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Abstract. In this paper we define the Cesáro second-order summability method
for fuzzy numbers and prove Korovkin type theorem, then as the application
of it, we prove the rate of convergence. In the last section, we prove the kind
of Voronovskaya type theorem and give some concluding remarks related to the
obtained results.
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1. Introduction

The concepts of fuzzy sets and fuzzy set operations were first introduced by
Zadeh [16] and subsequently, several authors have discussed various aspects of the
theory and applications of fuzzy sets such as fuzzy topological spaces, similarity
relations, and fuzzy orderings, fuzzy measures of fuzzy events, fuzzy mathematical
programming. Matloka [13] introduced bounded and convergent sequences of fuzzy
numbers studied some of their properties and showed that every convergent sequence
of fuzzy numbers is bounded.

In the present paper, we will prove the Korovkin type theorem for statistical
summability (C, 2) and the rate of convergence. In this section, we give a brief overview
of statistical convergence, fuzzy numbers, and sequences of fuzzy numbers. In section
2 we prove the main results of this paper. In section 3 we give results related to the
rate of convergence.

The idea of statistical convergence depends upon the density of subsets of the
set N of natural numbers. We shall denote by N the set of all natural numbers. Let
K ∈ N and Kn = {k ≤ n : k ∈ K}. Then the natural density of K is defined by
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d(K) = limn→∞
|Kn|
n if the limit exists, where the vertical bars indicate the number

of elements in the enclosed set. The sequence x = (xk) is said to be statistically
convergent to L([10]) if for every ε > 0, the set Kε = {k ∈ N : |xk − L| ≥ ε} has
natural density zero, i.e. for each ε > 0,

lim
n→∞

1

n
|{k ≤ n : |xk − L| ≥ ε}| = 0.

In this case, we write st− limx = L. Note that every convergent sequence is statisti-
cally convergent but not conversely.

In paper [6], was defined the second order Cesáro summability method as follows:

(C, 2)n =

∞∑
n=1

(
1

(n+ 1)(n+ 2)

n∑
k=0

(n+ 1− k)|xk|

)
.

The summability method (C, 2)n is a regular. We say that the series
∑∞
n=1 xn is

(C, 2)n− summable to L if

lim
n

n∑
j=1

(
1

(j + 1)(j + 2)

j∑
k=0

(j + 1− k)|xk|

)
= L.

In the present paper, we define Cesáro second-order summability method for
sequences of fuzzy numbers and give Korovkin type theorem and rate of convergence.
The theory of Korovkin type theorems was intensively investigated in recent years,
see for example [3, 4, 1, 6, 7, 8, 9, 11, 12].

2. Preliminaries

Let C(R) denote the family of all nonempty, compact, convex subsets of R.
Denote by

L(R) = {u : R→ [0, 1] : u satisfies (1)− (4) bellow}

where

1. u is normal, there exists an x0 ∈ R such that u(x0) = 1,
2. u is fuzzy convex, for any x, y ∈ R and 0 ≤ λ ≤ 1, u(λx + (1 − λ)y) ≥

min [u(x), u(y)],
3. u is upper semicontinuous,
4. the closure of {x ∈ R : u(x) > 0}, denoted by [u]0, is compact.

If u ∈ L(R), then u is called fuzzy number, and L(R) is said to be fuzzy number space.
For 0 < α ≤ 1, the α− level set [u]α of u is defined by [u]α = {x ∈ R : u(x) ≥ α}.
Then from (1)-(4), it follows that the α−level sets [u]α ∈ C(R).

The set of real numbers can be embedded in L(R), since each r ∈ R can be
regarded as a fuzzy number r defined by

r =

{
1; if x = r,
0; if x 6= r.
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Let u, v, w ∈ L(R) and k ∈ R. Then the operations addition and scalar multipli-
cations are defined in L(R) as follows:

u+ v = w ⇔ [w]α = [u]α + [v]α for all α ∈ [0, 1],

⇔ w−α = u−α + v−α and w+
α = u+α + v+α for all α ∈ [0, 1],

[ku]α = k[u]α for all α ∈ [0, 1].

Further details related to the structural properties of the fuzzy numbers, are given
in [5]. Let us denote by W the set of all closed bounded intervals A of real numbers
with endpoints A and A, i.e., A = [A,A]. Define the relation d on W by

d(A,B) = max {|A−B|, |A−B|}.

Then it can be easily observed that d is a metric on W and (W,d) is a complete
metric space, ([14]). Now, we may define the metric D on L(R) by means of the
Hausdorff metric d as follows

D(u, v) = sup
α∈[0,1]

d([u]α, [v]α) = sup
α∈[0;1]

max {|u−(α)− v−(α)|, |u+(α)− v+(α)|}

and

D(u, 0) = sup
α∈[0;1]

max {|u−(α)|, |u+(α)|} = max {|u−(α)|, |u+(α)|}.

Let f, g : [a, b] → L(R), be fuzzy number valued functions. The parametric

representation is as follows: [f(x)]r = [f
(r)
− (x), f

(r)
+ (x)], for every x ∈ [a, b] and every

r ∈ [0, 1]. Then, the distance between f and g is given by

D∗(f, g) = sup
x∈[a,b]

sup
r∈[0,1]

max
{∣∣∣f (r)− − g(r)− ∣∣∣ , ∣∣∣f (r)+ − g(r)+

∣∣∣}.
Fuzzy function f : [a, b]→ L(R), is continuous at x0 ∈ [a, b] if for each ε > 0 there is
a δ > 0 such that D(f(x), f(x0)) < ε, whenever x ∈ [a, b] with |x − x0| < δ. If f is
continuous in each point on [a, b], then we say that it is continuous whole [a, b]. The
class of continuous function we will denote by CF [a, b].

A sequence u = (uk) of fuzzy numbers is a function u from the set N, into the
set L(R). The fuzzy number uk denotes the value of the function at k ∈ N and is
called as the k−th term of the sequence. By w(F ), we denote the set of all sequences
of fuzzy numbers. A sequence (un) ∈ w(F ) is said to be convergent to u ∈ L(R), if
for every ε > 0 there exists an n0 = n0(ε) ∈ N such that

D(un, u) < ε for all n > n0.

Definition 2.1. Let X = (Xk) be a sequence of fuzzy numbers. The sequence X is
said to converge weighted statistically to a fuzzy number X0, if for every ε > 0

lim
n→∞

1

(n+ 1)(n+ 2)
|{k ≤ (n+ 1)(n+ 2) : D(Xk, X0) ≥ ε}| = 0.

The above type of convergence will be denoted as

stF − lim
n
Xn = X0.
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Definition 2.2. Let X = (Xk) be a sequence of fuzzy numbers. The sequence X is
said to be statistically Cesáro second order summable to a fuzzy number X0 if the
sequence

(C, 2)n(X) =
1

(n+ 1)(n+ 2)

n∑
k=0

(n+ 1− k)Xk,

is statistically convergent to X0, where the sum in (C, 2)n(X) is usual addition of
fuzzy real numbers through α− level sets. That is (Xk) is statistically Cesáro second
order summable to the fuzzy number X0, if for every ε > 0

lim
n→∞

1

(n+ 1)(n+ 2)
|{k ≤ (n+ 1)(n+ 2) : D((C, 2)n, X0) ≥ ε}| = 0.

The above type of convergence will be denoted as

st(C,2) − lim
n
Xn = X.

3. Statistical fuzzy Korovkin type theorem

Let us denote by C[a, b] the space of continuous function defined in the [a, b]. As
we know, this space equipped with supremum norm

||f || = sup
x∈[a,b]

|f(x)|,

is a complete metric space.
In this section we prove fuzzy Korovkin type theorem via the concept of statisti-

cal summability (C, 2). Let f : [a, b]→ L(R) be fuzzy number valued functions. Then
f is said to be fuzzy continuous at x0 ∈ [a, b] provided that whenever xn → x0, then
D(f(xn), f(x0))→∞ as n→∞. Also, we say that f is fuzzy continuous on [a, b] if it
is fuzzy continuous at every point x ∈ [a, b]. The set of all fuzzy continuous functions
on the interval [a, b] is denoted by CF [a, b] (see, for instance, [3]).

Let L : CF [a, b]→ CF [a, b] be an operator. Then L is said to be fuzzy linear, if
for every α, β ∈ R, any f, g ∈ CF [a, b] and for every x ∈ [a, b],

L(αf + βg;x) = αL(f ;x) + βL(g;x),

holds. L is said to be fuzzy positive linear operator if it is fuzzy linear and the condition
L(f ;x) � L(g;x) is satisfied for any f, g ∈ CF [a, b] and for all x ∈ [a, b] with f(x) �
g(x). Last relation is fulfilled if and only if f

(r)
− (x) ≤ g

(r)
− (x) and f

(r)
+ (x) ≤ g

(r)
+ (x),

where [f(x)](r) = [f
(r)
− (x), f

(r)
+ (x)]. The fuzzy Korovkin type theorem was investigated

by many authors(see [3, 4, 2]) and statistical version of the theorem, was given by [4],
as follows.

Theorem 3.1. ([3]) Let {Ln}n∈N : CF [a, b] → CF [a, b], be a sequence of fuzzy posi-

tive linear operators. Assume that there exists a corresponding sequence {L̃n}n∈N :
C[a, b]→ C[a, b], of linear positive operators, with the property:

{Ln(f ;x)}(r)± = L̃n(f
(r)
± ;x) (3.1)
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for all x ∈ [a, b], r ∈ [0, 1], n ∈ N and f ∈ CF [a, b]. Also assume that

lim
n→∞

∥∥∥L̃n(ei)− ei
∥∥∥ = 0, for each i = 0, 1, 2,

where ei = xi. Then, for all f ∈ CF [a, b], we have

lim
n
D∗(Ln(f), f) = 0.

Later one, this result is extended to summability matrix as follows

Theorem 3.2. ([4]) Let A = (ajn) be a non-negative regular summability method matrix
and let {Ln}n∈N be a sequence of fuzzy positive linear operators from CF [a, b] into

itself. Assume that there exists a corresponding sequence {L̃n}n∈N of positive linear
operators from C[a, b] into itself with the property (3.1). Assume further that

stA − lim
n→∞

∥∥∥L̃n(ei)− ei
∥∥∥ = 0, for each i = 0, 1, 2,

where ei = xi. Then, for all f ∈ CF [a, b], we have

stA − lim
n
D∗(Ln(f), f) = 0.

Now we prove the fuzzy Korovkin type theorem for statistical convergence, using
the notion of the statistical summability method (C, 2).

Theorem 3.3. Let {Ln}n∈N be a sequence of fuzzy positive linear operators from

CF [a, b] into itself. Assume that there exists a corresponding sequence {L̃n}n∈N of
positive linear operators from C[a, b] into itself with the property (3.1). Also assume
that

st(C,2) − lim
n→∞

∥∥∥L̃n(ei)− ei
∥∥∥ = 0, for each i = 0, 1, 2, (3.2)

where ei = xi. Then, for all f ∈ CF [a, b], we have

st(C,2) − lim
n
D∗(Ln(f), f) = 0. (3.3)

Proof. Let f ∈ CF [a, b] for x ∈ [a, b] and r ∈ [0, 1]. By hypothesis f
(r)
± ∈ C[a, b], which

means that for every ε > 0 there exists a δ(ε) > 0, and for any y ∈ [a, b] such that

|x − y| < δ we obtain |f (r)± (x) − f (r)± (y)| < ε. From last relation and boundedness of

function f
(r)
± (x), we get∣∣∣f (r)± (x)− f (r)± (y)

∣∣∣ ≤ ε+ 2
∥∥∥f (r)± ∥∥∥ (x− y)2

δ2
.

Considering linearity and positivity of the operators L̃n, we have for each n ∈ N, that∣∣∣L̃n (f (r)± ;x
)
−f (r)± (x)

∣∣∣≤ ∣∣∣L̃n (∣∣∣f (r)± (x)−f (r)± (y)
∣∣∣ ;x)∣∣∣+∥∥∥f (r)± ∥∥∥ ∣∣∣L̃n(e0;x)−e0(x)

∣∣∣≤ε
+
(
ε+

∥∥∥f (r)± ∥∥∥) · ∣∣∣L̃n(e0;x)− e0(x)
∣∣∣+

2
∥∥∥f (r)± ∥∥∥
δ2

∣∣∣L̃n((x− y)2;x)
∣∣∣ ,

if we put M = max{|a|, |b|}, we have∣∣∣L̃n (f (r)± ;x
)
− f (r)± (x)

∣∣∣ ≤ ε+

(
ε+

∥∥∥f (r)± ∥∥∥+
2x2

δ2

∥∥∥f (r)± ∥∥∥) · ∣∣∣L̃n(e0;x)− e0(x)
∣∣∣
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+
4x

δ2

∥∥∥f (r)± ∥∥∥ ∣∣∣L̃n(e1;x)− e1(x)
∣∣∣+

2

δ2

∥∥∥f (r)± ∥∥∥ ∣∣∣L̃n(e2;x)− e2(x)
∣∣∣ ≤∣∣∣L̃n (f (r)± ;x

)
− f (r)± (x)

∣∣∣ ≤ ε+

(
ε+

∥∥∥f (r)± ∥∥∥+
2M2

δ2

∥∥∥f (r)± ∥∥∥) · ∣∣∣L̃n(e0;x)− e0(x)
∣∣∣

+
4M

δ2

∥∥∥f (r)± ∥∥∥ ∣∣∣L̃n(e1;x)− e1(x)
∣∣∣+

2

δ2

∥∥∥f (r)± ∥∥∥ ∣∣∣L̃n(e2;x)− e2(x)
∣∣∣ .

Let

M
(r)
± (ε) = max

{
ε+

∥∥∥f (r)± ∥∥∥+
2M2

δ2

∥∥∥f (r)± ∥∥∥ , 4M

δ2

∥∥∥f (r)± ∥∥∥ , 2

δ2

∥∥∥f (r)± ∥∥∥} .
Taking supremum on the above inequality for x ∈ [a, b], we obtain∥∥∥L̃n (f (r)± )− f (r)± ∥∥∥≤ ε+M (r)

± (ε)
{∥∥∥L̃n(e0)− e0

∥∥∥+
∥∥∥L̃n(e1)− e1

∥∥∥+
∥∥∥L̃n(e2)− e2

∥∥∥} .
(3.4)

Now using into consideration relation (3.1) and relation (3.4), we have

D∗(f, g) = sup
x∈[a,b]

D(Ln(f ;x), f(x))

= sup
x∈[a,b]

sup
r∈[0,1]

max
{∣∣∣L̃n (f (r)− ;x

)
− f (r)− (x)

∣∣∣ , ∣∣∣L̃n (f (r)+ ;x
)
− f (r)+ (x)

∣∣∣}
= sup
r∈[0,1]

max
{∥∥∥L̃n (f (r)− )− f (r)− ∥∥∥ ,∥∥∥L̃n (f (r)+

)
− f (r)+

∥∥∥}. (3.5)

From relations (3.4) and (3.5), it yields

D∗(Ln(f), f) ≤ ε+M(ε)
{∥∥∥L̃n(e0)− e0

∥∥∥+
∥∥∥L̃n(e1)− e1

∥∥∥+
∥∥∥L̃n(e2)− e2

∥∥∥} , (3.6)

where M(ε) = sup0≤r≤1 max{M (r)
− (ε),M

(r)
+ (ε)}.

Let ε1 > 0, we can choose 0 < ε < ε1, and define sets:

A = {n ∈ N : D∗(Ln(f), f) ≥ ε1},

A1 =

{
n ∈ N :

∥∥∥L̃n(e0)− e0
∥∥∥ ≥ ε1 − ε

3M(ε)

}
,

A2 =

{
n ∈ N :

∥∥∥L̃n(e1)− e1
∥∥∥ ≥ ε1 − ε

3M(ε)

}
,

A3 =

{
n ∈ N :

∥∥∥L̃n(e2)− e2
∥∥∥ ≥ ε1 − ε

3M(ε)

}
.

Then from relation (3.6), we have

A ⊂ A1 ∪A2 ∪A3.

Now from last relation and relations (3.2), we get relation (3.3). �

Remark 3.4. Our theorem is generalization of the result given in theorem 3.1 and
theorem 3.2, as it is shown on this.
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Example 3.5. Take A = (C, 2) = (cjn), the Cesáro second order matrix and define
the following sequence

(an) =

{
0, if n 6= m2,m = 1, 2, · · · ,
n

3
2 , otherwise

If we use into consideration the fuzzy Bernstein-type operators

BFn (f ;x) = an �
n⊕
k=0

(
n

k

)
xk(1− x)n−k � f (r)±

(
k

n

)
,

where f ∈ CF [0, 1], x ∈ [0, 1] and n ∈ N. We can define

{
BFn (f ;x)

}(r)
± = B̃n

(
f
(r)
± ;x

)
= an

n∑
k=0

(
n

k

)
xk(1− x)n−kf

(r)
±

(
k

n

)
,

f
(r)
± ∈ C[0, 1].

Let us define the following operators

Ln(f ;x) = (1 + an)B̃n(f ;x). (3.7)

Then we have:

Ln(e0;x) = (1 + an),

Ln(e1;x) = x(1 + an),

Ln(e2;x) =

(
x2 +

x(1− x)

n

)
(1 + an).

The limit st(C,2) − lim an, exist and it is:

∑
n:|an−0|≥ε

cjn =
∑

n:|an−0|≥ε

1

(j + 1)(j + 2)
≤ j

3
2

(j + 1)(j + 2)
→ 0, as j →∞,

which means that st(C,2) − lim an = 0.

From above relation we get

st(C,2) − lim
n→∞

‖Ln(ei)− ei‖ = 0, for each i = 0, 1, 2

and from theorem 3.3, we obtain

st(C,2) − lim
n
D∗(Ln(f), f) = 0.

However, (an) is not convergent in usual sense, the sequence {BFn (f ;x)} is not fuzzy
convergent to f.
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4. Statistical fuzzy rate of convergence

In this section, we investigate the rate of the Cesáro second order operators,
statistical convergence of positive linear operators in the space CF [a, b].

Definition 4.1. Let (an) be any nondecreasing sequence of positive numbers. We say
that the sequence of functions (fn) ∈ CF [a, b] is Cesáro second order statistical con-
vergent to a function f with the rate of convergence given by o(an), if, for each ε > 0,

lim
n→∞

1

(n+ 1)(n+ 2)an
|{m ≤ (n+ 1)(n+ 2) and D∗((C, 2)m; f)) ≥ ε}| = 0.

In this case, we write

fn − f = o(an)((C, 2)n − stat).

Lemma 4.2. Let (an) and (bn) be two nondecreasing sequences of positive numbers.
Suppose also that the sequences (fn) and (gn) are constrained by

fn − f = o(an)((C, 2)n − stat) and gn − g = o(bn)((C, 2)n − stat),

respectively. Then

1. α(fn − f) = o(an)((C, 2)n − stat) for any scalar α;
2. (fn − f)± (gn − g) = o(cn)((C, 2)n − stat);
3. (fn − f)(gn − g) = o(anbn)((C, 2)n − stat),

where

cn := max {an, bn}.

Now, by defining the modules of continuity, for a given function f(x) ∈ CF [a, b],
as follows:

Definition 4.3. Let f : [a, b] → E be a fuzzy real number valued function. We define
the modulus of continuity of f by

ωF1 (f, δ) = sup
x,y∈[a,b]

D(f(x), f(y)),

for every |x− y| ≤ δ and any 0 < δ ≤ b− a.

We now state and prove the following result.

Theorem 4.4. Let (Ln) be a sequence of fuzzy positive linear operators from CF [a, b]

into CF [a, b]. Assume that there exists a corresponding sequence {L̃n}n∈N of positive
linear operators from C[a, b] into itself with the property (3.1). Suppose that (an) and

(bn) are non-decreasing sequence and also that the operators L̃n satisfy the following
conditions:

1.
∥∥∥L̃n(e0)− e0

∥∥∥ = (C, 2)n − stat o(an) as n→∞,
2. ωF1 (f, λn) = (C, 2)n − stat o(bn) as n→∞

where

λn =

√∥∥∥L̃n(ϕ)
∥∥∥ and ϕy = (y − x)2, for allx ∈ [a, b].
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Then, for all f ∈ CF [a, b], we have∥∥∥L̃n(f)− f
∥∥∥ = (C, 2)n − stat o(cn), as n→∞,

where cn = max {an, bn}, for each n ∈ N.

Proof. Let f ∈ CF [a, b]. Then,

L̃k(f
(r)
± , x)− f (r)± (x) = L̃k(f

(r)
± , x)− f (r)± (x)L̃k(1, x) + f

(r)
± (x)[L̃k(1, x)− 1], (4.1)

and

|f (r)± (x)− f (r)± (y)| ≤ ωF1 (f, δ)

(
|x− y|
δ

+ 1

)
, (4.2)

in both cases, where |x− y| ≥ δ and |x− y| ≤ δ.
By using the relations (4.1) and (4.2), we get the following estimate:

|L̃n(f
(r)
± , x)− f (r)± (x)| ≤ |L̃n(|f (r)± (y)− f (r)± (x)|, x)|+ |f (r)± (x)| · |L̃n(1, x)− 1|

≤ L̃n
(
|x− y|
δ

+ 1, x

)
ωF1 (f, δ)+|f(x)|·|L̃n(1, x)−1| (by Cauchy-Schwartz inequality)

≤ 1

δ
L̃n
(
(x− y)2, x

) 1
2 L̃n (1, x)

1
2 ωF1 (f, δ) + L̃n(1, x)ωF1 (f, δ)

+|f (r)± (x)| · |L̃n(1, x)− 1|(for δ = λn, we get)

≤ K
∣∣∣L̃n(1, x)− 1

∣∣∣+ 2ωF1 (f, δ) + ωF1 (f, δ)|L̃n(1, x)− 1|

+ωF1 (f, δ)

√
|L̃n(1, x)− 1|,

where K =
∥∥∥f (r)± ∥∥∥ . Now, by using relations (1) and (2) in the theorem and lemma

4.2, we complete proof of Theorem.
�

5. Statistical fuzzy Voronovskaya type theorem

In this section we show positive linear operators

Dn(f ;x) =
(1 + bn)

n2
B̃n(f ;x),

where sequence n(bn) = (an), and (an), is defined in example 3.5, satisfy a
Voronovskaja type property in the (C, 2)− statistically convergence sense. We first
prove the following lemma.

Lemma 5.1. For x ∈ [a, b], and Φ(y) = y − x then

n2Dn(Φ4) ∼ x2(2x2 + 1)(x− 1)((C, 2)− stat.) on [a, b].
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Proof. After some calculations we get:

n2Dn(Φ4) = (1+bn)

[(
2− 5

n
+

8

n2
− 11

n3
+

6

n4

)
x5 +

(
−2 +

4

n
− 5

n2
+

9

n3
− 6

n4

)
x4

+

(
1− 2

n
+

1

n3

)
x3 −

(
1− 2

n
+

3

n3
− 2

n4

)
x2 +

(
1

n2
− 3

n3
+

2

n4

)
x

]
.

Thus we obtain:∣∣n2Dn(Φ4)− x2(2x2 + 1)(x− 1)
∣∣ ≤ |(1 + bn)− 1||(2x5 − 2x4 + x3 − x2)|

+

∣∣∣∣(− 5

n
+

8

n2
− 11

n3
+

6

n4

)
x5
∣∣∣∣+

∣∣∣∣( 4

n
− 5

n2
+

9

n3
− 6

n4

)
x4
∣∣∣∣+

∣∣∣∣(− 2

n
+

1

n3

)
x3
∣∣∣∣

+

∣∣∣∣(− 2

n
+

3

n3
− 2

n4

)
x2
∣∣∣∣+

∣∣∣∣( 1

n2
− 3

n3
+

2

n4

)
x

∣∣∣∣→ 0((C, 2)− stat.),

as n→∞, on [a, b]. This completes proof of the Lemma. �

In what follows we establish the following Voronovskaya fuzzy type theorem for
operators Dn, defined as in above Lemma. Before given the main result of this section
we will give some concepts related to the H-derivatives for the fuzzy functions.

A function f : [x0;x0 + α] → RF , for α > 0, is H−derivative at x ∈ T if there

exists a f
′
(x) ∈ RF such that the limits

lim
h→0+

f(x+ h)− f(x)

h
, lim
h→0+

f(x)− f(x− h)

h

exists and are equal to f
′
(x).

We assume that the H− differences f(x + h) − f(x), f(x) − f(x − h) ∈ RF in

a neighborhood of x. We call f
′
(x) the derivative or H− derivative of f at x (for

more details see [15]). In paper [2], was given the Taylor formula for fuzzy functions
as follows:

Theorem 5.2. Let T = [x0, x0 + α] ⊂ R, and α > 0. We assume that f (i) : T → RF
are H− differentiable for all i ∈ {0, 1, 2, 3, · · · , n− 1}, for any x ∈ T. (It means that
there exists in RF the H− differences f (i)(x + h) − f (i)(x), f (i)(x) − f (i)(x − h),
i ∈ {0, 1, 2, 3 · · · , n − 1} for all h such that 0 < h < α. Furthermore there exists
f (i+1)(x) ∈ RF such that limits in D− metrics exist and

f (i+1)(x) = lim
h→0+

f (i)(x+ h)− f (i)(x)

h
= lim
h→0+

f (i)(x)− f (i)(x− h)

h
,

for all i ∈ {0, 1, 2, 3 · · · , n− 1}.) Also we assume that f (n), is fuzzy continuous on T.
Then for s ≥ a; s, a ∈ T we obtain

f(s) = f(a) +
f
′
(a)

1!
(s− a) +

f
′′
(a)

2!
(s− a)2 + · · ·+ f (n−1)(a)

(n− 1)!
(s− a)n−1 +Rn(s, a),

where

Rn(s, a) =

∫ s

a

(∫ s1

a

· · ·
(∫ sn−1

a

f (n)(sn)dsn

)
dsn−1 · · ·

)
ds1,
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above integration is in sense of Fuzzy-Riemann integral and Rn(s, a) is fuzzy contin-
uous on T as a function of s.

Theorem 5.3. For every f : [a, b] → RF , we assume that there exists f
′
, f
′′ ∈ RF ,

then

n
[
n2Dn(f)− f(x)

]
∼ 1

2
(x− x2)f

′′
(x)((C, 2)− stat.),

on [a, b].

Proof. Let us suppose that f
′
, f
′′ ∈ RF and x ∈ [a, b]. Define

ψx(y) =

 f(y)− f(x)− (y − x)f
′
(x)− 1

2 (y − x)2f
′′
(x)

(y − x)2
for x 6= y

0 for x = y.

Then ψx(x) = 0 and ψx ∈ CF [a, b]. By Taylor’s formula, we get

f(y) = f(x) + (y − x)f
′
(x) +

1

2
(y − x)2f

′′
(x) + (y − x)2ψx(y). (5.1)

Knowing that

Dn(1, x) =
(1 + bn)

n2
;Dn((y − x), x) = 0 and Dn((y − x)2, x) = (1 + bn)

x− x2

n3
,

and after operating in the both sides of relation (5.1) by operator Dn, we obtain:

n2Dn(f) = f(x) + bnf(x) +
f
′′
(x)

2

x− x2

n
(1 + bn) + (1 + bn)Dn(Φ2ψx, x),

which yields ∣∣∣∣∣n [n2Dn(f)− f(x)
]
− f

′′
(x)

2
(x− x2)

∣∣∣∣∣ ≤
nbn|f(x)|+ bn

∣∣∣∣∣f
′′
(x)

2
(x− x2)

∣∣∣∣∣+ n(1 + bn)
∣∣Dn(Φ2ψx, x)

∣∣ ,
respectively∣∣∣∣∣n [n2Dn(f)−f(x)

]
− f

′′
(x)

2
(x− x2)

∣∣∣∣∣≤ nbnM+n
∣∣Dn(Φ2ψx, x)

∣∣+nbn ∣∣Dn(Φ2ψx, x)
∣∣ ,

(5.2)

where Φ(y) = y − x and M = ||f ||CF [a,b] + ||f ′′ ||CF [a,b]. After application of the
Cauchy-Schwartz inequality in the terms of the right side of the relation (5.2), we
obtain:

n
∣∣Dn(Φ2ψx, x)

∣∣ ≤ [n2Dn(Φ4, x)]
1
2 · [Dn(ψ2

x, x)]
1
2 . (5.3)

Putting ηx(y) = (ψx(y))2, we get that ηx(x) = 0 and ηx(·) ∈ CF [a, b]. Also

an
∣∣Dn(Φ2ψx, x)

∣∣ ≤ an[Dn(Φ4, x)]
1
2 · [Dn(ψ2

x, x)]
1
2 , (5.4)

where an → 0((C, 2)n − stat).
Now from Theorem 3.3, it follows that

Dn(ηx)→ 0((C, 2)n − stat), (5.5)
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on [a,b]. Now, from relations (5.3), (5.5), (5.4) and Lemma 5.1, we have

n(1 + bn)Dn(Φ2ψx, x)→ 0((C, 2)n − stat), (5.6)

on [a, b]. For a given ε > 0, we define the following sets:

An(x, ε) =

∣∣∣∣∣
{
k : k ≤ (n+ 1)(n+ 2) :

∣∣∣∣∣n [n2Dn(f)− f(x)
]
− f

′′
(x)

2
(x− x2)

∣∣∣∣∣ ≥ ε
}∣∣∣∣∣ ,

A1,n(x, ε) =
∣∣∣{k : k ≤ (n+ 1)(n+ 2) : |kbk| ≥

ε

2M

}∣∣∣ ,
and

A2,n(x, ε) =
∣∣∣{k : k ≤ (n+ 1)(n+ 2) : |k(1 + bk)Dk(Φ2ψx, x)| ≥ ε

2

}∣∣∣ .
From last relation we have

An(x, ε)

(n+ 1)(n+ 2)an
≤ A1,n(x, ε)

(n+ 1)(n+ 2)an
+

A2,n(x, ε)

(n+ 1)(n+ 2)an
. (5.7)

From definition of the sequence (bn), we get

nbn → 0((C, 2)n − stat), (5.8)

on [a,b]. Now from relations (5.6) and (5.8), the right hand side of the relation (5.7),
tends to zero as n→∞. Therefore, we have

lim
n→∞

An(x, ε)

(n+ 1)(n+ 2)an
= 0,

which proves that

n
[
n2Dn(f)− f(x)

]
∼ 1

2
(x− x2)f

′′
(x)((C, 2)n − stat),

on [a, b]. �

6. Concluding remarks

In this section, we will give some remarks related to the results obtained in this
paper and their relationship with other results.

Remark 6.1. Suppose that we replace the conditions (1) and (2) in Theorem 4.4 by
the following condition:

L̃n(xi)− xi = o(ani
)((C, 2)n − stat) on [a, b](i = 0, 1, 2). (6.1)

Then, since

L̃n(ψ2;x) = L̃n(t2, x)− 2xL̃n(t, x) + x2L̃n(1, x),

we may write

L̃n(ψ2, x) ≤ K[|L̃n(1, x)− 1|+ |L̃n(t, x)− t|+ |L̃n(t2, x)− t2|],

where

K = 1 + 2||t||+ ||t2||.
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Now it follows from above relations and Lemma 4.2 that

δn =

√
L̃n(ψ2) = o(dn)((C, 2)n − stat)

on [a, b], where dn = min{an0 , an1 , an2}. Hence

ω(f, dn) = o(dn)((C, 2)n − stat)
on [a, b]. If those conditions which are given here we can use in Theorem 3.3, we can
thus see that, for all f ∈ CF [a, b],

L̃n(f)− f = o(dn)((C, 2)n − stat)
on [a, b]. Therefore, if we use the condition (6.1) in Theorem 4.4 instead of the condi-
tions (1) and (2), then we obtain the rates of (C, 2)n−stat convergent of the sequence
of positive linear operators in Theorem 3.3.
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