Local C-semigroups and complete second order abstract Cauchy problems

Chung-Cheng Kuo

Abstract. Let $C: X \to X$ be an injective bounded linear operator on a Banach space X over the field $\mathbb{F}(=\mathbb{R} \text{ or } \mathbb{C})$ and $0 < T_0 \leq \infty$. Under some suitable assumptions, we deduce some relationship between the generation of a local (or an exponentially bounded) $\begin{pmatrix} C & 0 \\ 0 & C \end{pmatrix}$ -semigroup on $X \times X$ with subgenerator (resp., the generator) $\begin{pmatrix} 0 & I \\ B & A \end{pmatrix}$ and one of the following cases: (i) the well-posedness of a complete second-order abstract Cauchy problem $\operatorname{ACP}(A, B, f, x, y)$: w''(t) = Aw'(t) + Bw(t) + f(t) for a.e. $t \in (0, T_0)$ with w(0) = x and w'(0) = y; (ii) a Miyadera-Feller-Phillips-Hille-Yosida type condition; (iii) B is a subgenerator (resp., the generator) of a locally Lipschitz continuous local C-cosine function on X for which A may not be bounded; (iv) A is a subgenerator (resp., the generator) of a local C-semigroup on X for which B may not be bounded.

Mathematics Subject Classification (2010): 47D60, 47D62.

Keywords: Integrated C-semigroups, generator, subgenerator, abstract Cauchy problem.

1. Introduction

Let X be a Banach space over the field $\mathbb{F}(=\mathbb{R} \text{ or } \mathbb{C})$ with norm $\|\cdot\|$, and let L(X) denote the family of all bounded linear operators from X into itself. For each $0 < T_0 \leq \infty$, we consider the following two abstract Cauchy problems:

$$ACP(A, f, x) \qquad \begin{cases} u'(t) = Au(t) + f(t) & \text{ for a.e. } t \in (0, T_0) \\ u(0) = x \end{cases}$$

and

ACP(A, B, f, x, y)
$$\begin{cases} w''(t) = Aw'(t) + Bw(t) + f(t) & \text{for a.e. } t \in (0, T_0) \\ w(0) = x, w'(0) = y, \end{cases}$$

Chung-Cheng Kuo

where $x, y \in X$, $A : D(A) \subset X \to X$ and $B : D(B) \subset X \to X$ are closed linear operators, and $f \in L^1_{loc}([0, T_0), X)$ (the family of all locally Bochner integrable functions from $[0, T_0)$ into X). A function u is called a (strong) solution of ACP(A, f, x) if $u \in C([0, T_0), X)$ satisfies ACP(A, f, x) (that is u(0) = x and for a.e. $t \in (0, T_0), u(t)$ is differentiable and $u(t) \in D(A)$, and u'(t) = Au(t) + f(t) for a.e. $t \in (0, T_0)$). For each $\alpha > 0$ and each injection $C \in L(X)$, a subfamily $S(\cdot) (= \{S(t) | 0 \le t < T_0\})$ of L(X)is called a local α -times integrated C-semigroup on X if it is strongly continuous, $S(\cdot)C = CS(\cdot)$ and satisfies

(1.1)
$$S(t)S(s)x = \frac{1}{\Gamma(\alpha)} \left[\int_0^{t+s} - \int_0^t - \int_0^s \right] (t+s-r)^{\alpha-1} S(r) C x dr$$

for all $x \in X$ and $0 \le t, s \le t + s < T_0$ (see [1-2,12-14,18-21,28,30,32,35]) or called a local (0-times integrated) *C*-semigroup on *X* if it is strongly continuous, $S(\cdot)C = CS(\cdot)$ and satisfies

$$(1.2) S(t)S(s)x = S(t+s)Cx$$

for all $x \in X$ and $0 \le t, s \le t + s < T_0$ (see [4,6,13,23,29]), where $\Gamma(\cdot)$ denotes the Gamma function. Moreover, we say that $S(\cdot)$ is

- (1.3) locally Lipschitz continuous, if for each $0 < t_0 < T_0$ there exists a $K_{t_0} > 0$ such that $||S(t+h) S(t)|| \le K_{t_0}h$ for all $0 \le t, h, t+h \le t_0$;
- (1.4) exponentially bounded, if $T_0 = \infty$ and there exist $K, \omega \ge 0$ such that $||S(t)|| \le Ke^{\omega t}$ for all $t \ge 0$;
- (1.5) nondegenerate, if x = 0 whenever S(t)x = 0 for all $0 \le t < T_0$.

A nondegenerate local α -times integrated C-semigroup $S(\cdot)$ on X implies that S(0) = C if $\alpha = 0$, and S(0) = 0 (zero operator on X) otherwise, and the (integral) generator $A : D(A) \subset X \to X$ of $S(\cdot)$ is a closed linear operator in X defined by $D(A) = \{x \in X \mid S(\cdot)x - j_{\alpha}(\cdot)Cx = \widetilde{S}(\cdot)y_x \text{ on } [0,T_0) \text{ for some } y_x \in X\}$ and $Ax = y_x$ for all $x \in D(A)$ (see [6,13-14,23]), which is also equal to the linear operator A in X defined by $D(A) = \{x \in X \mid \lim_{h \to 0^+} (S(h)x - Cx)/h \in R(C)\}$ and $Ax = C^{-1} \lim_{h \to 0^+} (S(h)x - Cx)/h$ for $x \in D(A)$ when $\alpha = 0$ (see [4,23,27]). Here $j_{\beta}(t) = \frac{t^{\beta}}{\Gamma(\beta+1)}$ and $\widetilde{S}(t)z = \int_0^t S(s)zds$. In general, a local *C*-semigroup is called a C-semigroup if $T_0 = \infty$ (see [2,4,14,26,32]) or a C_0 -semigroup if C = I (identity operator on X) (see [1,5]). It is known that the theory of local C-semigroup is related to another family in L(X) which is called a local C-cosine function (see [2,4,8-9,24,28-29,32]). Perturbation of local (integrated) C-semigroups has been extensively studied by many authors appearing in [1,6-7,10-12,15-16,22,30-32]. Some interesting applications of this topic are also illustrated there. The well-posedness of ACP(A, B, f, x, y) had been studied by many authors when f = 0 (see [3,6,9,17-18,20,25,32-34]). Some relationship between the well-posedness of ACP(A, B, 0, x, y), a Miyadera-Feller-Phillips-Hille-Yosida type condition (see (1.6) below), and the generation of a C_0 -semigroup on $X \times X$ with generator $\begin{pmatrix} 0 & I \\ B & A \end{pmatrix}$ have been established in [25] when A and B are commutable on $D(B) \cap D(A)$, in [20] and [32]

for $A \in L(X)$, in [32] for $B \in L(X)$, and in [17] for the general case. In particular, Xiao and Liang [32, Theorems 2.6.1, 2.5.2 and 2.5.1] show that (generates a C_0 -semigroup on $X \times X$ (if and) only if $B \in L(X)$ (and A generates a C_0 -semigroup on X), but the conclusion may not be true when C_0 -semigroups are replaced by local C-semigroups; and the well-posedness of ACP(A, B, 0, x, y) is equivalent to A generates a C_0 -semigroup on X if $B \in L(X)$, and equivalent to B generates a cosine function on X if $A \in L(X)$. Unfortunately, a local C-semigroup may not be exponentially bounded and is not necessarily extendable to the half line $[0,\infty)$, and $\begin{pmatrix} 0 & 0 \\ B & A \end{pmatrix}$ may not be the generator of a local $\begin{pmatrix} C & 0 \\ 0 & C \end{pmatrix}$ -semigroup on $X \times X$ whenever $\begin{pmatrix} 0 & I \\ B & A \end{pmatrix}$ is. Moreover, $\lambda \in \rho_C(A, B)$ may not imply that $\overline{(\lambda^2 - \lambda A - B)^{-1}C(\lambda - A_{D(B)\cap D(A)})}$ and $\overline{(\lambda^2 - \lambda A - B)^{-1}CB_{D(B)\cap D(A)}}$ are bounded even though $D(B) \cap D(A)$ is dense in X and C = I, and $\lambda \in \rho_{\mathcal{C}}(\mathcal{T})$ implies that $\lambda \in$ $\rho_C(A,B), \ \overline{(\lambda^2 - \lambda A - B)^{-1}C(\lambda - A_{D(B)\cap D(A)})} \ \text{and} \ \overline{(\lambda^2 - \lambda A - B)^{-1}CB_{D(B)\cap D(A)})}$ are bounded, but may not be bounded on X even though C = I. In particular, they are bounded on X when the assumption of $D(B) \cap D(A)$ is dense in X is added (see [17] for the case C = I. In this paper, we will extend the aforementioned results to the case of local C-semigroup by different methods (see Theorems 2.2 and 2.3 below). We show that for each $(x, y) \in \mathcal{D}$ ACP(A, B, 0, Cx, Cy) has a unique solution z which depends continuously differentiable on (x, y) and satisfies $Bz + Az' \in C([0, T_0), X)$ if and only if \mathcal{T} is a subgenerator of a local \mathcal{C} -semigroup on $X \times X$ if and only if for each $(x, y) \in \mathcal{D}$ ACP(A, B, CBx, 0, Cy) has a unique solution w which depends continuously differentiable on (x, y) and satisfies $Bw + Aw' \in C([0, T_0), X)$ (see The-orem 2.5 below). Here $\mathcal{T} = \begin{pmatrix} 0 & I \\ B & A \end{pmatrix}$, $\mathcal{C} = \begin{pmatrix} C & 0 \\ 0 & C \end{pmatrix}$, and \mathcal{D} is a fixed subspace of $D(B) \times D(A)$ that is dense in $X \times X$. We then prove two important lemmas (see Lemmas 2.7 and 2.8 below) which can be used to show that there exist $M, \omega > 0$ so that for each pair $x, y \in D(B) \cap D(A)$ ACP(A, B, CBx, 0, Cy) has a unique solution w with $||w(t)||, ||w'(t)|| \le Me^{\omega t}(||x|| + ||y||)$ for all $t \ge 0$ and $Bw + Aw' \in C([0, \infty), X)$ if and only if \mathcal{T} is a subgenerator of an exponentially bounded \mathcal{C} -semigroup on $X \times X$ if and only if there exist $M, \omega > 0$ so that $\lambda \in \rho_C(A, B)$ and (1.6) $\|[\lambda(\lambda^2 - \lambda A - B)^{-1}C]^{(k)}\|, \|[\overline{(\lambda^2 - \lambda A - B)^{-1}CB_{D(B)\cap D(A)}}]^{(k)}\| \le \frac{Mk!}{(\lambda - \omega)^{k+1}}$ for all $\lambda > \omega$ and $k \in \mathbb{N} \cup \{0\}$ if and only if there exist $M, \omega > 0$ so that for each pair $x, y \in D(B) \cap D(A)$ ACP(A, B, 0, Cx, Cy) has a unique solution z with $||z(t)||, ||z'(t)|| \le Me^{\omega t}(||x|| + ||y||)$ for all $t \ge 0$ and satisfies $Bz + Az' \in C([0, \infty), X)$ (see Corollary 2.6 and Theorem 2.9 below). Here $\rho_C(A, B) = \{\lambda \in \mathbb{F} \mid \lambda^2 - \lambda A - B\}$ is injective, $R(C) \subset R(\lambda^2 - \lambda A - B)$, and $(\lambda^2 - \lambda A - B)^{-1}C \in L(X)$. When $\rho(\mathcal{T})$ (resolvent set of \mathcal{T}) is nonempty, we can combine Lemma 2.4 with [23, Corollary 3.6] to show that for each $(x, y) \in D(B) \times D(A) \operatorname{ACP}(A, B, CBx, 0, Cy)$ has a unique solution w such that $Bw + Aw' \in C([0, T_0), X)$ if and only if \mathcal{T} is the generator of a local C-semigroup $\mathcal{S}(\cdot)$ on $X \times X$ if and only if for each $(x, y) \in D(B) \times D(A)$ ACP(A, B, 0, Cx, Cy) has a unique solution z such that $Bz + Az' \in C([0, T_0), X)$ (see

Theorem 2.11 below). We then apply the modifications of [12, Theorem 2.12 and Theorem 3.2] concerning the bounded and unbounded perturbations of a locally Lipschitz continuous local once integrated C-semigroup on X (see Theorem 2.12 below) and a basic property of local C-cosine function (see [6, Theorem 2.1.11]) to obtain two new equivalence relations concerning the generations of a local C-semigroup on $X \times X$ $\left(\begin{array}{cc} 0 & I \\ B & A \end{array}\right)$ and either a locally Lipschitz with subgenerator (resp., the generator) continuous local C-cosine function on X with subgenerator (resp., the generator) Bfor which A may not be bounded (see Theorem 2.13 below) or a local C-semigroup on X with subgenerator (resp., the generator) A for which B may not be bounded (see Theorem 2.16 below). Under some suitable assumptions, which can be used to show those preceding equivalence conditions which are equivalent to B is the generator of a locally Lipschitz continuous local C-cosine function on X for which A may not be bounded (see Corollaries 2.14 and 2.15 below), and are also equivalent to Ais the generator of a local C-semigroup on X for which B may not be bounded (see Corollaries 2.17 and 2.18 below).

2. Abstract Cauchy problems

In this section, we consider the existence of solutions of the abstract Cauchy problem ACP(A, B, f, x, y). A function u is called a (strong) solution of ACP(A, B, f, x, y) if $u \in C^1([0, T_0), X)$ satisfies ACP(A, B, f, x, y) (that is u(0) = x, u'(0) = y, and for a.e. $t \in (0, T_0)$, u'(t) is differentiable and $u'(t) \in D(A)$, and u''(t)=Au'(t)+Bu(t)+f(t) for a.e. $t \in (0, T_0)$). A linear operator A in X is called a subgenerator of a local α -times integrated C-semigroup $S(\cdot)$ if $S(t)x - j_{\alpha}(t)Cx = \int_0^t S(r)Axdr$ for all $x \in D(A)$ and $0 \leq t < T_0$, and $\int_0^t S(r)xdr \in D(A)$ and $A \int_0^t S(r)xdr = S(t)x - j_{\alpha}(t)Cx$ for all $x \in X$ and $0 \leq t < T_0$. Moreover, a subgenerator A of $S(\cdot)$ is called the maximal subgenerator of $S(\cdot)$ if it is an extension of each subgenerator of $S(\cdot)$ to D(A). We next note some basic properties of a local C-semigroup, and then deduce some results about connections between the unique existence of solutions of ACP(A, B, CBx, 0, Cy), ACP $\left(\mathcal{T}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} Cx \\ Cy \end{pmatrix}\right)$, and

ACP(A, B, 0, Cx, Cy).

Proposition 2.1. (see [4,13,23]) Let A be the generator of a local C-semigroup $S(\cdot)$ on X. Then

- (2.1) S(t)S(s) = S(s)S(t) for $0 \le t, s, t + s < T_0$;
- (2.2) A is closed and $C^{-1}AC = A$;

(2.3) $S(t)x \in D(A)$ and S(t)Ax = AS(t)x for $x \in D(A)$ and $0 \le t < T_0$;

(2.4) $\int_0^t S(r) x dr \in D(A) \text{ and } A \int_0^t S(r) x dr = S(t) x - Cx \text{ for } x \in X \text{ and } 0 \le t < T_0;$

(2.5) $R(S(t)) \subset \overline{D(A)}$ for $0 \le t < T_0$;

(2.6) A is the maximal subgenerator of $S(\cdot)$;

(2.7) $C^{-1}\overline{A_0}C$ is the generator of $S(\cdot)$ for each subgenerator A_0 of $S(\cdot)$.

Theorem 2.2. (see [13,23]) Let A be a closed linear operator in X such that $CA \subset AC$. Then A is a subgenerator of a local C-semigroup $S(\cdot)$ on X if and only if for each $x \in X$ ACP(A, Cx, 0) has a unique (strong) solution $u(\cdot, x)$ in $C^1([0, T_0), X)$. In this case, we have $u(t, x) = j_0 * S(t)x (= \int_0^t S(s)x ds)$ for all $x \in X$. By slightly modifying the proof of [23, Corollary 3.5], the next theorem concerning the well-posedness of ACP(A, f, x) is attained, and so its proof is omitted.

Theorem 2.3. Let A be a closed linear operator in X such that $CA \subset AC$ and D dense in X for some subspace D of D(A). Then the following are equivalent:

- (i) A is a subgenerator of a nondegenerate local C-semigroup $S(\cdot)$ on X;
- (ii) For each x ∈ D ACP(A, 0, Cx) has a unique solution u(·; Cx) in C([0, T₀), [D(A)]) which depends continuously on x. That is, if {x_n}_{n=1}[∞] is a Cauchy sequence in (D, || · ||), then {u(·; Cx_n)}_{n=1}[∞] converges uniformly on compact subsets of [0, T₀).

In this case, $u(\cdot, Cx) = S(\cdot)x$.

In the following, we always assume that A and B are biclosed linear operators in X such that $CA \subset AC$ and $CB \subset BC$.

Lemma 2.4. Assume that \mathcal{D} is a subspace of $D(B) \times D(A)$. Then the following are equivalent:

- (i) For each $(x, y) \in \mathcal{D}$ ACP(A, B, CBx, 0, Cy) has a unique solution w such that $Bw + Aw' \in C([0, T_0), X);$
- (ii) For each $(x,y) \in \mathcal{D} ACP\left(\mathcal{T}, \begin{pmatrix} 0\\0 \end{pmatrix}, \begin{pmatrix} Cx\\Cy \end{pmatrix}\right)$ has a unique solution $\begin{pmatrix} u\\v \end{pmatrix}$ in $C([0,T_0),[\mathcal{T}]);$
- (iii) For each $(x, y) \in \mathcal{D}$ ACP(A, B, 0, Cx, Cy) has a unique solution z such that $Bz + Az' \in C([0, T_0), X).$

In this case, $w = j_0 * v$ and z = u. In particular, $z, w \in C^1([0, T_0), [D(A)]) \cap C([0, T_0), [D(B)])$ if either A or B is bounded. Here $\mathcal{T} = \begin{pmatrix} 0 & I \\ B & A \end{pmatrix}$ and $\mathcal{C} = \begin{pmatrix} C & 0 \\ 0 & C \end{pmatrix}$.

Proof. Since the biclosedness of A and B with $CA \subset AC$ and $CB \subset BC$ implies that \mathcal{T} is a closed linear operator in $X \times X$ so that $\mathcal{CT} \subset \mathcal{TC}$. Suppose that $(x,y) \in \mathcal{D}$ and $\begin{pmatrix} u \\ v \end{pmatrix}$ denotes the unique solution of ACP $\left(\mathcal{T}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} Cx \\ Cy \end{pmatrix}\right)$ in C([0, T_0), [(\mathcal{T}]). Then v and Bu + Av are continuous on [0, T_0), and u' = v and v' = Bu + Av + a.e. on [0, T_0), so that $u = j_0 * v + Cx$ on [0, T_0), $j_0 * v(t) \in D(B)$ for all $t \in [0, T_0)$, and $v' = Bj_0 * v + CBx$ a.e. on [0, T_0). Hence, $w = j_0 * v$ is a solution of ACP(A, B, CBx, 0, Cy) such that $Bw + Aw' \in C([0, T_0), X)$. The uniqueness of solutions of ACP(A, B, CBx, 0, Cy) follows from the fact that $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ is the unique solution of ACP $\left(\mathcal{T}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}\right)$ in C([0, T_0), [\mathcal{T}]). Conversely, suppose that $(x, y) \in \mathcal{D}$ and w denotes the unique solution of ACP(A, B, CBx, 0, Cy) such that $Bw + Aw' \in C([0, T_0), X)$. We set u = w + Cx and v = w' on $[0, T_0)$. Then

$$\begin{pmatrix} u(0) \\ v(0) \end{pmatrix} = \begin{pmatrix} Cx \\ Cy \end{pmatrix}, \begin{pmatrix} u(t) \\ v(t) \end{pmatrix} \in \mathcal{D}(B) \times \mathcal{D}(A) = \mathcal{D}(\mathcal{T})$$

for all $t \in [0, T_0)$ and $\mathcal{T}\begin{pmatrix} u \\ v \end{pmatrix}$ is continuous on $[0, T_0)$, and for a.e. $t \in (0, T_0)\begin{pmatrix} u(t) \\ v(t) \end{pmatrix}$ is differentiable and

$$\begin{pmatrix} u'(t) \\ v'(t) \end{pmatrix} = \begin{pmatrix} w'(t) \\ w''(t) \end{pmatrix} = \begin{pmatrix} w'(t) \\ Aw'(t) + Bw(t) + CBx \end{pmatrix}$$
$$= \begin{pmatrix} v(t) \\ Av(t) + Bu(t) \end{pmatrix} = \mathcal{T} \begin{pmatrix} u(t) \\ v(t) \end{pmatrix},$$

and so $\begin{pmatrix} u \\ v \end{pmatrix}$ is a solution of ACP $\left(\mathcal{T}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} Cx \\ Cy \end{pmatrix}\right)$ in C([0, T_0), [\mathcal{T}]). The uniqueness of solutions follows from the fact that 0 is the unique solution of ACP(A, B, 0, 0, 0). Similarly, we can show that (ii) and (iii) are equivalent. \Box

Just as an application of Theorem 2.3, the next theorem concerning the wellposedness of ACP(A, B, f, x, y) is also attained.

Theorem 2.5. Assume that \mathcal{D} is dense in $X \times X$ for some subspace \mathcal{D} of $D(B) \times D(A)$. Then the following are equivalent:

- (i) For each (x, y) ∈ D ACP(A, B, CBx, 0, Cy) has a unique solution w which depends continuously differentiable on (x, y) (that is, if {x_n}_{n=1}[∞] is a Cauchy sequence in (D(B), || · ||) and {y_n}_{n=1}[∞] a Cauchy sequence in (D(A), || · ||), and w_n denotes the unique solution of ACP(A, B, CBx_n, 0, Cy_n), then {w_n(·)}_{n=1}[∞] both converge uniformly on compact subsets of [0, T₀)) and satisfies Bw + Aw' ∈ C([0, T₀), X);
- (ii) \mathcal{T} is a subgenerator of a local \mathcal{C} -semigroup $\mathcal{S}(\cdot)$ on $X \times X$;
- (iii) For each $(x, y) \in \mathcal{D}$ ACP(A, B, 0, Cx, Cy) has a unique solution z which depends continuously differentiable on (x, y) and satisfies $Bz + Az' \in C([0, T_0), X)$.

Here
$$\mathcal{T} = \begin{pmatrix} 0 & I \\ B & A \end{pmatrix}$$
 and $\mathcal{C} = \begin{pmatrix} C & 0 \\ 0 & C \end{pmatrix}$.

Proof. Since for each $(x, y) \in \mathcal{D}\begin{pmatrix} u \\ v \end{pmatrix}$ is the unique solution of ACP $\left(\mathcal{T}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} Cx \\ Cy \end{pmatrix}\right)$

in $C([0,T_0),[\mathcal{T}])$ if and only if for each $(x,y) \in \mathcal{D}$ u = w + Cx and v = w' on $[0,T_0)$, and w is the unique solution of ACP(A, B, CBx, 0, Cy) such that $Bw + Aw' \in C([0,T_0), X)$. By Theorem 2.3, we also have $\begin{pmatrix} u \\ v \end{pmatrix} = \mathcal{S}(\cdot)\begin{pmatrix} x \\ y \end{pmatrix}$. Consequently, \mathcal{T} is a subgenerator of a local \mathcal{C} -semigroup on $X \times X$ if and only if for each $(x,y) \in \mathcal{D}$ ACP(A, B, CBx, 0, Cy) has a unique solution w which depends continuously differentiable on (x, y). Similarly, we can show that (ii) and (iii) are equivalent. \Box

Corollary 2.6. Assume that \mathcal{D} is dense in $X \times X$ for some subspace \mathcal{D} of $D(B) \times D(A)$. Then the following are equivalent:

- (i) There exist $M, \omega > 0$ such that for each $(x, y) \in \mathcal{D}$ ACP(A, B, CBx, 0, Cy) has a unique solution w with $||w(t)||, ||w'(t)|| \leq Me^{\omega t}(||x|| + ||y||)$ for all $t \geq 0$ and $Bw + Aw' \in C([0, \infty), X);$
- (ii) \mathcal{T} is a subgenerator of an exponentially bounded C-semigroup on $X \times X$;
- (iii) There exist $M, \omega > 0$ such that for each $(x, y) \in \mathcal{D}$ ACP(A, B, 0, Cx, Cy) has a unique solution z with $||z(t)||, ||z'(t)|| \leq Me^{\omega t}(||x|| + ||y||)$ for all $t \geq 0$ and satisfies $Bz + Az' \in C([0, T_0), X)$.

Lemma 2.7. Assume that $\lambda \in \rho_{\mathcal{C}}(\mathcal{T})$ (*C*-resolvent set of \mathcal{T}). Then

- (i) $\lambda \in \rho_C(A, B)$;
- (ii) $(\lambda^2 \lambda A B)^{-1}C(\lambda A_{D(B)\cap D(A)})$ and $(\lambda^2 \lambda A B)^{-1}CB_{D(B)\cap D(A)}$ are closable, and their closures are bounded and have the same domain;

(iii)
$$(\lambda - \mathcal{T})^{-1}\mathcal{C} = \begin{pmatrix} (\lambda^2 - \lambda A - B)^{-1}C(\lambda - A_{D(B)\cap D(A)}) & (\lambda^2 - \lambda A - B)^{-1}C \\ \overline{(\lambda^2 - \lambda A - B)^{-1}CB_{D(B)\cap D(A)}} & \lambda(\lambda^2 - \lambda A - B)^{-1}C \end{pmatrix}$$

on $D(\overline{(\lambda^2 - \lambda A - B)^{-1}C(\lambda - A_{D(B)\cap D(A)})}) \times X$, and on $X \times X$ if $D(B) \cap D(A)$
is dense in X .

Proof. To show that $\lambda^2 - \lambda A - B$ is closed. Suppose that $\{x_n\}_{n=1}^{\infty}$ is a sequence in $D(B) \cap D(A)$ which converges to x in X and $\{(\lambda^2 - \lambda A - B)x_n\}_{n=1}^{\infty}$ converges to y in X. Then $\begin{pmatrix} x_n \\ \lambda x_n \end{pmatrix} \in D(\mathcal{T}), \begin{pmatrix} x_n \\ \lambda x_n \end{pmatrix} \to \begin{pmatrix} x \\ \lambda x \end{pmatrix}$, and $(\lambda - \mathcal{T}) \begin{pmatrix} x_n \\ \lambda x_n \end{pmatrix} = \begin{pmatrix} 0 \\ (\lambda^2 - \lambda A - B)x_n \end{pmatrix} \to \begin{pmatrix} 0 \\ y \end{pmatrix}$.

By the closedness of $\lambda - \mathcal{T}$, we have $\begin{pmatrix} x \\ \lambda x \end{pmatrix} \in D(\mathcal{T})$ and

$$\begin{pmatrix} 0\\ (\lambda^2 - \lambda A - B)x \end{pmatrix} = (\lambda - \mathcal{T})\begin{pmatrix} x\\ \lambda x \end{pmatrix} = \begin{pmatrix} 0\\ y \end{pmatrix}$$

and so $(\lambda^2 - \lambda A - B)x = y$. Hence, $\lambda^2 - \lambda A - B$ is closed. To show that $\lambda^2 - \lambda A - B$ is injective. Suppose that $(\lambda^2 - \lambda A - B)x = 0$. Then

$$(\lambda - \mathcal{T}) \begin{pmatrix} x \\ \lambda x \end{pmatrix} = \begin{pmatrix} 0 \\ (\lambda^2 - \lambda A - B)x \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

and so $\begin{pmatrix} x \\ \lambda x \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. Hence, x = 0, which implies that $\lambda^2 - \lambda A - B$ is injective. To show that $R(C) \subset R(\lambda^2 - \lambda A - B)$. Suppose that $z \in X$ is given. Then

$$(\lambda - \mathcal{T}) \left(\begin{array}{c} x \\ y \end{array} \right) = \left(\begin{array}{c} 0 \\ Cz \end{array} \right)$$

for some $(x, y) \in D(\mathcal{T}) = D(B) \times D(A)$, so that $\lambda x - y = 0$ and $-Bx + (\lambda - A)y = Cz$. Hence, $x \in D(B) \cap D(A) (= D(\lambda^2 - \lambda A - B))$ and $(\lambda^2 - \lambda A - B)x = Cz$, which implies that $R(C) \subset R(\lambda^2 - \lambda A - B)$. Consequently, $\lambda \in \rho_C(A, B)$.

To show that $(\lambda^2 - \lambda A - B)^{-1}C(\lambda - A_{D(B)\cap D(A)})$ and $(\lambda^2 - \lambda A - B)^{-1}CB_{D(B)\cap D(A)}$ are closable, we need only to show that $(\lambda^2 - \lambda A - B)^{-1}C(\lambda - A_{D(B)\cap D(A)})$ or $(\lambda^2 - \lambda A - B)^{-1}CB_{D(B)\cap D(A)}$ is closable. We will show that Chung-Cheng Kuo

(2.8)
$$(\lambda - \mathcal{T})^{-1}\mathcal{C} = \begin{pmatrix} (\lambda^2 - \lambda A - B)^{-1}C(\lambda - A) & (\lambda^2 - \lambda A - B)^{-1}C \\ (\lambda^2 - \lambda A - B)^{-1}CB & \lambda(\lambda^2 - \lambda A - B)^{-1}C \end{pmatrix}$$

on $D(B) \cap D(A)$ first or equivalently,

$$\begin{aligned} (\lambda - \mathcal{T}) \begin{pmatrix} (\lambda^2 - \lambda A - B)^{-1}C(\lambda - A) & (\lambda^2 - \lambda A - B)^{-1}C \\ (\lambda^2 - \lambda A - B)^{-1}CB & \lambda(\lambda^2 - \lambda A - B)^{-1}C \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} &= \begin{pmatrix} Cx \\ Cy \end{pmatrix} \\ &= \mathcal{C} \begin{pmatrix} x \\ y \end{pmatrix} \end{aligned}$$

for all $x, y \in D(B) \cap D(A)$. Suppose that $x, y \in D(B) \cap D(A)$ are given. Then by the fact $B(\lambda^2 - \lambda A - B)^{-1}C(\lambda - A)x = (\lambda - A)(\lambda^2 - \lambda A - B)^{-1}CBx$ that we have

$$\begin{split} &(\lambda - \mathcal{T}) \bigg(\begin{array}{cc} (\lambda^2 - \lambda A - B)^{-1}C(\lambda - A) & (\lambda^2 - \lambda A - B)^{-1}C \\ & (\lambda^2 - \lambda A - B)^{-1}CB & \lambda(\lambda^2 - \lambda A - B)^{-1}C \end{array} \bigg) \bigg(\begin{array}{c} x \\ y \end{array} \bigg) \\ &= \bigg(\begin{array}{cc} \lambda & -I \\ -B & \lambda - A \end{array} \bigg) \bigg(\begin{array}{c} (\lambda^2 - \lambda A - B)^{-1}C(\lambda - A) & (\lambda^2 - \lambda A - B)^{-1}C \\ & (\lambda^2 - \lambda A - B)^{-1}CB & \lambda(\lambda^2 - \lambda A - B)^{-1}C \end{array} \bigg) \bigg(\begin{array}{c} x \\ y \end{array} \bigg) \\ &= \bigg(\begin{array}{c} \lambda & -I \\ -B & \lambda - A \end{array} \bigg) \bigg(\begin{array}{c} (\lambda^2 - \lambda A - B)^{-1}C(\lambda - A)x + (\lambda^2 - \lambda A - B)^{-1}Cy \\ & (\lambda^2 - \lambda A - B)^{-1}CBx + \lambda(\lambda^2 - \lambda A - B)^{-1}Cy \end{array} \bigg) \\ &= \bigg(\begin{array}{c} Cx \\ Cy \end{array} \bigg). \end{split}$$

Suppose that $x_n \in D(B) \cap D(A)$, $x_n \to 0$ in X, and $(\lambda^2 - \lambda A - B)^{-1}C(\lambda - A)x_n \to y$ in X. Then

$$\begin{aligned} (\lambda^2 - \lambda A - B)^{-1}CB)x_n &= (\lambda^2 - \lambda A - B)^{-1}C(B + \lambda A - \lambda^2))x_n \\ &+ (\lambda^2 - \lambda A - B)^{-1}C(\lambda^2 - \lambda A)x_n \\ &= Cx_n + (\lambda^2 - \lambda A - B)^{-1}C(\lambda^2 - \lambda A)x_n \\ &\to \lambda y, \end{aligned}$$

and so

$$\begin{split} (\lambda - \mathcal{T})^{-1} C \begin{pmatrix} x_n \\ 0 \end{pmatrix} &= \begin{pmatrix} (\lambda^2 - \lambda A - B)^{-1} C (\lambda - A) & (\lambda^2 - \lambda A - B)^{-1} C \\ (\lambda^2 - \lambda A - B)^{-1} C B & \lambda (\lambda^2 - \lambda A - B)^{-1} C \end{pmatrix} \begin{pmatrix} x_n \\ 0 \end{pmatrix} \\ &= \begin{pmatrix} (\lambda^2 - \lambda A - B)^{-1} C (\lambda - A) x_n \\ (\lambda^2 - \lambda A - B)^{-1} C B x_n \end{pmatrix} \\ &\to \begin{pmatrix} y \\ \lambda y \end{pmatrix} = (\lambda - \mathcal{T})^{-1} C \begin{pmatrix} 0 \\ 0 \end{pmatrix}. \end{split}$$

Hence, y = 0, which implies that $(\lambda^2 - \lambda A - B)^{-1}C(\lambda - A_{D(B)\cap D(A)})$ is closable. To show that $\overline{(\lambda^2 - \lambda A - B)^{-1}CB_{D(B)\cap D(A)}}$ is bounded. Let $x \in D(\overline{(\lambda^2 - \lambda A - B)^{-1}CB_{D(B)\cap D(A)}})$ be given. Then $(x_n, (\lambda^2 - \lambda A - B)^{-1}CBx_n) \rightarrow (x, \overline{(\lambda^2 - \lambda A - B)^{-1}CB_{D(B)\cap D(A)}}x)$ for some $x_n \in D(B) \cap D(A)$, and so

$$(\lambda - \mathcal{T})^{-1} \mathcal{C} \begin{pmatrix} x_n \\ 0 \end{pmatrix} = \begin{pmatrix} (\lambda^2 - \lambda A - B)^{-1} C(\lambda - A) x_n \\ (\lambda^2 - \lambda A - B)^{-1} C B x_n \end{pmatrix} \to (\lambda - \mathcal{T})^{-1} \mathcal{C} \begin{pmatrix} x \\ 0 \end{pmatrix}.$$

228

Hence, $\{(\lambda^2 - \lambda A - B)^{-1}(\lambda - A)x_n\}_{n=1}^{\infty}$ and $\{(\lambda^2 - \lambda A - B)^{-1}Bx_n\}_{n=1}^{\infty}$ both converge. By the closedness of $(\lambda^2 - \lambda A - B)^{-1}C(\lambda - A_{D(B)\cap D(A)})$ and $(\lambda^2 - \lambda A - B)^{-1}CB_{D(B)\cap D(A)}$, we have $x \in D((\lambda^2 - \lambda A - B)^{-1}C(\lambda - A_{D(B)\cap D(A)}))$ and

$$(\lambda - \mathcal{T})^{-1} \mathcal{C} \begin{pmatrix} x \\ 0 \end{pmatrix} = \begin{pmatrix} \overline{(\lambda^2 - \lambda A - B)^{-1} C(\lambda - A_{\mathrm{D}(B) \cap \mathrm{D}(A)})} x \\ \overline{(\lambda^2 - \lambda A - B)^{-1} C B_{\mathrm{D}(B) \cap \mathrm{D}(A)} x} \end{pmatrix},$$

which implies that $(\lambda^2 - \lambda A - B)^{-1}CB_{D(B)\cap D(A)}$ is bounded and

$$D(\overline{(\lambda^2 - \lambda A - B)^{-1}CB_{D(B)\cap D(A)}}) \subset D(\overline{(\lambda^2 - \lambda A - B)^{-1}C(\lambda - A_{D(B)\cap D(A)})}).$$

Similarly, we can show that $(\lambda^2 - \lambda A - B)^{-1}C(\lambda - A_{D(B)\cap D(A)})$ is bounded and

$$D(\overline{(\lambda^2 - \lambda A - B)^{-1}C(\lambda - A_{D(B)\cap D(A)})}) \subset D(\overline{(\lambda^2 - \lambda A - B)^{-1}CB_{D(B)\cap D(A)}}),$$

ich implies that

which implies that

$$\begin{aligned} &(\lambda - \mathcal{T})^{-1} \mathcal{C} \left(\begin{array}{c} x \\ y \end{array} \right) = (\lambda - \mathcal{T})^{-1} \mathcal{C} \left(\begin{array}{c} x \\ 0 \end{array} \right) + (\lambda - \mathcal{T})^{-1} \mathcal{C} \left(\begin{array}{c} 0 \\ y \end{array} \right) \\ &= \left(\begin{array}{c} \overline{(\lambda^2 - \lambda A - B)^{-1} C(\lambda - A_{\mathrm{D}(B) \cap \mathrm{D}(A)})} & (\lambda^2 - \lambda A - B)^{-1} C \\ \overline{(\lambda^2 - \lambda A - B)^{-1} C B_{\mathrm{D}(B) \cap \mathrm{D}(A)}} & \lambda (\lambda^2 - \lambda A - B)^{-1} C \end{array} \right) \left(\begin{array}{c} x \\ y \end{array} \right) \end{aligned}$$

for all $(x, y) \in D(\overline{(\lambda^2 - \lambda A - B)^{-1}C(\lambda - A_D(B) \cap D(A))}) \times X$. Combining this with the closedness of $\overline{(\lambda^2 - \lambda A - B)^{-1}CB_{D(B) \cap D(A)}}$ and the denseness of $D(B) \cap D(A)$ in X, we have

$$(\lambda^2 - \lambda A - B)^{-1}CB_{\mathcal{D}(B)\cap\mathcal{D}(A)} \in \mathcal{L}(X).$$

Lemma 2.8. Assume that $\lambda \in \rho_C(A, B)$. Then

- (i) $\lambda \mathcal{T}$ is injective;
- (ii) $(\lambda^2 \lambda A B)^{-1}C(\lambda A_{D(B)\cap D(A)})$ and $(\lambda^2 \lambda A B)^{-1}CB_{D(B)\cap D(A)}$ are closable and their closures have the same domain, and

$$\begin{aligned} &(\lambda - \mathcal{T}) \left(\begin{array}{cc} \overline{(\lambda^2 - \lambda A - B)^{-1}C(\lambda - A_{D(B) \cap D(A)})} & (\lambda^2 - \lambda A - B)^{-1}C\\ \overline{(\lambda^2 - \lambda A - B)^{-1}CB_{D(B) \cap D(A)}} & \lambda(\lambda^2 - \lambda A - B)^{-1}C \end{array} \right) = \mathcal{C} \\ & on \ D(\overline{(\lambda^2 - \lambda A - B)^{-1}C(\lambda - A_{D(B) \cap D(A)})}) \times X; \\ (\text{iii}) \ \lambda \in \rho_{\mathcal{C}}(\mathcal{T}) \ and \end{aligned}$$

$$(\lambda - \mathcal{T})^{-1}\mathcal{C} = \left(\begin{array}{c} \overline{(\lambda^2 - \lambda A - B)^{-1}C(\lambda - A_{D(B)\cap D(A)})} & (\lambda^2 - \lambda A - B)^{-1}C\\ \overline{(\lambda^2 - \lambda A - B)^{-1}CB_{D(B)\cap D(A)}} & \lambda(\lambda^2 - \lambda A - B)^{-1}C \end{array}\right),$$

if
$$\overline{(\lambda^2 - \lambda A - B)^{-1}C(\lambda - A_{D(B)\cap D(A)})} \in L(X).$$

In particular, the conclusion of (iii) holds when A or B in L(X), or $D(B) \cap D(A)$ is dense in X with AB = BA on $D(B) \cap D(A)$.

Proof. To show that $\lambda - \mathcal{T}$ is injective. Suppose that $(\lambda - \mathcal{T})\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. Then $\lambda x - y = 0$ and $-Bx + (\lambda - A)y = 0$, so that $\lambda x = y$ and $-Bx + (\lambda^2 - \lambda A)x = 0$. Hence, x = 0 = y, which implies that $\lambda - \mathcal{T}$ is injective. Just as in the proof of Lemma 2.7, we will apply (2.8) to show that $(\lambda^2 - \lambda A - B)^{-1}C(\lambda - A_{D(B)\cap D(A)})$ and $(\lambda^2 - \lambda A - B)^{-1} CB_{D(B) \cap D(A)}$ are closable. Suppose that $\{x_n\}_{n=1}^{\infty}$ is a sequence in $D(B) \cap D(A)$ which converges to 0 in X and $\{(\lambda^2 - \lambda A - B)(\lambda - A)x_n\}_{n=1}^{\infty}$ converges to y in X. Then

$$(\lambda^{2} - \lambda A - B)^{-1}CBx_{n} = -Cx_{n} + (\lambda^{2} - \lambda A - B)^{-1}C(\lambda - A)x_{n} \to \lambda y,$$

and so $\begin{pmatrix} (\lambda^{2} - \lambda A - B)^{-1}C(\lambda - A)x_{n} \\ (\lambda^{2} - \lambda A - B)^{-1}CBx_{n} \end{pmatrix} \to \begin{pmatrix} y \\ \lambda y \end{pmatrix}$. Hence,
 $(\lambda - \mathcal{T})\begin{pmatrix} (\lambda^{2} - \lambda A - B)^{-1}C(\lambda - A)x_{n} \\ (\lambda^{2} - \lambda A - B)^{-1}CBx_{n} \end{pmatrix} = \begin{pmatrix} Cx_{n} \\ 0 \end{pmatrix} \to \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$

By the closedness of \mathcal{T} , we have $\begin{pmatrix} y \\ \lambda y \end{pmatrix} \in D(\mathcal{T})$ and $(\lambda - \mathcal{T})\begin{pmatrix} y \\ \lambda y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, which together with the injectivity of $\lambda - \mathcal{T}$ implies that y = 0.

Consequently, $(\lambda^2 - \lambda A - B)^{-1}C(\lambda - A_{D(B)\cap D(A)})$ is closable. Similarly, we can show that $(\lambda^2 - \lambda A - B)^{-1}CB_{D(B)\cap D(A)}$ is closable. Just as in the proof of Lemma 2.7, we will show that

$$D((\lambda^2 - \lambda A - B)^{-1}C(\lambda - A_{D(B)\cap D(A)})) = D((\lambda^2 - \lambda A - B)^{-1}CB_{D(B)\cap D(A)}),$$

and for each $x \in D(\overline{(\lambda^2 - \lambda A - B)^{-1}C(\lambda - A_{D(B)\cap D(A)})})$ $\begin{pmatrix} \overline{(\lambda^2 - \lambda A - B)^{-1}C(\lambda - A_{D(B)\cap D(A)})}x \\ \overline{(\lambda^2 - \lambda A - B)^{-1}CB_{D(B)\cap D(A)}x} \end{pmatrix}$

$$\left(\begin{array}{c} \left(\lambda^2 - \lambda A - B\right)^{-1} C(\lambda - A_{\mathrm{D}(B) \cap \mathrm{D}(A)})x\\ \overline{(\lambda^2 - \lambda A - B)^{-1} C B_{\mathrm{D}(B) \cap \mathrm{D}(A)}x}\end{array}\right) \in \mathrm{D}(\mathcal{T}).$$

Suppose that $x \in D(\overline{(\lambda^2 - \lambda A - B)^{-1}C(\lambda - A_{D(B)\cap D(A)})})$ is given. Then $x_n \to x$ and $(\lambda^2 - \lambda A - B)^{-1}C(\lambda - A)x_n \to \overline{(\lambda^2 - \lambda A - B)^{-1}C(\lambda - A_{D(B)\cap D(A)})}x$ for some sequence $\{x_n\}_{n=1}^{\infty}$ in $D(B) \cap D(A)$, and so

$$(\lambda^2 - \lambda A - B)^{-1}CBx_n \to -Cx + \lambda \overline{(\lambda^2 - \lambda A - B)^{-1}C(\lambda - A_{\mathcal{D}(B)\cap\mathcal{D}(A)})}x$$

Hence, $x \in D(\overline{(\lambda^2 - \lambda A - B)^{-1}CB_{D(B)\cap D(A)})})$, which implies that

$$\mathcal{D}((\lambda^2 - \lambda A - B)^{-1}C(\lambda - A_{\mathcal{D}(B)\cap\mathcal{D}(A)})) \subset \mathcal{D}((\lambda^2 - \lambda A - B)^{-1}CB_{\mathcal{D}(B)\cap\mathcal{D}(A)}).$$

Similarly, we can show that

$$\mathcal{D}(\overline{(\lambda^2 - \lambda A - B)^{-1}CB_{\mathcal{D}(B)\cap\mathcal{D}(A)}}) \subset \mathcal{D}(\overline{(\lambda^2 - \lambda A - B)^{-1}C(\lambda - A_{\mathcal{D}(B)\cap\mathcal{D}(A)})}).$$

Since

$$\left(\begin{array}{c} (\lambda^2 - \lambda A - B)^{-1}C(\lambda - A)x_n\\ (\lambda^2 - \lambda A - B)^{-1}CBx_n \end{array}\right) \to \left(\begin{array}{c} \overline{(\lambda^2 - \lambda A - B)^{-1}C(\lambda - A_{\mathrm{D}(B)\cap\mathrm{D}(A)})}x\\ \overline{(\lambda^2 - \lambda A - B)^{-1}CB_{\mathrm{D}(B)\cap\mathrm{D}(A)}x}\end{array}\right)$$

and

$$(\lambda - \mathcal{T}) \left(\begin{array}{c} (\lambda^2 - \lambda A - B)^{-1} C(\lambda - A) x_n \\ (\lambda^2 - \lambda A - B)^{-1} C B x_n \end{array} \right) = \left(\begin{array}{c} C x_n \\ 0 \end{array} \right) \rightarrow \left(\begin{array}{c} C x \\ 0 \end{array} \right).$$

By the closedness of $\lambda - \mathcal{T}$, we have

$$(\lambda - \mathcal{T}) \begin{pmatrix} \overline{(\lambda^2 - \lambda A - B)^{-1}C(\lambda - A_{\mathrm{D}(B)\cap\mathrm{D}(A)})} & (\lambda^2 - \lambda A - B)^{-1}C \\ \overline{(\lambda^2 - \lambda A - B)^{-1}CB_{\mathrm{D}(B)\cap\mathrm{D}(A)}} & \lambda(\lambda^2 - \lambda A - B)^{-1}C \end{pmatrix} \begin{pmatrix} x \\ 0 \end{pmatrix} = \mathcal{C} \begin{pmatrix} x \\ 0 \end{pmatrix}.$$

Consequently,

$$(\lambda - \mathcal{T}) \begin{pmatrix} \overline{(\lambda^2 - \lambda A - B)^{-1}C(\lambda - A_{D(B)\cap D(A)})} & (\lambda^2 - \lambda A - B)^{-1}C \\ \overline{(\lambda^2 - \lambda A - B)^{-1}CB_{D(B)\cap D(A)}} & \lambda(\lambda^2 - \lambda A - B)^{-1}C \end{pmatrix} = \mathcal{C}$$

$$D(\overline{(\lambda^2 - \lambda A - B)^{-1}C(\lambda - A_{D(B)\cap D(A)})}) \times X.$$

on D($(\lambda^2 - \lambda A - B)^{-1}C(\lambda - A_{D(B)\cap D(A)})$) × X.

Since $\overline{(\lambda^2 - \lambda A - B)^{-1}C(\lambda - A_{D(B)\cap D(A)})} = \overline{[(\lambda^2 - \lambda A - B)^{-1}CB_{D(B)\cap D(A)}]}\frac{1}{\lambda} + \frac{1}{\lambda}C$ and $(\lambda^2 - \lambda A - B)^{-1}C = [\lambda(\lambda^2 - \lambda A - B)^{-1}C]\frac{1}{\lambda}$, we can combine Lemma 2.7 with Lemma 2.8 and [1, Theorem 2.4.1] or [32, Theorem 1.2.1] to obtain the next new Miyadera-Feller-Phillips-Hille-Yosida type theorem concerning the generation of an exponentially bounded C-semigroup on $X \times X$.

Theorem 2.9. Assume that $D(B) \cap D(A)$ is dense in X. Then \mathcal{T} is a subgenerator of an exponentially bounded C-semigroup on $X \times X$ if and only if there exist $M, \omega > 0$ such that $\lambda \in \rho_C(A, B)$ and (1.6) holds for all $\lambda > \omega$ and $k \in \mathbb{N} \cup \{0\}$.

Just as a result in [17, Theorem 2] for the case of C_0 -semigroup, we can combine Corollary 2.6 with Theorem 2.9 to obtain the next corollary.

Corollary 2.10. Assume that $D(B) \cap D(A)$ is dense in X. Then the following statements are equivalent:

- (i) There exist $M, \omega > 0$ such that for each pair $x, y \in D(B) \cap D(A)$, ACP(A, B, CBx, 0, Cy) has a unique solution w with $||w(t)||, ||w'(t)|| \leq Me^{\omega t}(||x|| + ||y||)$ for all $t \geq 0$ and $Bw + Aw' \in C([0, \infty), X)$;
- (ii) \mathcal{T} is a subgenerator of an exponentially bounded \mathcal{C} -semigroup on $X \times X$;
- (iii) There exist $M, \omega > 0$ such that $\lambda \in \rho_C(A, B)$ and (1.6) holds for all $\lambda > \omega$ and $k \in \mathbb{N} \cup \{0\}$;
- (iv) There exist $M, \omega > 0$ such that for each pair $x, y \in D(B) \cap D(A)$, ACP(A, B, 0, Cx, Cy) has a unique solution z with $||z(t)||, ||z'(t)|| \leq Me^{\omega t}(||x|| + ||y||)$ for all $t \geq 0$ and satisfies $Bz + Az' \in C([0, T_0), X)$.

Combining Lemma 2.4 with [23, Corollary 3.6], the next theorem is also attained. **Theorem 2.11.** Assume that $\rho(\mathcal{T})$ (resolvent set of \mathcal{T}) is nonempty. Then the following are equivalent:

- (i) For each $(x, y) \in D(B) \times D(A)$ ACP(A, B, CBx, 0, Cy) has a unique solution w such that $Bw + Aw' \in C([0, T_0), X)$;
- (ii) \mathcal{T} is the generator of a local \mathcal{C} -semigroup $\mathcal{S}(\cdot)$ on $X \times X$;
- (iii) For each $(x, y) \in D(B) \times D(A)$ ACP(A, B, 0, Cx, Cy) has a unique solution z such that $Bz + Az' \in C([0, T_0), X)$.

By modifying slightly the proofs of [12, Theorem 2.12 and Theorem 3.2], the next theorem is also attained, and so its proof is omitted.

Theorem 2.12. Let B be a subgenerator (resp., the generator) of a locally Lipschitz continuous local once integrated C-semigroup on X. Assume that A is a bounded linear operator from $\overline{D(B)}$ into R(C) or a bounded linear operator from [D(B)] into R(C) so that $R(C^{-1}A) \subset D(B)$ and A + B is closed. Then A + B is a subgenerator (resp., the generator) of a locally Lipschitz continuous local once integrated C-semigroup on X. Since B is a subgenerator (resp., the generator) of a locally Lipschitz continuous local C-cosine function on X if and only if $\begin{pmatrix} 0 & I \\ B & 0 \end{pmatrix}$ is a subgenerator (resp., the generator) of a locally Lipschitz continuous local once integrated C-semigroup on $X \times X$ (see [6, Theorem 2.1.11]); and A is a bounded linear operator from [D(B)] into R(C) so that $R(C^{-1}A) \subset D(B)$ implies that

$$\mathbf{R}\left(\mathcal{C}^{-1}\left(\begin{array}{cc}0&0\\0&A\end{array}\right)\right) = \mathbf{R}\left(\left(\begin{array}{cc}0&0\\0&C^{-1}A\end{array}\right)\right) \subset D\left(\left(\begin{array}{cc}0&I\\B&A\end{array}\right)\right) = D(B) \times D(A),$$

we can apply Theorem 2.12 to obtain the next new result concerning the generations of a locally Lipschitz continuous local C-cosine function on X with subgenerator (resp., the generator) B and a local C-semigroup on $X \times X$ with subgenerator (resp., the generator) $\begin{pmatrix} 0 & I \\ B & A \end{pmatrix}$ for which A may not be bounded.

Theorem 2.13. Assume that A is a bounded linear operator from $\overline{D(B)}$ into R(C) or a bounded linear operator from [D(B)] into R(C) so that $R(C^{-1}A) \subset D(B)$. Then \mathcal{T} is a subgenerator (resp., the generator) of a local C-semigroup on $X \times X$ only if B is a subgenerator (resp., the generator) of a locally Lipschitz continuous local C-cosine function on X. The "if part" is also true when the assumption of D(B) is dense in X is added.

Proof. Suppose that $\begin{pmatrix} 0 & I \\ B & A \end{pmatrix}$ is a subgenerator (resp., the generator) of a local C-semigroup on $X \times X$. Then it is also a subgenerator (resp., the generator) of a locally Lipschitz continuous local once integrated C-semigroup on $X \times X$, and so $\begin{pmatrix} 0 & I \\ B & 0 \end{pmatrix}$ is a subgenerator (resp., the generator) of a locally Lipschitz continuous local once integrated C-semigroup on $X \times X$. Hence, B is a subgenerator (resp., the generator) of a locally Lipschitz continuous local C-cosine function on X. Conversely, suppose that D(B) is dense in X and B is a subgenerator (resp., the generator) of a locally Lipschitz continuous local C-cosine function on X. Then $\begin{pmatrix} 0 & I \\ B & 0 \end{pmatrix}$ is a subgenerator (resp., the generator) of a locally Lipschitz continuous local C-cosine function on X. Then $\begin{pmatrix} 0 & I \\ B & 0 \end{pmatrix}$ is a subgenerator (resp., the generator) of a locally Lipschitz continuous local C-semigroup on $X \times X$, and so $\begin{pmatrix} 0 & I \\ B & A \end{pmatrix}$ is a subgenerator (resp., the generator) of a locally Lipschitz continuous local once integrated C-semigroup on $X \times X$, and so $\begin{pmatrix} 0 & I \\ B & A \end{pmatrix}$ is a subgenerator (resp., the generator) of a locally Lipschitz continuous local once integrated C-semigroup on $X \times X$. Hence, it is also a subgenerator (resp., the generator) of a locally Lipschitz continuous local once integrated C-semigroup on $X \times X$.

Combining Theorem 2.11 with Theorem 2.13, we can obtain the next two corollaries. **Corollary 2.14.** Assume that $\rho(A, B)$ is nonempty and $A \in L(X)$. Then the following are equivalent:

- (i) For each $(x, y) \in D(B) \times D(A)$ ACP(A, B, CBx, 0, Cy) has a unique solution w in $C([0, T_0), [D(B)]);$
- (ii) \mathcal{T} is the generator of a local \mathcal{C} -semigroup on $X \times X$;
- (iii) For each $(x, y) \in D(B) \times D(A)$ ACP(A, B, 0, Cx, Cy) has a unique solution z in $C([0, T_0), [D(B)]).$

Moreover, (i)-(iii) imply

(iv) B is the generator of a locally Lipschitz continuous local C-cosine function on X

if $R(A) \subset R(C)$, and (i)-(iv) are equivalent if the assumption of D(B) is dense in X is also added. Here [D(B)] denotes the Banach space D(B) with norm $|\cdot|$ defined by |x| = ||x|| + ||Bx|| for $x \in D(B)$.

Corollary 2.15. Assume that $D(B) \cap D(A)$ is dense in X, $\rho(A, B)$ nonempty, and AB = BA on $D(B) \cap D(A)$. Then the following are equivalent:

- (i) For each $(x, y) \in D(B) \times D(A)$ ACP(A, B, CBx, 0, Cy) has a unique solution w such that $Bw + Aw' \in C([0, T_0), X)$;
- (ii) \mathcal{T} is the generator of a local \mathcal{C} -semigroup on $X \times X$;
- (iii) For each $(x, y) \in D(B) \times D(A)$ ACP(A, B, 0, Cx, Cy) has a unique solution z such that $Bz + Az' \in C([0, T_0), X)$.

Moreover, (i)-(iii) are equivalent to

(iv) B is the generator of a locally Lipschitz continuous local C-cosine function on X

if A is a bounded linear operator from [D(B)] into R(C) so that $R(C^{-1}A) \subset D(B)$.

Since B is a bounded linear operator from [D(A)] into $\mathbb{R}(C)$ so that $\mathbb{R}(C^{-1}B) \subset D(A)$ implies that

$$\mathbf{R}\left(\mathcal{C}^{-1}\left(\begin{array}{cc}0&0\\B&0\end{array}\right)\right) = \mathbf{R}\left(\left(\begin{array}{cc}0&0\\C^{-1}B&0\end{array}\right)\right) \subset D\left(\left(\begin{array}{cc}0&I\\B&A\end{array}\right)\right) = D(B) \times D(A),$$

we can combine Theorem 2.11 with Theorem 2.13 to obtain the next new result concerning the generations of a local *C*-semigroup on *X* with subgenerator (resp., the generator) *A* and a local *C*-semigroup on $X \times X$ with subgenerator (resp., the generator) $\begin{pmatrix} 0 & I \\ B & A \end{pmatrix}$ for which *B* may not be bounded.

Theorem 2.16. Assume that B is a bounded linear operator from $\overline{D(A)}$ into R(C) or a bounded linear operator from [D(A)] into R(C) so that $R(C^{-1}B) \subset D(A)$. Then \mathcal{T} is a subgenerator (resp., the generator) of a local C-semigroup on $X \times X$ if and only if A is a subgenerator (resp., the generator) of a local C-semigroup on X.

Proof. Clearly, $\mathcal{C}\begin{pmatrix} 0 & I \\ 0 & A \end{pmatrix} = \begin{pmatrix} 0 & I \\ 0 & A \end{pmatrix} \mathcal{C}$ on $X \times D(A)$ (resp., $\mathcal{C}^{-1}\begin{pmatrix} 0 & I \\ 0 & A \end{pmatrix} \mathcal{C} = \begin{pmatrix} 0 & I \\ 0 & A \end{pmatrix}$) is equivalent to CA = AC on D(A) (resp., $C^{-1}AC = A$). Suppose that $\begin{pmatrix} 0 & I \\ B & A \end{pmatrix}$ is a subgenerator (resp., the generator) of a local \mathcal{C} -semigroup on $X \times X$. Then $\begin{pmatrix} 0 & I \\ 0 & A \end{pmatrix}$ is a subgenerator (resp., the generator) of a local \mathcal{C} -semigroup $\mathcal{S}(\cdot)$ on $X \times X$. For each pair $x, y \in X$, we set

$$\left(\begin{array}{c} u(t) \\ v(t) \end{array}\right) = j_0 * \mathcal{S}(t) \left(\begin{array}{c} x \\ y \end{array}\right)$$

for all $0 \leq t < T_0$. Then

$$\begin{pmatrix} u \\ v \end{pmatrix} \in \mathcal{C}^1([0,T_0), X \times X) \cap \mathcal{C}([0,T_0), [\mathcal{T}]), \begin{pmatrix} u(0) \\ v(0) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

and

$$\begin{pmatrix} u'(t) \\ v'(t) \end{pmatrix} = \begin{pmatrix} 0 & I \\ 0 & A \end{pmatrix} \begin{pmatrix} u(t) \\ v(t) \end{pmatrix} + \begin{pmatrix} Cx \\ Cy \end{pmatrix} = \begin{pmatrix} v(t) \\ Av(t) \end{pmatrix} + \begin{pmatrix} Cx \\ Cy \end{pmatrix}$$

for all $0 \leq t < T_0$, so that u(0) = 0 = v(0), u'(t) = v(t) + Cx and v'(t) = Av(t) + Cy for all $0 \leq t < T_0$. Hence, v is a solution of ACP(A, Cy, 0) in $C^1([0, T_0), X) \cap C([0, T_0), [D(A)])$, u(0) = 0, and u' = v on $[0, T_0)$. To show that A is a subgenerator (resp., the generator) of a local C-semigroup on X, we remain only to show that 0 is the unique solution of ACP(A, 0, 0) in $C^1([0, T_0), X) \cap C([0, T_0), [D(A)])$ (see Theorem 2.2). To this end. Suppose that v is a solution of ACP(A, 0, 0) in $C^1([0, T_0), X) \cap C([0, T_0), [D(A)])$ (see Theorem $C([0, T_0), [D(A)])$. We set $u = j_0 * v$, then u(0) = 0 = v(0) and

$$\left(\begin{array}{c} u'(t)\\ v'(t)\end{array}\right) = \left(\begin{array}{c} v(t)\\ Av(t)\end{array}\right) = \left(\begin{array}{c} 0 & I\\ 0 & A\end{array}\right) \left(\begin{array}{c} u(t)\\ v(t)\end{array}\right)$$

for all $0 \leq t < T_0$. The uniqueness of solutions of ACP(A, 0, 0) follows from the uniqueness of solutions of ACP $\left(\begin{pmatrix} 0 & I \\ 0 & A \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right)$. Conversely, suppose that A is a subgenerator (resp., the generator) of a local C-semigroup $S(\cdot)$ on X. To show that $\begin{pmatrix} 0 & I \\ 0 & A \end{pmatrix}$ is a subgenerator (resp., the generator) of a local C-semigroup on $X \times X$, we need only to show that for each pair $x, y \in X$, ACP $\left(\begin{pmatrix} 0 & I \\ 0 & A \end{pmatrix}, \begin{pmatrix} Cx \\ Cy \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right)$ has a unique solution in $C^1([0, T_0), X \times X) \cap C\left([0, T_0), \left[\begin{pmatrix} 0 & I \\ 0 & A \end{pmatrix} \right] \right)$. To do this. For each pair $x, y \in X$, we set $v(t) = j_0 * S(t)y$ and $u(t) = j_0 * v(t) + tCx$ for all $0 \leq t < T_0$. Then u(0) = 0 = v(0), and v'(t) = S(t)y = Av(t) + Cy and u'(t) = v(t) + Cx for all $0 \leq t < T_0$, so that $\begin{pmatrix} u'(t) \\ v'(t) \end{pmatrix} = \begin{pmatrix} v(t) + Cx \\ Av(t) + Cy \end{pmatrix} = \begin{pmatrix} 0 & I \\ 0 & A \end{pmatrix} \begin{pmatrix} u(t) \\ v(t) \end{pmatrix} + \begin{pmatrix} Cx \\ Cy \end{pmatrix}$ for all $0 \leq t < T_0$. Hence, $\begin{pmatrix} u \\ v \end{pmatrix}$ is a solution of ACP $\left(\begin{pmatrix} 0 & I \\ 0 & A \end{pmatrix}, \begin{pmatrix} Cx \\ Cy \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right)$ in $C^1([0, T_0), X \times X) \cap C\left([0, T_0), \left[\begin{pmatrix} 0 & I \\ 0 & A \end{pmatrix} \right] \right)$. The uniqueness of solutions of ACP $\left(\begin{pmatrix} 0 & I \\ 0 & A \end{pmatrix}, \begin{pmatrix} 0 \\ Cy \end{pmatrix} \right)$ in $C^1([0, T_0), X \times X) \cap C\left([0, T_0), \left[\begin{pmatrix} 0 & I \\ 0 & A \end{pmatrix} \right] \right)$. The uniqueness of solutions of ACP $\left(\begin{pmatrix} 0 & I \\ 0 & A \end{pmatrix}, \begin{pmatrix} 0 \\ Cy \end{pmatrix} \right)$ in $C^1([0, T_0), X \times X) \cap C\left([0, T_0), \left[\begin{pmatrix} 0 & I \\ 0 & A \end{pmatrix} \right] \right)$.

follows from the uniqueness of solutions of ACP(A, 0, 0). Consequently, $\begin{pmatrix} 0 & I \\ 0 & A \end{pmatrix}$ is a subgenerator (resp., the generator) of a local C-semigroup on $X \times X$, which implies that \mathcal{T} is a subgenerator (resp., the generator) of a local C-semigroup on $X \times X$. \Box

Corollary 2.17. Assume that $\rho(A, B)$ is nonempty and $B \in L(X)$. Then the following are equivalent:

- (i) For each (x, y) ∈ D(B) × D(A) ACP(A, B, CBx, 0, Cy) has a unique solution w in C¹([0, T₀), [D(A)]);
- (ii) \mathcal{T} is the generator of a local \mathcal{C} -semigroup on $X \times X$;
- (iii) For each $(x, y) \in D(B) \times D(A)$ ACP(A, B, 0, Cx, Cy) has a unique solution z in $C^{1}([0, T_{0}), [D(A)]).$

Moreover, (i)-(iii) are equivalent to

(vi) A is the generator of a local C-semigroup on X,

if $R(B) \subset R(C)$.

Corollary 2.18. Assume that $D(B) \cap D(A)$ is dense in X, $\rho(A, B)$ nonempty, and AB = BA on $D(B) \cap D(A)$. Then the following are equivalent:

- (i) For each $(x, y) \in D(B) \times D(A)$ ACP(A, B, CBx, 0, Cy) has a unique solution w such that $Bw + Aw' \in C([0, T_0), X)$;
- (ii) \mathcal{T} is the generator of a local \mathcal{C} -semigroup on $X \times X$;
- (iii) For each $(x, y) \in D(B) \times D(A)$ ACP(A, B, 0, Cx, Cy) has a unique solution z such that $Bz + Az' \in C([0, T_0), X)$.

Moreover, (i)-(iii) are equivalent to

(iv) A is the generator of a local C-semigroup on X,

if B is a bounded linear operator from [D(A)] into R(C) so that $R(C^{-1}B) \subset D(A)$. We end this paper with a simple illustrative example. Let $S(\cdot)(=\{S(t)|0 \leq t < 1\})$ be a family of bounded linear operators on $c_0($, family of all convergent sequences in \mathbb{F} with limit 0,) defined by $S(t)x = \{e^{-n}e^{nt}x_n\}_{n=1}^{\infty}$, then $S(\cdot)$ is a local C-semigroup on c_0 with generator A defined by $Ax = \{nx_n\}_{n=1}^{\infty}$ for all $x = \{x_n\}_{n=1}^{\infty} \in c_0$ with $\{nx_n\}_{n=1}^{\infty} \in c_0$. Here C = S(0). Let $\{p_n\}_{n=1}^{\infty} \in l^{\infty}$ with $\{e^np_n\}_{n=1}^{\infty} \in l^{\infty}$, and B be a bounded linear operator from [D(A)] into R(C) defined by $Bx = \{nx_np_n\}_{n=1}^{\infty}$ for all $x = \{x_n\}_{n=1}^{\infty} \in D(A)$, then $R(C^{-1}B) \subseteq D(A)$, CB = BC on D(A), and $B : D(A) \subset c_0 \to c_0$ can be extended to a bounded linear operator on $\overline{D(A)} = c_0$. Applying Corollary 2.17, we get that $\begin{pmatrix} 0 & I \\ B & A \end{pmatrix}$ is the generator of a local C-semigroup on $c_0 \times c_0$.

Acknowledgements. The author is grateful to the referee for his or her corrections and valuable suggestions. This research was partially supported by the National Science Council of Taiwan.

References

- Arendt, W., Batty, C.J.K., Hieber, H., Neubrander, F., Vector-Valued Laplace Transforms and Cauchy Problems, 96, Birkhauser Verlag, Basel-Boston-Berlin, 2001.
- [2] DeLaubenfuls, R., Integrated Semigroups, C-Semigroups and the Abstract Cauchy Problem, Semigroup Forum, 41(1990), 83-95.
- [3] Fattorini, H.O., The Cauchy Problem, Addison-Wesley, Reading, Mass., 1983.

Chung-Cheng Kuo

- [4] Gao, M.C., Local C-Semigroups and C-Cosine Functions, Acta Math. Sci., 19(1999), 201-213.
- [5] Goldstein, J.A., Semigroups of Linear Operators and Applications, Oxford, 1985.
- [6] Kostic, M., Generalized Semigroups and Cosine Functions, Mathematical Institute Belgrade, 2011.
- [7] Kostic, M., Abstract Volterra Integro-Differential Equations, Taylor and Francis Group, 2015.
- [8] Kostic, M., Convoluted C-Cosine Functions and C-Semigroups. Relations with Ultradistribution and Hyperfunction Sines, J. Math. Anal. Appl., 338(2008), 1224-1242.
- [9] Kuo, C.-C., Shaw, S.-Y., C-Cosine Functions and the Abstract Cauchy Problem I, II, J. Math. Anal. Appl., 210(1997), 632-646, 647-666.
- [10] Kuo, C.-C., Additive Perturbations of Local C-Semigroups, Acta Math. Sci., 35B(2015), no. 6, 1566-1576.
- [11] Kuo, C.-C., Multiplicative Perturbations of Local C-Semigroups, Proc. Mathematical Sci., 125(2015), no. 1, 45-55.
- [12] Kuo, C.-C., Perturbation Theorems for Local Integrated Semigroups, Studia Math., 197(2010), 13-26.
- [13] Kuo, C.-C., Local K-Convoluted C-Semigroups and Abstract Cauchy Problems, Taiwanese J. Math., 19(2015), no. 4, 1227-1245.
- [14] Kuo, C.-C., Shaw, S.-Y., On α-Times Integrated C-Semigroups and the Abstract Cauchy Problem, Studia Math., 142(2000), 201-217.
- [15] Liang, J., Xiao, T.-J., Li, F., Multiplicative Perturbations of Local C-Regularized Semigroups, Semigroup Forum, 72(2006), no. 3, 375-386.
- [16] Li, Y.-C., Shaw, S.-Y., Perturbation of Nonexponentially-Bounded α-Times Integrated C-Semigroups, J. Math. Soc. Japan, 55(2003), 1115-1136.
- [17] Mel'nikova, I.-V., The Method of Integrated Semigroups for the Cauchy Problems in Banach spaces, Siberian Math. J., 40(1999), 100-109.
- [18] Mel'nikova, I.-V., Filinkov, A.I., Abstract Cauchy Problems: Three Approaches, Chapman Hill/CRC, 2001.
- [19] Neubrander, F., Integrated Semigroups and their Applications to the Abstract Cauchy Problem, Pacific J. Math., 135(1988), 111-155.
- [20] Neubrander, F., Integrated Semigroups and their Applications to Complete Second Order Cauchy Problems, Semigroup Forum, 38(1989), 233-251.
- [21] Nicasie, S., The Hille-Yosida and Trotter-Kato Theorems for Integrated Semigroups, J. Math. Anal. Appl., 180(1993), 303-316.
- [22] Shaw, S.-Y., Kuo, C.-C., Li, Y.-C., Perturbation of Local C-Semigroups, Nonlinear Analysis, 63(2005), 2569-2574.
- [23] Shaw, S.-Y., Kuo, C.-C., Generation of Local C-Semigroups and Solvability of the Abstract Cauchy Problems, Taiwanese J. Math., 9(2005), 291-311.
- [24] Shaw, S.-Y., Li, Y.-C., Characterization and generator of local C-Cosine and C-Sine Functions, Inter. J. Evolution Equations, 1(2005), no. 4, 373-401.
- [25] Sova, M., Linear Differential Equations in Banach spaces, Rozprovy Ceskoslovenske Acad. Vd. Rada. Mat. Prirod. Ved., 85(1975), 1-150.
- [26] Tanaka, N., Miyadera, I., C-semigroups and the Abstract Cauchy Problem, J. Math. Anal. Appl., 170(1992), 196-206.

- [27] Tanaka, N., Okazawa, N., Local C-Semigroups and Local Integrated Semigroups, Proc. London Math. Soc., 61(1990), no. 3, 63-90.
- [28] Takenaka, T., Piskarev, S., Local C-Cosine Families and N-Times Integrated Local Cosine Families, Taiwanese J. Math., 8(2004), 515-546.
- [29] Wang, S.-W., Gao, M.-C., Automatic Extensions of Local Regularized Semigroups and Local Regularized Cosine Functions, Proc. London Math. Soc., 127(1999), 1651-1663.
- [30] Wang, S.-W., Wang, M.-Y., Shen, Y., Perturbation Theorems for Local Integrated Semigroups and Their Applications, Studia Math., 170(2005), 121-146.
- [31] Xiao, T.-J., Liang, J., Multiplicative Perturbations of C-Regularized Semigroups, Comput. Math. Appl., 41(2001), 1215-1221.
- [32] Xiao, T.-J., Liang, J., The Cauchy Problem for Higher-Order Abstract Differential Equations, Lectures Notes in Math., 1701, Springer, 1998.
- [33] Xiao, T.-J., Liang, J., On Complete Second Order Linear Differential Equations in Banach spaces, Pacific J. Math., 142(1990), 175-195.
- [34] Xiao, T.-J., Liang, J., Differential Operators and C-Wellposedness of Complete Second Order Abstract Cauchy Problems, Pacific J. Math., 186(1998), 167-200.
- [35] Xiao, T.-J., Liang, J., Approximations of Laplace Transforms and Integrated Semigroups, J. Funct. Anal., 172(2000), 202-220.

Chung-Cheng Kuo Department of Mathematics Fu Jen University New Taipei City, Taiwan 24205 e-mail: cckuo@math.fju.edu.tw