2 − λA − B)−1(λ − A)xn}∞n=1 and {(λ2 − λA − B)−1Bxn}∞n=1

both converge. By the closedness of (λ2 − λA−B)−1C(λ−AD(B)∩D(A)) and

(λ2 − λA−B)−1CBD(B)∩D(A), we have x ∈ D((λ2 − λA−B)−1C(λ−AD(B)∩D(A)))
and

(λ− T )−1C
(
x
0

)
=

(
(λ2 − λA−B)−1C(λ−AD(B)∩D(A))x

(λ2 − λA−B)−1CBD(B)∩D(A)x

)
,

which implies that (λ2 − λA−B)−1CBD(B)∩D(A) is bounded and

D((λ2 − λA−B)−1CBD(B)∩D(A)) ⊂ D((λ2 − λA−B)−1C(λ−AD(B)∩D(A))).

Similarly, we can show that (λ2 − λA−B)−1C(λ−AD(B)∩D(A)) is bounded and

D((λ2 − λA−B)−1C(λ−AD(B)∩D(A))) ⊂ D((λ2 − λA−B)−1CBD(B)∩D(A)),

which implies that

(λ− T )−1C
(
x
y

)
= (λ− T )−1C

(
x
0

)
+ (λ− T )−1C

(
0
y

)
=

(
(λ2 − λA−B)−1C(λ−AD(B)∩D(A)) (λ2 − λA−B)−1C

(λ2 − λA−B)−1CBD(B)∩D(A) λ(λ2 − λA−B)−1C

)(
x
y

)
for all (x, y) ∈ D((λ2 − λA−B)−1C(λ−AD(B)∩D(A)))×X. Combining this with the

closedness of (λ2 − λA−B)−1CBD(B)∩D(A) and the denseness of D(B)∩D(A) in X,
we have

(λ2 − λA−B)−1CBD(B)∩D(A) ∈ L(X). �

Lemma 2.8. Assume that λ ∈ ρC(A,B). Then

(i) λ− T is injective;
(ii) (λ2−λA−B)−1C(λ−AD(B)∩D(A)) and (λ2−λA−B)−1CBD(B)∩D(A) are closable

and their closures have the same domain, and

(λ− T )

(
(λ2 − λA−B)−1C(λ−AD(B)∩D(A)) (λ2 − λA−B)−1C

(λ2 − λA−B)−1CBD(B)∩D(A) λ(λ2 − λA−B)−1C

)
= C

on D((λ2 − λA−B)−1C(λ−AD(B)∩D(A)))×X;
(iii) λ ∈ ρC(T ) and

(λ− T )−1C =

(
(λ2 − λA−B)−1C(λ−AD(B)∩D(A)) (λ2 − λA−B)−1C

(λ2 − λA−B)−1CBD(B)∩D(A) λ(λ2 − λA−B)−1C

)
,

if (λ2 − λA−B)−1C(λ−AD(B)∩D(A)) ∈ L(X).

In particular, the conclusion of (iii) holds when A or B in L(X), or D(B) ∩D(A) is
dense in X with AB = BA on D(B) ∩D(A).

Proof. To show that λ− T is injective. Suppose that (λ− T )

(
x
y

)
=

(
0
0

)
. Then

λx − y = 0 and −Bx + (λ − A)y = 0, so that λx = y and −Bx + (λ2 − λA)x = 0.
Hence, x = 0 = y, which implies that λ − T is injective. Just as in the proof of
Lemma 2.7, we will apply (2.8) to show that (λ2−λA−B)−1C(λ−AD(B)∩D(A)) and



230 Chung-Cheng Kuo

(λ2 − λA − B)−1CBD(B)∩D(A) are closable. Suppose that {xn}∞n=1 is a sequence in

D(B)∩D(A) which converges to 0 in X and {(λ2−λA−B)(λ−A)xn}∞n=1 converges
to y in X. Then

(λ2 − λA−B)−1CBxn = −Cxn + (λ2 − λA−B)−1C(λ−A)xn → λy,

and so

(
(λ2 − λA−B)−1C(λ−A)xn

(λ2 − λA−B)−1CBxn

)
→
(

y
λy

)
. Hence,

(λ− T )

(
(λ2 − λA−B)−1C(λ−A)xn

(λ2 − λA−B)−1CBxn

)
=

(
Cxn

0

)
→
(

0
0

)
.

By the closedness of T , we have

(
y
λy

)
∈ D(T ) and (λ − T )

(
y
λy

)
=

(
0
0

)
,

which together with the injectivity of λ− T implies that y = 0.
Consequently, (λ2−λA−B)−1C(λ−AD(B)∩D(A)) is closable. Similarly, we can show

that (λ2−λA−B)−1CBD(B)∩D(A) is closable. Just as in the proof of Lemma 2.7, we
will show that

D((λ2 − λA−B)−1C(λ−AD(B)∩D(A))) = D((λ2 − λA−B)−1CBD(B)∩D(A)),

and for each x ∈ D((λ2 − λA−B)−1C(λ−AD(B)∩D(A)))(
(λ2 − λA−B)−1C(λ−AD(B)∩D(A))x

(λ2 − λA−B)−1CBD(B)∩D(A)x

)
∈ D(T ).

Suppose that x ∈ D((λ2 − λA−B)−1C(λ−AD(B)∩D(A))) is given. Then xn → x

and (λ2 − λA − B)−1C(λ − A)xn → (λ2 − λA−B)−1C(λ−AD(B)∩D(A))x for some
sequence {xn}∞n=1 in D(B) ∩D(A), and so

(λ2 − λA−B)−1CBxn → −Cx+ λ(λ2 − λA−B)−1C(λ−AD(B)∩D(A))x.

Hence, x ∈ D((λ2 − λA−B)−1CBD(B)∩D(A))), which implies that

D((λ2 − λA−B)−1C(λ−AD(B)∩D(A))) ⊂ D((λ2 − λA−B)−1CBD(B)∩D(A)).

Similarly, we can show that

D((λ2 − λA−B)−1CBD(B)∩D(A)) ⊂ D((λ2 − λA−B)−1C(λ−AD(B)∩D(A))).

Since(
(λ2 − λA−B)−1C(λ−A)xn

(λ2 − λA−B)−1CBxn

)
→
(

(λ2 − λA−B)−1C(λ−AD(B)∩D(A))x

(λ2 − λA−B)−1CBD(B)∩D(A)x

)
and

(λ− T )

(
(λ2 − λA−B)−1C(λ−A)xn

(λ2 − λA−B)−1CBxn

)
=

(
Cxn

0

)
→
(
Cx
0

)
.

By the closedness of λ− T , we have

(λ−T )

(
(λ2 − λA−B)−1C(λ−AD(B)∩D(A)) (λ2 − λA−B)−1C

(λ2 − λA−B)−1CBD(B)∩D(A) λ(λ2 − λA−B)−1C

)(
x
0

)
=C
(
x
0

)
.
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Consequently,

(λ− T )

(
(λ2 − λA−B)−1C(λ−AD(B)∩D(A)) (λ2 − λA−B)−1C

(λ2 − λA−B)−1CBD(B)∩D(A) λ(λ2 − λA−B)−1C

)
= C

on D((λ2 − λA−B)−1C(λ−AD(B)∩D(A)))×X. �

Since (λ2 − λA−B)−1C(λ−AD(B)∩D(A)) = [(λ2 − λA−B)−1CBD(B)∩D(A)]
1
λ+ 1

λC

and (λ2 − λA − B)−1C=[λ(λ2 − λA − B)−1C] 1
λ , we can combine Lemma 2.7 with

Lemma 2.8 and [1, Theorem 2.4.1] or [32, Theorem 1.2.1] to obtain the next new
Miyadera-Feller-Phillips-Hille-Yosida type theorem concerning the generation of an
exponentially bounded C-semigroup on X ×X.

Theorem 2.9. Assume that D(B) ∩D(A) is dense in X. Then T is a subgenerator of
an exponentially bounded C-semigroup on X ×X if and only if there exist M,ω > 0
such that λ ∈ ρC(A,B) and (1.6) holds for all λ > ω and k ∈ N ∪ {0}.

Just as a result in [17, Theorem 2] for the case of C0-semigroup, we can combine
Corollary 2.6 with Theorem 2.9 to obtain the next corollary.

Corollary 2.10. Assume that D(B)∩D(A) is dense in X. Then the following statements
are equivalent:

(i) There exist M,ω > 0 such that for each pair x, y ∈ D(B) ∩ D(A),
ACP(A,B,CBx, 0, Cy) has a unique solution w with ‖w(t)‖, ‖w′(t)‖ ≤
Meωt(‖x‖+ ‖y‖) for all t ≥ 0 and Bw +Aw′ ∈ C([0,∞), X);

(ii) T is a subgenerator of an exponentially bounded C-semigroup on X ×X;
(iii) There exist M,ω > 0 such that λ ∈ ρC(A,B) and (1.6) holds for all λ > ω and

k ∈ N ∪ {0};
(iv) There exist M,ω > 0 such that for each pair x, y ∈ D(B) ∩ D(A),

ACP(A,B, 0, Cx,Cy) has a unique solution z with ‖z(t)‖, ‖z′(t)‖ ≤Meωt(‖x‖+
‖y‖) for all t ≥ 0 and satisfies Bz +Az′ ∈ C([0, T0), X).

Combining Lemma 2.4 with [23, Corollary 3.6], the next theorem is also attained.

Theorem 2.11. Assume that ρ(T ) (resolvent set of T ) is nonempty. Then the following
are equivalent:

(i) For each (x, y) ∈ D(B)×D(A) ACP(A,B,CBx, 0, Cy) has a unique solution w
such that Bw +Aw′ ∈ C([0, T0), X);

(ii) T is the generator of a local C-semigroup S(·) on X ×X;
(iii) For each (x, y) ∈ D(B) × D(A) ACP(A,B, 0, Cx,Cy) has a unique solution z

such that Bz +Az′ ∈ C([0, T0), X).

By modifying slightly the proofs of [12, Theorem 2.12 and Theorem 3.2], the
next theorem is also attained, and so its proof is omitted.

Theorem 2.12. Let B be a subgenerator (resp., the generator) of a locally Lipschitz
continuous local once integrated C-semigroup on X. Assume that A is a bounded linear
operator from D(B) into R(C) or a bounded linear operator from [D(B)] into R(C) so
that R(C−1A) ⊂ D(B) and A+B is closed. Then A+B is a subgenerator (resp., the
generator) of a locally Lipschitz continuous local once integrated C-semigroup on X.
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Since B is a subgenerator (resp., the generator) of a locally Lipschitz continuous

local C-cosine function on X if and only if

(
0 I
B 0

)
is a subgenerator (resp., the

generator) of a locally Lipschitz continuous local once integrated C-semigroup on
X × X (see [6, Theorem 2.1.11]); and A is a bounded linear operator from [D(B)]
into R(C) so that R(C−1A) ⊂ D(B) implies that

R

(
C−1

(
0 0
0 A

))
= R

((
0 0
0 C−1A

))
⊂ D

((
0 I
B A

))
= D(B)×D(A),

we can apply Theorem 2.12 to obtain the next new result concerning the generations of
a locally Lipschitz continuous local C-cosine function on X with subgenerator (resp.,
the generator) B and a local C-semigroup on X × X with subgenerator (resp., the

generator)

(
0 I
B A

)
for which A may not be bounded.

Theorem 2.13.Assume that A is a bounded linear operator from D(B) into R(C) or
a bounded linear operator from [D(B)] into R(C) so that R(C−1A) ⊂ D(B). Then T
is a subgenerator (resp., the generator) of a local C-semigroup on X ×X only if B is
a subgenerator (resp., the generator) of a locally Lipschitz continuous local C-cosine
function on X. The ”if part” is also true when the assumption of D(B) is dense in
X is added.

Proof. Suppose that

(
0 I
B A

)
is a subgenerator (resp., the generator) of a local C-

semigroup on X×X. Then it is also a subgenerator (resp., the generator) of a locally

Lipschitz continuous local once integrated C-semigroup on X ×X, and so

(
0 I
B 0

)
is a subgenerator (resp., the generator) of a locally Lipschitz continuous local once
integrated C-semigroup on X×X. Hence, B is a subgenerator (resp., the generator) of
a locally Lipschitz continuous local C-cosine function on X. Conversely, suppose that
D(B) is dense in X and B is a subgenerator (resp., the generator) of a locally Lipschitz

continuous local C-cosine function on X. Then

(
0 I
B 0

)
is a subgenerator (resp.,

the generator) of a locally Lipschitz continuous local once integrated C-semigroup

on X × X, and so

(
0 I
B A

)
is a subgenerator (resp., the generator) of a locally

Lipschitz continuous local once integrated C-semigroup on X ×X. Hence, it is also a
subgenerator (resp., the generator) of a local C-semigroup on X ×X. �

Combining Theorem 2.11 with Theorem 2.13, we can obtain the next two corollaries.
Corollary 2.14. Assume that ρ(A,B) is nonempty and A ∈ L(X). Then the following
are equivalent:

(i) For each (x, y) ∈ D(B)×D(A) ACP(A,B,CBx, 0, Cy) has a unique solution w
in C([0, T0), [D(B)]);

(ii) T is the generator of a local C-semigroup on X ×X;
(iii) For each (x, y) ∈ D(B)×D(A) ACP(A,B, 0, Cx,Cy) has a unique solution z in

C([0, T0), [D(B)]).
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Moreover, (i)-(iii) imply

(iv) B is the generator of a locally Lipschitz continuous local C-cosine function on X

if R(A) ⊂ R(C), and (i)-(iv) are equivalent if the assumption of D(B) is dense in X
is also added. Here [D(B)] denotes the Banach space D(B) with norm | · | defined by
|x| = ‖x‖+ ‖Bx‖ for x ∈ D(B).

Corollary 2.15. Assume that D(B) ∩ D(A) is dense in X, ρ(A,B) nonempty, and
AB = BA on D(B) ∩D(A). Then the following are equivalent:

(i) For each (x, y) ∈ D(B)×D(A) ACP(A,B,CBx, 0, Cy) has a unique solution w
such that Bw +Aw′ ∈ C([0, T0), X);

(ii) T is the generator of a local C-semigroup on X ×X;
(iii) For each (x, y) ∈ D(B) × D(A) ACP(A,B, 0, Cx,Cy) has a unique solution z

such that Bz +Az′ ∈ C([0, T0), X).

Moreover, (i)-(iii) are equivalent to

(iv) B is the generator of a locally Lipschitz continuous local C-cosine function on X

if A is a bounded linear operator from [D(B)] into R(C) so that R(C−1A) ⊂ D(B).

Since B is a bounded linear operator from [D(A)] into R(C) so that R(C−1B) ⊂
D(A) implies that

R

(
C−1

(
0 0
B 0

))
= R

((
0 0

C−1B 0

))
⊂ D

((
0 I
B A

))
= D(B)×D(A),

we can combine Theorem 2.11 with Theorem 2.13 to obtain the next new result
concerning the generations of a local C-semigroup on X with subgenerator (resp.,
the generator) A and a local C-semigroup on X × X with subgenerator (resp., the

generator)

(
0 I
B A

)
for which B may not be bounded.

Theorem 2.16. Assume that B is a bounded linear operator from D(A) into R(C) or
a bounded linear operator from [D(A)] into R(C) so that R(C−1B) ⊂ D(A). Then T
is a subgenerator (resp., the generator) of a local C-semigroup on X ×X if and only
if A is a subgenerator (resp., the generator) of a local C-semigroup on X.

Proof. Clearly, C
(

0 I
0 A

)
=

(
0 I
0 A

)
C on X ×D(A)

(resp., C−1

(
0 I
0 A

)
C=
(

0 I
0 A

)
) is equivalent to CA = AC on D(A) (resp.,

C−1AC = A). Suppose that

(
0 I
B A

)
is a subgenerator (resp., the generator) of a

local C-semigroup on X×X. Then

(
0 I
0 A

)
is a subgenerator (resp., the generator)

of a local C-semigroup S(·) on X ×X. For each pair x, y ∈ X, we set(
u(t)
v(t)

)
= j0 ∗ S(t)

(
x
y

)
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for all 0 ≤ t < T0. Then(
u
v

)
∈ C1([0, T0), X ×X) ∩ C([0, T0), [T ]),

(
u(0)
v(0)

)
=

(
0
0

)
and (

u′(t)
v′(t)

)
=

(
0 I
0 A

)(
u(t)
v(t)

)
+

(
Cx
Cy

)
=

(
v(t)
Av(t)

)
+

(
Cx
Cy

)
for all 0 ≤ t < T0, so that u(0) = 0 = v(0), u′(t) = v(t) + Cx and v′(t) = Av(t) +
Cy for all 0 ≤ t < T0. Hence, v is a solution of ACP(A,Cy, 0) in C1([0, T0), X) ∩
C([0, T0), [D(A)]), u(0) = 0, and u′ = v on [0, T0). To show that A is a subgenerator
(resp., the generator) of a local C-semigroup on X, we remain only to show that 0 is
the unique solution of ACP(A, 0, 0) in C1([0, T0), X)∩C([0, T0), [D(A)]) (see Theorem
2.2). To this end. Suppose that v is a solution of ACP(A, 0, 0) in C1([0, T0), X) ∩
C([0, T0), [D(A)]). We set u = j0 ∗ v, then u(0) = 0 = v(0) and(

u′(t)
v′(t)

)
=

(
v(t)
Av(t)

)
=

(
0 I
0 A

)(
u(t)
v(t)

)
for all 0 ≤ t < T0. The uniqueness of solutions of ACP(A, 0, 0) follows from the unique-

ness of solutions of ACP

((
0 I
0 A

)
,

(
0
0

)
,

(
0
0

))
. Conversely, suppose that A is

a subgenerator (resp., the generator) of a local C-semigroup S(·) on X. To show that(
0 I
0 A

)
is a subgenerator (resp., the generator) of a local C-semigroup on X×X, we

need only to show that for each pair x, y ∈ X, ACP

((
0 I
0 A

)
,

(
Cx
Cy

)
,

(
0
0

))
has a unique solution in C1([0, T0), X ×X) ∩ C

(
[0, T0),

[(
0 I
0 A

)])
. To do this.

For each pair x, y ∈ X, we set v(t) = j0 ∗ S(t)y and u(t) = j0 ∗ v(t) + tCx for all
0 ≤ t < T0. Then u(0) = 0 = v(0), and v′(t)=S(t)y=Av(t)+Cy and u′(t) = v(t)+Cx
for all 0 ≤ t < T0, so that(

u′(t)
v′(t)

)
=

(
v(t) + Cx
Av(t) + Cy

)
=

(
0 I
0 A

)(
u(t)
v(t)

)
+

(
Cx
Cy

)
for all 0 ≤ t < T0. Hence,

(
u
v

)
is a solution of ACP

((
0 I
0 A

)
,

(
Cx
Cy

)
,

(
0
0

))
in C1([0, T0), X × X) ∩ C

(
[0, T0),

[(
0 I
0 A

)])
. The uniqueness of solutions of

ACP

((
0 I
0 A

)
,

(
0
0

)
,

(
0
0

))
in C1([0, T0), X ×X)∩C

(
[0, T0),

[(
0 I
0 A

)])
follows from the uniqueness of solutions of ACP(A, 0, 0). Consequently,

(
0 I
0 A

)
is

a subgenerator (resp., the generator) of a local C-semigroup on X ×X, which implies
that T is a subgenerator (resp., the generator) of a local C-semigroup on X ×X. �
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Corollary 2.17. Assume that ρ(A,B) is nonempty and B ∈ L(X). Then the following
are equivalent:

(i) For each (x, y) ∈ D(B)×D(A) ACP(A,B,CBx, 0, Cy) has a unique solution w
in C1([0, T0), [D(A)]);

(ii) T is the generator of a local C-semigroup on X ×X;
(iii) For each (x, y) ∈ D(B)×D(A) ACP(A,B, 0, Cx,Cy) has a unique solution z in

C1([0, T0), [D(A)]).

Moreover, (i)-(iii) are equivalent to

(vi) A is the generator of a local C-semigroup on X,

if R(B) ⊂ R(C).
Corollary 2.18. Assume that D(B) ∩ D(A) is dense in X, ρ(A,B) nonempty, and
AB = BA on D(B) ∩D(A). Then the following are equivalent:

(i) For each (x, y) ∈ D(B)×D(A) ACP(A,B,CBx, 0, Cy) has a unique solution w
such that Bw +Aw′ ∈ C([0, T0), X);

(ii) T is the generator of a local C-semigroup on X ×X;
(iii) For each (x, y) ∈ D(B) × D(A) ACP(A,B, 0, Cx,Cy) has a unique solution z

such that Bz +Az′ ∈ C([0, T0), X).

Moreover, (i)-(iii) are equivalent to

(iv) A is the generator of a local C-semigroup on X,

if B is a bounded linear operator from [D(A)] into R(C) so that R(C−1B) ⊂ D(A).
We end this paper with a simple illustrative example. Let S(·)(= {S(t)|0 ≤ t < 1})
be a family of bounded linear operators on c0(, family of all convergent sequences in
F with limit 0,) defined by S(t)x = {e−nentxn}∞n=1, then S(·) is a local C-semigroup
on c0 with generator A defined by Ax = {nxn}∞n=1 for all x = {xn}∞n=1 ∈ c0 with
{nxn}∞n=1 ∈ c0. Here C = S(0). Let {pn}∞n=1 ∈ l∞ with {enpn}∞n=1 ∈ l∞, and B be a
bounded linear operator from [D(A)] into R(C) defined by Bx = {nxnpn}∞n=1 for all
x = {xn}∞n=1 ∈ D(A), then R(C−1B) ⊆ D(A), CB = BC on D(A), and B : D(A) ⊂
c0 → c0 can be extended to a bounded linear operator on D(A) = c0. Applying

Corollary 2.17, we get that

(
0 I
B A

)
is the generator of a local C-semigroup on

c0 × c0.
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