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Choquet integral analytic inequalities

George A. Anastassiou

Abstract. Based on an amazing result of Sugeno [15], we are able to transfer
classic analytic integral inequalities to Choquet integral setting. We give Choquet
integral inequalities of the following types: fractional-Polya, Ostrowski, fractional
Ostrowski, Hermite-Hadamard, Simpson and Iyengar. We provide several exam-
ples for the involved distorted Lebesgue measure.
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1. Background

We need the following fractional calculus background:

Let α > 0, m = [α] ([·] is the integral part), β = α−m, 0 < β < 1, f ∈ C ([a, b]),
[a, b] ⊂ R, x ∈ [a, b]. The gamma function Γ is given by Γ (α) =

∫∞
0
e−ttα−1dt. We

define the left Riemann-Liouville integral(
Ja+α f

)
(x) =

1

Γ (α)

∫ x

a

(x− t)α−1 f (t) dt, (1.1)

a ≤ x ≤ b. We define the subspace Cαa+ ([a, b]) of Cm ([a, b]):

Cαa+ ([a, b]) =
{
f ∈ Cm ([a, b]) : Ja+1−βf

(m) ∈ C1 ([a, b])
}
. (1.2)

For f ∈ Cαa+ ([a, b]), we define the left generalized α-fractional derivative of f over
[a, b] as

Dα
a+f :=

(
Ja+1−βf

(m)
)′
, (1.3)

see [1], p. 24. Canavati first in [5] introduced the above over [0, 1] .

Notice that Dα
a+f ∈ C ([a, b]) .

Furthermore we need:
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Let again α > 0, m = [α], β = α − m, f ∈ C ([a, b]), call the right Riemann-
Liouville fractional integral operator by(

Jαb−f
)

(x) :=
1

Γ (α)

∫ b

x

(t− x)
α−1

f (t) dt, (1.4)

x ∈ [a, b], see also [2], [9], [14]. Define the subspace of functions

Cαb− ([a, b]) :=
{
f ∈ Cm ([a, b]) : J1−β

b− f (m) ∈ C1 ([a, b])
}
. (1.5)

Define the right generalized α-fractional derivative of f over [a, b] as

Dα
b−f = (−1)

m−1
(
J1−β
b− f (m)

)′
, (1.6)

see [2]. We set D0
b−f = f . Notice that Dα

b−f ∈ C ([a, b]) .
We need the following fractional Polya type (see [12], [13], p. 62) integral in-

equality without any boundary conditions.

Theorem 1.1. ([4], p. 4) Let 0 < α < 1, f ∈ C ([a, b]). Assume f ∈ Cαa+
([
a, a+b2

])
and f ∈ Cαb−

([
a+b
2 , b

])
. Set

M (f) := max
{∥∥Dα

a+f
∥∥
∞,[a, a+b

2 ] ,
∥∥Dα

b−
∥∥
∞,[ a+b

2 ,b]

}
. (1.7)

Then ∣∣∣∣∣
∫ b

a

f (x) dx

∣∣∣∣∣ ≤
∫ b

a

|f (x)| dx ≤M (f)
(b− a)

α+1

Γ (α+ 2) 2α
. (1.8)

Inequality (1.8) is sharp, namely it is attained by

f∗ (x) =

{
(x− a)

α
, x ∈

[
a, a+b2

]
,

(b− x)
α
, x ∈

[
a+b
2 , b

] }
, 0 < α < 1. (1.9)

The famous Ostrowski ([11]) inequality motivates this work and has as follows:

Theorem 1.2. It holds∣∣∣∣∣ 1

b− a

∫ b

a

f (y) dy − f (x)

∣∣∣∣∣ ≤
(

1

4
+

(
x− a+b

2

)2
(b− a)

2

)
(b− a) ‖f ′‖∞ , (1.10)

where f ∈ C1 ([a, b]), x ∈ [a, b], and it is a sharp inequality.

Another motivation is author’s next fractional result, see [3], p. 44:

Theorem 1.3. Let [a, b] ⊂ R, α > 0, m = dαe (d·e ceiling of the number),

f ∈ ACm ([a, b]) (i.e. f (m−1) is absolutely continuous), and
∥∥∥Dα

x0−f
∥∥∥
∞,[a,x0]

,∥∥∥Dα

∗x0
f
∥∥∥
∞,[x0,b]

< ∞ (where D
α

x0−f,D
α

∗x0
f are the right ([2]) and left ([8], p. 50)

Caputo fractional derivatives of f of order α, respectively), x0 ∈ [a, b]. Assume
f (k) (x0) = 0, k = 1, ...,m− 1. Then∣∣∣∣∣ 1

b− a

∫ b

a

f (x) dx− f (x0)

∣∣∣∣∣ ≤ 1

(b− a) Γ (α+ 2)
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·
{∥∥∥Dα

x0−f
∥∥∥
∞,[a,x0]

(x0 − a)
α+1

+
∥∥∥Dα

∗x0
f
∥∥∥
∞,[x0,b]

(b− x0)
α+1

}
≤ 1

Γ (α+ 2)
max

{∥∥∥Dα

x0−f
∥∥∥
∞,[a,x0]

,
∥∥∥Dα

∗x0
f
∥∥∥
∞,[x0,b]

}
(b− a)

α
. (1.11)

In the next assume that (X,F) is a measurable space and (R+) R is the set of
all (nonnegative) real numbers.

We recall some concepts and some elementary results of capacity and the Cho-
quet integral [6, 7].

Definition 1.4. A set function µ : F → R+ is called a non-additive measure (or
capacity) if it satisfies

(1) µ (∅) = 0;
(2) µ (A) ≤ µ (B) for any A ⊆ B and A,B ∈ F .
The non-additive measure µ is called concave if

µ (A ∪B) + µ (A ∩B) ≤ µ (A) + µ (B) , (1.12)

for all A,B ∈ F . In the literature the concave non-additive measure is known as
submodular or 2-alternating non-additive measure. If the above inequality is reverse,
µ is called convex. Similarly, convexity is called supermodularity or 2-monotonicity,
too.

First note that the Lebesgue measure λ for an interval [a, b] is defined by
λ ([a, b]) = b− a, and that given a distortion function m, which is increasing (or non-
decreasing) and such that m (0) = 0, the measure µ (A) = m (λ (A)) is a distorted
Lebesgue measure. We denote a Lebesgue measure with distortion m by µ = µm. It
is known that µm is concave (convex) if m is a concave (convex) function.
The family of all the nonnegative, measurable function f : (X,F)→ (R+,B (R+)) is
denoted as L+

∞, where B (R+) is the Borel σ-field of R+. The concept of the integral
with respect to a non-additive measure was introduced by Choquet [6].

Definition 1.5. Let f ∈ L+
∞. The Choquet integral of f with respect to non-additive

measure µ on A ∈ F is defined by

(C)

∫
A

fdµ :=

∫ ∞
0

µ ({x : f (x) ≥ t} ∩A) dt, (1.13)

where the integral on the right-hand side is a Riemann integral.
Instead of (C)

∫
X
fdµ, we shall write (C)

∫
fdµ. If (C)

∫
fdµ <∞, we say that

f is Choquet integrable and we write

L1
C (µ) =

{
f : (C)

∫
fdµ <∞

}
.

The next lemma summarizes the basic properties of Choquet integrals [7].

Lemma 1.6. Assume that f, g ∈ L1
C (µ).

(1) (C)

∫
1Adµ = µ (A), A ∈ F .
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(2) (Positive homogeneity) For all λ ∈ R+, we have

(C)

∫
λfdµ = λ · (C)

∫
fdµ.

(3) (Translation invariance) For all c ∈ R, we have

(C)

∫
(f + c) dµ = (C)

∫
fdµ+ c.

(4) (Monotonicity in the integrand) If f ≤ g, then we have

(C)

∫
fdµ ≤ (C)

∫
gdµ.

(Monotonicity in the set function) If µ ≤ ν, then we have

(C)

∫
fdµ ≤ (C)

∫
fdν.

(5) (Subadditivity) If µ is concave, then

(C)

∫
(f + g) dµ ≤ (C)

∫
fdµ+ (C)

∫
gdµ.

(Superadditivity) If µ is convex, then

(C)

∫
(f + g) dµ ≥ (C)

∫
fdµ+ (C)

∫
gdµ.

(6) (Comonotonic additivity) If f and g are comonotonic, then

(C)

∫
(f + g) dµ = (C)

∫
fdµ+ (C)

∫
gdµ,

where we say that f and g are comonotonic, if for any x, x′ ∈ X, then

(f (x)− f (x′)) (g (x)− g (x′)) ≥ 0.

We next mention the amazing result from [15], which permits us to compute the
Choquet integral when the non-additive measure is a distorted Lebesgue measure.

Theorem 1.7. Let f be a nonnegative and measurable function on R+ and µ = µm be
a distorted Lebesgue measure. Assume that m (x) and f (x) are both continuous and
m (x) is differentiable. When f is an increasing (non-decreasing) function on R+, the
Choquet integral of f with respect to µm on [0, t] is represented as

(C)

∫
[0,t]

fdµm =

∫ t

0

m′ (t− x) f (x) dx, (1.14)

however, when f is a decreasing (non-increasing) function on R+, the Choquet integral
of f is

(C)

∫
[0,t]

fdµm =

∫ t

0

m′ (x) f (x) dx. (1.15)
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2. Main results

From now on we assume that f : R+ → R+ is a monotone continuous function,
and µ = µm i.e. µ (A) = m (λ (A)), denotes a distorted Lebesgue measure where m is
such that m (0) = 0, m is increasing (non-decreasing) and continuously differentiable.

By Theorem 1.7 and mean value theorem for integrals we get:
i) If f is an increasing (non-decreasing) function on R+, we have

(C)

∫
[0,t]

fdµm
(1.14)

=

∫ t

0

m′ (t− x) f (x) dx

= m′ (t− ξ)
∫ t

0

f (x) dx, where ξ ∈ (0, t) . (2.1)

ii) If f is a decreasing (non-increasing) function on R+, we have

(C)

∫
[0,t]

fdµm
(1.15)

=

∫ t

0

m′ (x) f (x) dx = m′ (ξ)

∫ t

0

f (x) dx, (2.2)

where ξ ∈ (0, t) .
We denote by

γ (t, ξ) :=

{
m′ (t− ξ) , when f is increasing (non-decreasing)
m′ (ξ) , when f is decreasing (non-increasing),

(2.3)

for some ξ ∈ (0, t) per case.
We give the following Choquet-fractional-Polya inequality:

Theorem 2.1. Let 0 < α < 1, f = f |[0,t], t ∈ R+, all considered as above in this

section. Assume further that f ∈ Cα0+
([

0, t2
])

and f ∈ Cαt−
([
t
2 , t
])

. Set

M∗ (f) (t) := max
{∥∥Dα

0+f
∥∥
∞,[0, t2 ] ,

∥∥Dα
t−f
∥∥
∞,[ t

2 ,t]

}
. (2.4)

Then

(C)

∫
[0,t]

fdµm ≤ γ (t, ξ)M∗ (f) (t)
tα+1

Γ (α+ 2) 2α
. (2.5)

Proof. By Theorem 1.1 and earlier comments. �

Usual Polya inequality with ordinary derivative requires boundary conditions
making a Choquet-Polya inequality impossible.

We give applications:

Remark 2.2. i) If m (t) = t
1+t , t ∈ R+, then m (0) = 0, m (t) ≥ 0, m′ (t) = 1

(1+t)2
> 0,

and m is increasing. Then γ (t, ξ) ≤ 1.
ii) If m (t) = 1 − e−t ≥ 0, t ∈ R+, then m (0) = 0, m′ (t) = e−t > 0, and m is

increasing. Then γ (t, ξ) ≤ 1.
iii) If m (t) = et−1 ≥ 0, t ∈ R+, m (0) = 0, m′ (t) = et > 0, and m is increasing.

Then γ (t, ξ) ≤ et.
iv) If m (t) = sin t, for t ∈

[
0, π2

]
, we get m (0) = 0, m′ (t) = cos t ≥ 0, and m is

increasing. Then γ (t, ξ) ≤ 1.

We continue with the Choquet-Ostrowski type inequalities:
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Theorem 2.3. Here f : R+ → R+ is a monotone continuous function, µm is a distorted
Lebesgue measure, where m is such that m (0) = 0, m is increasing and is twice
continuously differentiable on R+. Here 0 ≤ x0 ≤ t ∈ R+. Then

1) ∣∣∣∣∣1t (C)

∫
[0,t]

fdµm −m′ (t− x0) f (x0)

∣∣∣∣∣
≤

(
1

4
+

(
x0 − t

2

)2
t2

)
t
∥∥∥(m′ (t− ·) f)

′
∥∥∥
∞,[0,t]

, (2.6)

if f is an increasing function on R+,
and

2) ∣∣∣∣∣1t (C)

∫
[0,t]

fdµm −m′ (x0) f (x0)

∣∣∣∣∣
≤

(
1

4
+

(
x0 − t

2

)2
t2

)
t
∥∥∥(m′f)

′
∥∥∥
∞,[0,t]

, (2.7)

if f is a decreasing function on R+.

Proof. By (1.10) we have that (x0 ∈ [0, t])∣∣∣∣∣1t (C)

∫
[0,t]

fdµm −m′ (t− x0) f (x0)

∣∣∣∣∣
(1.14)

=

∣∣∣∣1t
∫ t

0

m′ (t− x) f (x) dx−m′ (t− x0) f (x0)

∣∣∣∣
≤

(
1

4
+

(
x0 − t

2

)2
t2

)
t
∥∥∥(m′ (t− ·) f)

′
∥∥∥
∞,[0,t]

, (2.8)

when f is an increasing function on R+.
Also we have that ∣∣∣∣∣1t (C)

∫
[0,t]

fdµm −m′ (x0) f (x0)

∣∣∣∣∣
(1.15)

=

∣∣∣∣1t
∫ t

0

m′ (x) f (x) dx−m′ (x0) f (x0)

∣∣∣∣
(1.10)

≤

(
1

4
+

(
x0 − t

2

)2
t2

)
t
∥∥∥(m′f)

′
∥∥∥
∞,[0,t]

, (2.9)

when f is a decreasing function on R+. �

We make
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Remark 2.4. (continuing from Remark 2.2) Assuming m is twice continuously differ-
entiable is quite natural. Indeed:

i) If m (t) = t
1+t , t ∈ R+, then m′ (t) = (1 + t)

−2
, m′′ (t) = −2 (1 + t)

−3
,

m(3) (t) = 6 (1 + t)
−4

, m(4) (t) = −24 (1 + t)
−5

, etc, all higher order derivatives exist
and are continuous.

ii) If m (t) = 1− e−t, t ∈ R+, then m′ (t) = e−t, m′′ (t) = −e−t, m(3) (t) = e−t,
m(4) (t) = −e−t, etc, all higher order derivatives exist and are continuous.

iii) If m (t) = et − 1, t ∈ R+, then m(i) (t) = et, i = 1, 2, ..., all derivatives exist
and are continuous.

iv) If m (t) = sin t, t ∈
[
0, π2

]
, then m′ (t) = cos t, m′′ (t) = − sin t, m(3) (t) =

− cos t, m(4) (t) = sin t, etc, all derivatives exist and are continuous.

We continue with fractional Choquet-Ostrowski type inequalities.

Theorem 2.5. Here f : R+ → R+ is an increasing continuous function, µm is a
distorted Lebesgue measure and 0 ≤ x0 ≤ t ∈ R+.

Let α > 0, m = dαe, (m′ (t− ·) f) ∈ ACm ([0, t]), and
∥∥∥Dα

x0− (m′ (t− ·) f)
∥∥∥
∞,[0,x0]

,∥∥∥Dα

∗x0
(m′ (t− ·) f)

∥∥∥
∞,[x0,t]

< ∞. Assume (m′ (t− ·) f)
(k)

(x0) = 0, k = 1, ...,m− 1.

Then ∣∣∣∣∣1t (C)

∫
[0,t]

fdµm −m′ (t− x0) f (x0)

∣∣∣∣∣
≤ 1

tΓ (α+ 2)

{∥∥∥Dα

x0− (m′ (t− ·) f)
∥∥∥
∞,[0,x0]

xα+1
0

+
∥∥∥Dα

∗x0
(m′ (t− ·) f)

∥∥∥
∞,[x0,t]

(t− x0)
α+1

}
(2.10)

≤ tα

Γ (α+ 2)
max

{∥∥∥Dα

x0− (m′ (t− ·) f)
∥∥∥
∞,[0,x0]

,
∥∥∥Dα

∗x0
(m′ (t− ·) f)

∥∥∥
∞,[x0,t]

}
.

Proof. By Theorem 1.3. �

Theorem 2.6. Here f : R+ → R+ is a decreasing continuous function, µm is
a distorted Lebesgue measure and 0 ≤ x0 ≤ t ∈ R+. Let α > 0, m = dαe,
(m′f) ∈ ACm ([0, t]), and

∥∥∥Dα

x0− (m′f)
∥∥∥
∞,[0,x0]

,
∥∥∥Dα

∗x0
(m′f)

∥∥∥
∞,[x0,t]

< ∞. Assume

(m′f)
(k)

(x0) = 0, k = 1, ...,m− 1. Then∣∣∣∣∣1t (C)

∫
[0,t]

fdµm −m′ (x0) f (x0)

∣∣∣∣∣
≤ 1

tΓ (α+ 2)

{∥∥∥Dα

x0− (m′f)
∥∥∥
∞,[0,x0]

xα+1
0 +

∥∥∥Dα

∗x0
(m′f)

∥∥∥
∞,[x0,t]

(t− x0)
α+1

}
≤ tα

Γ (α+ 2)
max

{∥∥∥Dα

x0− (m′f)
∥∥∥
∞,[0,x0]

,
∥∥∥Dα

∗x0
(m′f)

∥∥∥
∞,[x0,t]

}
. (2.11)

Proof. By Theorem 1.3. �
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We need the well-known Hermite-Hadamard inequality:

Theorem 2.7. Let f : [a, b]→ R be a continuous convex function, [a, b] ⊂ R. Then

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (x) dx ≤ f (a) + f (b)

2
. (2.12)

We give the following Choquet-Hermite-Hadamard inequalities:

Theorem 2.8. Here f : R+ → R+ is a monotone continuous convex function, µm is
a distorted Lebesgue measure, where m is such that m (0) = 0, m is increasing and
continuously differentiable on R+. Here [a, b] ⊆ R+. Then

i) If f is decreasing, we have that

m′ (ξ) f

(
a+ b

2

)
≤ 1

b− a
(C)

∫
[a,b]

f (x) dµm (x) ≤ m′ (ξ) f (a) + f (b)

2
, (2.13)

for some ξ ∈ (0, b− a) .
ii) If f is increasing, we have that

m′ (b− a− ψ) f

(
a+ b

2

)
≤ 1

b− a
(C)

∫
[a,b]

f (x) dµm (x)

≤ m′ (b− a− ψ)
f (a) + f (b)

2
, (2.14)

for some ψ ∈ (0, b− a) .

Proof. Let f be a convex function from [a, b] ⊂ R+ into R+. Let t1, t2 ∈ [0, b− a],
these are of the form t1 = x− a, t2 = y − a, where x, y ∈ [a, b] .

Consider (λ ∈ (0, 1))

f (a+ λt1 + (1− λ) t2) = f (a+ λ (x− a) + (1− λ) (y − a))

= f (λx+ (1− λ) y) ≤ λf (x) + (1− λ) f (y)

= λf (a+ x− a) + (1− λ) f (a+ y − a)

= λf (a+ t1) + (1− λ) f (a+ t2) ,

proving that f (a+ ·) is convex over [0, b− a].
Also it holds

(C)

∫
[a,b]

f (x) dµm (x) = (C)

∫
[0,b−a]

f (a+ x) dµm (x) . (2.15)

Clearly, if f is increasing over [a, b], then f (a+ ·) is increasing on [0, b− a], and vice
verca. And if f is decreasing over [a, b], then f (a+ ·) is decreasing on [0, b− a], and
vice verca.

i) If f is decreasing, then

(C)

∫
[0,b−a]

f (a+ x) dµm (x)
(1.15)

=

∫ b−a

0

m′ (x) f (a+ x) dx

= m′ (ξ)

∫ b−a

0

f (a+ x) dx, for some ξ ∈ (0, b− a) . (2.16)
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By (2.12) we get

f

(
a+ b

2

)
≤ 1

b− a

∫ b−a

0

f (a+ x) dx ≤ f (a) + f (b)

2
, (2.17)

and then

f

(
a+ b

2

)
m′ (ξ) ≤ m′ (ξ)

b− a

∫ b−a

0

f (a+ x) dx ≤
(
f (a) + f (b)

2

)
m′ (ξ) . (2.18)

That is we proved (by (2.15), (2.16))

f

(
a+ b

2

)
m′ (ξ) ≤

(C)
∫
[a,b]

f (x) dµm (x)

b− a
≤
(
f (a) + f (b)

2

)
m′ (ξ) , (2.19)

for some ξ ∈ (0, b− a) .

ii) If f is increasing, then

(C)

∫
[0,b−a]

f (a+ x) dµm (x)
(1.14)

=

∫ b−a

0

m′ (b− a− x) f (a+ x) dx

= m′ (b− a− ψ)

∫ b−a

0

f (a+ x) dx, for some ψ ∈ (0, b− a) . (2.20)

Again by (2.12) we get

f

(
a+ b

2

)
≤ 1

b− a

∫ b−a

0

f (a+ x) dx ≤ f (a) + f (b)

2
, (2.21)

and

f

(
a+ b

2

)
m′ (b− a− ψ) ≤ m′ (b− a− ψ)

b− a

∫ b−a

0

f (a+ x) dx

≤
(
f (a) + f (b)

2

)
m′ (b− a− ψ) . (2.22)

That is we proved (by (2.15), (2.20))

f

(
a+ b

2

)
m′ (b− a− ψ) ≤

(C)
∫
[a,b]

f (x) dµm (x)

b− a

≤
(
f (a) + f (b)

2

)
m′ (b− a− ψ) , (2.23)

for some ψ ∈ (0, b− a) . �

We need the well-known Simpson inequality:

Theorem 2.9. If f : [a, b]→ R is four times continuously differentiable on (a, b) and∥∥∥f (4)∥∥∥
∞

= sup
x∈(a,b)

∣∣∣f (4) (x)
∣∣∣ <∞,
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then the Simpson inequality holds:∣∣∣∣∣ 1

b− a

∫ b

a

f (x) dx− 1

3

[
f (a) + f (b)

2
+ 2f

(
a+ b

2

)]∣∣∣∣∣ ≤ 1

2880

∥∥∥f (4)∥∥∥
∞

(b− a)
4
.

(2.24)

We give the corresponding Choquet-Simpson inequalities:

Theorem 2.10. Here f : R+ → R+ is a monotone function which is four times contin-
uously differentiable on R+, µm is a distorted Lebesgue measure, where m is such that
m (0) = 0, m is increasing and five times continuously differentiable on R+, t ∈ R+.
Then

i) if f is increasing, we have that∣∣∣∣∣1t (C)

∫
[0,t]

fdµm −
1

3

[
m′ (t) f (0) +m′ (0) f (t)

2
+ 2m′

(
t

2

)
f

(
t

2

)]∣∣∣∣∣
≤ 1

2880

∥∥∥(m′ (t− ·) f)
(4)
∥∥∥
∞,[0,t]

t4, (2.25)

and
ii) if f is decreasing, we have that∣∣∣∣∣1t (C)

∫
[0,t]

fdµm −
1

3

[
m′ (0) f (0) +m′ (t) f (t)

2
+ 2m′

(
t

2

)
f

(
t

2

)]∣∣∣∣∣
≤ 1

2880

∥∥∥(m′f)
(4)
∥∥∥
∞,[0,t]

t4. (2.26)

Proof. i) If f is increasing, then∣∣∣∣∣1t (C)

∫
[0,t]

fdµm −
1

3

[
m′ (t) f (0) +m′ (0) f (t)

2
+ 2m′

(
t

2

)
f

(
t

2

)]∣∣∣∣∣
(1.14)

=

∣∣∣∣1t
∫ t

0

m′ (t− x) f (x) dx− 1

3

[
m′ (t) f (0) +m′ (0) f (t)

2
+ 2m′

(
t

2

)
f

(
t

2

)]∣∣∣∣
(2.24)

≤ 1

2880

∥∥∥(m′ (t− ·) f)
(4)
∥∥∥
∞,[0,t]

t4. (2.27)

ii) If f is decreasing, then∣∣∣∣∣1t (C)

∫
[0,t]

fdµm −
1

3

[
m′ (0) f (0) +m′ (t) f (t)

2
+ 2m′

(
t

2

)
f

(
t

2

)]∣∣∣∣∣
(1.15)

=

∣∣∣∣1t
∫ t

0

m′ (x) f (x) dx− 1

3

[
m′ (0) f (0) +m′ (t) f (t)

2
+ 2m′

(
t

2

)
f

(
t

2

)]∣∣∣∣
(2.24)

≤ 1

2880

∥∥∥(m′f)
(4)
∥∥∥
∞,[0,t]

t4. (2.28)

�

We need the famous Iyengar inequality [10] coming next:
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Theorem 2.11. Let f be a differentiable function on [a, b] ⊂ R and |f ′ (x)| ≤ M1.
Then∣∣∣∣∣

∫ b

a

f (x) dx− 1

2
(b− a) (f (a) + f (b))

∣∣∣∣∣ ≤ M1 (b− a)
2

4
− (f (b)− f (a))

2

4M1
. (2.29)

We present the corresponding Choquet-Iyengar inequalities:

Theorem 2.12. Here f : R+ → R+ is a monotone differentiable function on R+, µm
is a distorted Lebesgue measure, where m is such that m (0) = 0, m is increasing and
twice continuously differentiable on R+, t ∈ R+. Then

i) if f is increasing and
∣∣(m′ (t− ·) f)

′
(x)
∣∣ ≤M2, ∀ x ∈ [0, t], M2 > 0, we have

that ∣∣∣∣∣(C)

∫
[0,t]

f (x) dµm (x)− t

2
(m′ (t) f (0) +m′ (0) f (t))

∣∣∣∣∣
≤ M2t

2

4
− (m′ (0) f (t)−m′ (t) f (0))

2

4M2
. (2.30)

ii) if f is decreasing and
∣∣(m′f)

′
(x)
∣∣ ≤M3, ∀ x ∈ [0, t], M3 > 0, we have that∣∣∣∣∣(C)

∫
[0,t]

f (x) dµm (x)− t

2
(m′ (0) f (0) +m′ (t) f (t))

∣∣∣∣∣
≤ M3t

2

4
− (m′ (t) f (t)−m′ (0) f (0))

2

4M3
. (2.31)

Proof. i) If f is increasing and
∣∣(m′ (t− ·) f)

′
(x)
∣∣ ≤M2, ∀ x ∈ [0, t], then∣∣∣∣∣(C)

∫
[0,t]

f (x) dµm (x)− t

2
(m′ (t) f (0) +m′ (0) f (t))

∣∣∣∣∣
(1.14)

=

∣∣∣∣∫ t

0

m′ (t− x) f (x) dx− t

2
(m′ (t) f (0) +m′ (0) f (t))

∣∣∣∣
(2.29)

≤ M2t
2

4
− (m′ (0) f (t)−m′ (t) f (0))

2

4M2
. (2.32)

ii) If f is decreasing and
∣∣(m′f)

′
(x)
∣∣ ≤M3, ∀ x ∈ [0, t], then∣∣∣∣∣(C)

∫
[0,t]

f (x) dµm (x)− t

2
(m′ (0) f (0) +m′ (t) f (t))

∣∣∣∣∣
(1.15)

=

∣∣∣∣∫ t

0

m′ (x) f (x) dx− t

2
(m′ (0) f (0) +m′ (t) f (t))

∣∣∣∣
(2.29)

≤ M3t
2

4
− (m′ (t) f (t)−m′ (0) f (0))

2

4M3
. �

Note 2.13. One can transfer many analytic integral classic inequalities to Choquet
integral setting but we choose to stop here.
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