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Juan E. Nápoles Valdes

Abstract. In this note we obtain sufficient conditions under which we can guar-
antee the stability of solutions of a fractional differential equations of non con-
formable type and we obtain some fractional analogous theorems of the direct
Lyapunov method for a given class of equations of motion.
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1. Introduction

Fractional calculus concerns the generalization of differentiation and integration
to non-integer (fractional) orders. The subject has a long mathematical history being
discussed for the first time already in the correspondence of Leibniz with L’Hopital
when this replied ”What does dn

dxn f(x) mean if n= 1
2?” in September 30 of 1695. Over

the centuries many mathematicians have built up a large body of mathematical knowl-
edge on fractional integrals and derivatives. Although fractional calculus is a natural
generalization of calculus, and although its mathematical history is equally long, it
has, until recently, played a negligible role in physics. One reason could be that, until
recently, the basic facts were not readily accessible even in the mathematical litera-
ture (see [13]). The nature of many systems makes that they can be more precisely
modeled using fractional differential equations. The differentiation and integration of
arbitrary orders have found applications in diverse fields of science and engineering like
viscoelasticity, electrochemistry, diffusion processes, control theory, heat conduction,
electricity, mechanics, chaos, and fractals (see [5], [6] and [13]). Lyapunov’s Second or
Direct Method is unique in that it does not require a characterization of the solutions
to determine stability. This method often allows us to determine whether a differential
equation is stable without knowing anything about what the solutions look like, so it
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is ideal for dealing with nonlinear systems. The method uses a supplementary function
called a Lyapunov function to determine properties of the asymptotic behavior of so-
lutions of a differential equation. It is known that the method of Lyapunov functions
is a tool used in the analysis of stability, in many classes of differential equations of
disturbed movement, so it is interesting to investigate an extension of the method for
non-integer order systems (see [9] and [10] and bibliography there). Such extension
is based on the concept of a local fractional derivative non conformable, defined by
the authors in a previous paper (see [2]) which is presented below. In this paper the
application of a fractional-like derivative of the Lyapunov function for the stability
analysis of solutions of the equations of perturbed motion with a fractional-like de-
rivative of the state vector is discussed. Some fractional analogous theorems of the
direct Lyapunov method for a given class of equations of motion are presented.

2. Preliminary results

It is necessary to present some necessary definitions for our work. Be α ∈ (0, 1]
and define a continuous function f : [t0,+∞)→ R.

First, let’s remember the definition of Nα
1 f(t), a non conformable fractional

derivative of a function in a point t defined in [9] and that is the basis of our results,
that are close resemblance of those found in classical qualitative theory.

Definition 2.1. Given a function f : [t0,+∞) → R, t0 > 0. Then the N-derivative of
f of order α is defined by

Nα
1 f(t) = lim

ε→0

f(t+ εet
−α

)− f(t)

ε

for all t > 0, α ∈ (0, 1). If f is α−differentiable in some (0, a), and lim
t→0+

N
(α)
1 f(t) exists,

then define N
(α)
1 f(0) = lim

t→0+
N

(α)
1 f(t).

If the N-derivative of the function x(t) of order α exists and is finite in (t0,∞),
we will say that x(t) is N-differentiable in I = (t0,∞).

Remark 2.2. The use in definition 2.1 of the limit of a certain incremental quotient,
instead of the integral used in the classical definitions of fractional derivatives, allows
us to give the following interpretation of the N-derivative. Suppose that the point

moves in a straight line in R+. For the moments t1 = t and t2 = t + het
−α

where
h > 0 and α ∈ (0, 1] and we denote S(t1) and S(t2) the path traveled by point P at
time t1 and t2 so we have

S(t2)− S(t1)

t2 − t1
=
S(t+ het

−α
)− S(t)

het−α

this is the average N-speed of point P over time het
−α

. Let’s consider

Lim
h→0

S(t+ het
−α

)− S(t)

het−α
.
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When α = 1, this is the usual instantaneous velocity of a point P at any time
t > 0. If α ∈ (0, 1) this is the instantaneous q-speed of the point P for any t > 0.
Therefore, the physical meaning of the N-derivative is the instantaneous q-change rate
of the state vector of the considered mechanics or another nature of the system.

Remark 2.3. The N-derivative solves almost all the insufficiencies that are indicated
to the classical fractional derivatives. In particular we have the following result.

Theorem 2.4. (See [2]) Let f and g be N-differentiable at a point t > 0 and α ∈ (0, 1].
Then

a) Nα
1 (af + bg)(t) = aNα

1 (f)(t) + bNα
1 (g)(t).

b) Nα
1 (tp) = et

−α
ptp−1, p ∈ R.

c) Nα
1 (λ) = 0, λ ∈ R.

d) Nα
1 (fg)(t) = fNα

1 (g)(t) + gNα
1 (f)(t).

e) Nα
1

(
f

g

)
(t) =

gNα
1 (f)(t)− fNα

1 (g)(t)

g2(t)
.

f) If, in addition, f is differentiable then Nα
1 (f) = et

−α
f ′(t).

g) Being f differentiable and α = n integer, we have Nn
1 (f)(t) = et

−n
f ′(t).

Remark 2.5. The relations a), c), d) and e) are similar to the classical results mathe-
matical analysis, these relationships are not established (or do not occur) for fractional
derivatives of global character (see [5] and [13] and bibliography there). The relation
c) is maintained for the fractional derivative of Caputo. Cases c), f) and g) are typical
of this non conformable local fractional derivative.

Now we will present the equivalent result, for Nα
1 , of the well-known chain rule

of classic calculus and that is basic in the Second Method of Lyapunov, for the study
of stability of perturbed motion.

Theorem 2.6. (See [2]) Let α ∈ (0, 1], g N-differentiable at t > 0 and f differentiable
at g(t) then

Nα
1 (f ◦ g)(t) = f ′(g(t))Nα

1 g(t).

Definition 2.7. The non conformable fractional integral of order α is defined by the
expression

NJ
α
t0f(t) =

∫ t

t0

f(s)

es−α
ds.

The following statement is analogous to the one known from the Ordinary Calculus.

Theorem 2.8. Let f be N-differentiable function in (t0,∞) with α ∈ (0, 1]. Then for
all t > t0 we have

a) If f is differentiable NJ
α
t0 (Nα

1 f(t)) = f(t)− f(t0).

b) Nα
1

(
NJ

α
t0f(t)

)
= f(t).

Proof. a) From definition we have

NJ
α
t0 (Nα

1 f(t)) =

∫ t

t0

Nα
1 f(s)

es−α
ds =

∫ t

t0

f ′(s)es
−α

es−α
ds = f(t)− f(t0).
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b) Analogously we have

Nα
1

(
NJ

α
t0f(t)

)
= et

−α d

dt

[∫ t

t0

f(s)

es−α
ds

]
= f(t). �

3. N-derivative of the Lyapunov function and conditions of stability
and instability of movement

Consider the following system of fractional N-differential equations

Nα
1 x(t) = f(t, x(t)), (3.1)

x(t0) = x0. (3.2)

where x ∈ Rn, f ∈ C(R+ × Rn,Rn), t0 > 0. It is further assumed that for (t0, x0) ∈
int(R+ × Rn) the initial value problem (3.1-3.2) has a solution x(t) ∈ Cα(I) for all
t > t0 > 0. In addition, it is assumed that f(t, 0) = 0 for all t > t0 > 0.

Let for equation (3.1) a Lyapunov-type function V (t, x) ∈ Cα(I × Rn) be con-
structed in some way such that V (t, 0) = 0 for all t > 0. Introduce the notation
Sr = {x ∈ Rn : ‖x‖ < r, r > 0}.

Definition 3.1. Let V be a continuous and α-differentiable function (scalar or vector),
V : I × Sr → Rp(p = 1 or p = m, respectively), and x(t) be the solution of the IVP
(3.1-3.2), which exists and is defined on I×Sr. Corresponding to V(t,x) we define for
(t, x) ∈ I × Sr the function

+N
α
(3.1)V (t, x) = lim sup

h→0

[V (t+ h, x+ hαf(t, x))− V (t, x)]

h
(3.3)

is the N-derivative of V (t, x) with respect to the system (3.1) (or along the solutions
of system (3.1)).

We will now present the results analogous to those known from the Second
Method of Lyapunov, for the study of the stability of systems (3.1).

With C(R) and CI(R) we respectively denote the families of continuous functions
and increasing continuous functions defined on R.

Definition 3.2. (see [11]). CS(R) = {h ∈ C(R) : xh(x) > 0, x 6= 0}

Definition 3.3. (see [11]). CC(R) := CI(R) ∩ CS(R).

Definition 3.4. A continuous function β : [0, t)→ [0,+∞) is said to belong to class-K
if it is strictly increasing and β(0) = 0.

Theorem 3.5. Suppose that for the system (3.1) there is a function N-differentiable
V (t, x) and the functions a, b ∈ K, such that

i) V (t, x) ≥ a(‖x‖),
ii) V (t, x) ≤ b(‖x‖), and

+N
α
(3.1)V (t, x) ≤ 0, (3.4)

for all (t, x) ∈ I × Sr. Then the solution x = 0 of the system (3.1) is uniformly
stable.
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Proof. Let x(t) the solution of system (3.1) which satisfies the initial condition
(t0, x0) ∈ I × Sr and that exists for all t ≥ t0. Let t0 ∈ I and 0 < ε < r. Under
conditions i), ii) of the theorem let’s choose δ = δ(ε) > 0 such that

b(δ) < a(ε) (3.5)

Let’s prove that if ‖x0‖ < δ then ‖x(t)‖ < ε for all t ≥ t0. If this were not true,
then there is a solution x = x(t) such that for ‖x0‖ < δ there exists t1 > t0 what
satisfies ‖x(t1)‖ = ε, and ‖x(t)‖ < ε for all t ∈ [t0, t1).

Under Theorem 8 and condition (3.2), we have

V (t, x(t))− V (t0, x0) =N Jαt0 (Nα
1 V (t, x(t)))

and so

V (t, x(t))− V (t0, x0) ≤ 0 (3.6)

of this last inequality for t = t1 we get

a(ε) ≤ V (t1, x(t1)) ≤ V (t0, x0) ≤ b(‖x‖) < a(ε) (3.7)

The resulting inequality is evidently false. This proves Theorem (3.5). �

Next, we present the conditions that guarantee the asymptotic stability of the
null solution of the fractional system (3.1).

Theorem 3.6. In addition to the conditions i)-ii) of the previous theorem, suppose that
instead of condition (3.4), we have

+N
α
(3.1)V (t, x) ≤ −c(‖x‖), (3.8)

for all (t, x) ∈ I × Sr and c is a function of class K. Then the solution x = 0 of the
system (3.1) is uniform asymptotically stable.

Proof. Under the conditions of the theorem, the solution x = 0 of the system (3.1) is
uniformly stable since the conditions of the previous theorem are satisfied. We show
that this solution is uniformly asymptotically stable.

Let 0 < ε < r and δ = δ(ε) > 0 as before. For ε0 ≤ r let’s choose δ0 = δ0(ε0) > 0
and we consider the solution x(t) with initial conditions t0 ∈ I and ‖x0‖ < δ0. For
t0 < t ≤ t0 + T (ε), where T (ε) will be defined by an implicit expression that will
be specified later, such a solution satisfies ‖x(t)‖ ≥ δ(ε). Let’s prove that under the
conditions of the theorem this is impossible. From (3.8) and Theorem 2.8 we obtain

V (t, x(t))− V (t0, x0) = NJ
α
t0 (Nα

1 V (t, x(t))) ≤ −NJαt0 (c(‖x(t)‖))

V (t, x(t))− V (t0, x0) ≤ −
∫ t

t0

c(‖x(t)‖)
e(s−t0)−α

ds. (3.9)

We denote by

NJ
α
t0(e) =

∫ t

t0

ds

e(s−t0)−α
= E(t)− E(t0),

so we have from (3.9)

V (t, x(t)) ≤ b(δ0)− c(δ(ε))NJαt0(e) (3.10)
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For t = t0 + T (ε) the inequality (3.10) we can write it as

0 < a(δ(ε)) ≤ V (t0 + T (ε), x(t0 + T (ε))) ≤ b(δ0)− c(δ(ε))[E(T (ε))] ≤ 0.

This contradiction shows that there is t1 ∈ [t0, t0 + T (ε)] for which ‖x(t1)‖ < δ(ε).
Therefore, the estimate ‖x(t)‖ < ε is true for all t ≥ t0 + T (ε) as ‖x0‖ < δ0 and
Lim
t→∞

‖x(t)‖ = 0 uniformly in t0 ∈ I. This proves Theorem. �

Next, we will establish the conditions for the instability of the solution x = 0 of
the system (3.1).

Theorem 3.7. Suppose that for the system (3.1) there is an N-differentiable Lyapunov
function V(t,x) such that on I ×Bq with Bq ⊂ Bε satisfies the assumptions

i) 0 < V (t, x) ≤ b(‖x‖),
ii) +N

α
(3.1)V (t, x) ≤ λV (t, x) +W (t, x), with λ > 0 and V : I ×Bq → R+,

W (t, x) ≥ 0;
iii) the solution x = 0 belongs to δBq;
iv) V (t, x) = 0 on I × (δBq ∩Bε).

Then the solution x = 0 is unstable.

Proof. From assumptions ii), and Theorem 2.8 we have

V (t, x(t)) ≥ V (t0, x(t0)) exp
[
λNJ

α
t0(e)

]
, t ≥ t0, (3.11)

Let the solution with initial condition x0 ∈ N be a neighborhood of x = 0. So that for
any t ≥ t0 satisfying the estimate (3.11) along the solution x(t), then it is clear that
for t → ∞, the function V (t, x(t)) grows indefinitely, whereas under the conditions
of Theorem 3.5 is bounded. Therefore, for the solution x(t) there exists t′ such that
x(t′) will leave the region Bε. This shows the instability of the solution x = 0 of the
system (3.1), which proves the theorem. �

Example 3.8. We consider the Lienard N-fractional system{
Nα

1 x(t) = y − F (t)
Nα

1 y(t) = −g(x(t))
(3.12)

with

F (x) =

∫ x

0

f(r)dr

and we take the Lyapunov Function

V (t, x, y) =
y2

2
+G(x), (3.13)

with

G(x) =

∫ x

0

g(s)ds.

Under assumptions on the continuous functions f and g:

1. f(x) > 0 for all x ∈ R,
2. xg(x) > 0 for all x 6= 0,
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we have the stability of solution x = y = 0 of system (3.12). From (3.13) we have

+N
α
(3.1)V (t, x, y) = −g(x)F (x) ≤ 0.

By virtue of Theorem 3.5 the desired result is obtained.
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