Stud. Univ. Babeş-Bolyai Math. 63(2018), No. 2, 175–188

DOI: 10.24193/subbmath.2018.2.02

Integral estimates for a class \mathcal{B}_n of operators

Shah Lubna Wali and Abdul Liman

Abstract. Let \mathcal{P}_n be the class of polynomials of degree at most n. Rahman introduced a class \mathcal{B}_n of operators \mathcal{B} that map \mathcal{P}_n into itself. In this paper, we establish certain integral estimates concerning \mathcal{B} -operator, and thereby obtain generalizations as well as improvements of some well known inequalities for polynomials.

Mathematics Subject Classification (2010): 26D10, 41A17.

Keywords: \mathcal{B} -Operator, polynomial inequalities, integral estimates.

1. Introduction and Statement of Results

Let \mathcal{P}_n be the class of polynomials $P(z) := \sum_{j=0}^n a_j z^j$ of degree at most n with complex coefficients. For $P \in \mathcal{P}_n$, define

$$||P||_0 := exp \left\{ \frac{1}{2\pi} \int_0^{2\pi} \log |P(e^{i\theta})| d\theta \right\},$$

$$||P||_p := \left\{ \frac{1}{2\pi} \int_0^{2\pi} |P(e^{i\theta})|^p d\theta \right\}^{\frac{1}{p}} \quad 0
$$||P||_\infty := \max_{|z|=1} |P(z)|.$$$$

It is known that if $P \in \mathcal{P}_n$, then

$$||P'||_{\infty} \le n||P||_{\infty} \tag{1.1}$$

and for R > 1,

$$||P(R.)||_{\infty} \le R^n ||P||_{\infty}.$$
 (1.2)

Inequality (1.1) is an immediate consequence of a famous result due to Bernstein on the derivative of a trigonometric polynomial (for reference see [6], [14]), where as

inequality (1.2) is a simple deduction from the maximum modulus principle. Inequalities (1.1) and (1.2) can be obtained by letting $p \to \infty$ in

$$||P'||_p \le n||P||_p, \quad p > 0$$
 (1.3)

and

$$||P(R.)||_p \le R^n ||P||_p, \quad R > 1, \quad \text{and} \quad p > 0.$$
 (1.4)

Inequality (1.3) for $p \ge 1$ is due to Zygmund [18], where as inequality (1.4) is a simple consequence of a result due to Hardy [10]. Arestov [2] proved that (1.3) remains true for 0 as well.

For the class of polynomials $P \in \mathcal{P}_n$ such that $P(z) \neq 0$ in |z| < 1, inequalities (1.1) and (1.2) can be replaced by

$$||P'||_{\infty} \le \frac{n}{2} ||P||_{\infty} \tag{1.5}$$

and

$$||P(R.)||_{\infty} \le \frac{R^n + 1}{2} ||P||_{\infty}, \quad R > 1.$$
 (1.6)

Inequality (1.5) was conjectured by Erdös and later verified by Lax [11], where as Ankeny and Rivilin [1] used (1.5) to prove (1.6).

Inequalities (1.5) and (1.6) can be obtained by letting $p \to \infty$ in

$$||P'||_p \le \frac{n}{||1 + E_n||_p} ||P||_p, \quad p > 0,$$
 (1.7)

and

$$||P(R.)||_p \le \frac{||E_n(R.) + 1||_p}{||1 + E_n||_p} ||P||_p, \quad p > 0,$$
 (1.8)

where $E_n(z) := z^n$.

Inequality (1.7) was found out by de Brujin [8] for $p \ge 1$, whereas inequality (1.8) for $p \ge 1$ was proved by Boas and Rahman [7]. Rahman and Schmeisser [13] have shown that inequalities (1.7) and (1.8) remain true for 0 as well.

As a compact generalisation of inequalities (1.7) and (1.8), Aziz and Rather [4] proved that if $P \in \mathcal{P}_n$ and P(z) does not vanish in |z| < 1, then for $\alpha, \beta \in \mathbb{C}$ with $|\alpha| \le 1, |\beta| \le 1, R > r \ge 1$ and p > 0,

$$||P(Rz) - \phi(R, r, \alpha, \beta)P(rz)||_p \le \frac{C_p}{||1 + z||_p} ||P||_p$$
(1.9)

where

$$C_p = \|(R^n + \phi(R, r, \alpha, \beta)r^n)z + (1 + \phi(R, r, \alpha, \beta))\|_p$$

and

$$\phi(R, r, \alpha, \beta) = \beta \left\{ \left(\frac{R+1}{r+1} \right)^n - |\alpha| \right\} - \alpha. \tag{1.10}$$

Rahman [14] introduced a class \mathcal{B}_n of operators B that map $P \in \mathcal{P}_n$ into itself. That is, the operator B carries $P \in \mathcal{P}_n$ into

$$B[P](z) := \lambda_o P(z) + \lambda_1 \left(\frac{nz}{2}\right) \frac{P'(z)}{1!} + \lambda_2 \left(\frac{nz}{2}\right)^2 \frac{P''(z)}{2!},\tag{1.11}$$

where λ_o , λ_1 and λ_2 are real or complex numbers such that all the zeros of

$$\mathcal{U}(z) := \lambda_o + C(n,1)\lambda_1 z + C(n,2)\lambda_2 z^2, \ C(n,r) = \frac{n!}{r!(n-r)!},$$
 (1.12)

lie in the half plane

$$|z| \le \left|z - \frac{n}{2}\right|$$
.

He observed that if $P \in \mathcal{P}_n$, then for R > 1

$$|B[P](R.)| \le R^n |\Lambda| |P|_{\infty} \quad \text{for} \quad |z| = 1$$
 (1.13)

where

$$\Lambda = \lambda_0 + \lambda_1 \frac{n^2}{2} + \lambda_2 \frac{n^3(n-1)}{8}.$$
 (1.14)

On the other hand Shah and Liman [15] proved that if $P \in \mathcal{P}_n$ and P(z) does not vanish in |z| < 1, then for $R \ge 1$

$$|B[P](R.)| \le \frac{1}{2} \{R^n |\Lambda| + |\lambda_o|\} ||P||_{\infty} \quad \text{for} \quad |z| = 1.$$
 (1.15)

While seeking the desired extension of inequality (1.13) to l_p -norm Shah and Liman [16] proved that, if $P \in \mathcal{P}_n$ and P(z) does not vanish in |z| < 1, then for each $R \ge 1$ and $p \ge 1$

$$||B[P](R.)||_p \le \frac{||R^n \Lambda z + \lambda_0||_p}{||1 + z||_p} ||P||_p,$$

where $B \in \mathcal{B}_n$.

Later on Rather and Shah extended the result for 0 as well.

In this paper, we investigate the dependence of

$$||B[P](R.) + \phi(R, r, \alpha, \beta)B[P](r.)||_{p}$$

on $||P||_p$, where $\phi(R, r, \alpha, \beta)$ is given by (1.10), $\alpha, \beta \in \mathbb{C}$ with $|\alpha| \leq 1$, $|\beta| \leq 1$, $R > r \geq 1$, $0 \leq p < \infty$ and establish certain generalised integral inequalities. The results obtained will not only generalise but also improve inequalities (1.5) to (1.8) as well. In fact we prove:

2. Main Results

Theorem 2.1. If $P \in \mathcal{P}_n$ and P(z) does not vanish in |z| < 1, then for $\alpha, \beta \in \mathbb{C}$ with $|\alpha| \le 1, |\beta| \le 1, R > r \ge 1$ and $0 \le p < \infty$

$$||B[P](R.) + \phi(R, r, \alpha, \beta)B[P](r.)||_{p}$$

$$\leq \frac{||(R^{n} + \phi(R, r, \alpha, \beta)r^{n})\Lambda z + (1 + \phi(R, r, \alpha, \beta))\lambda_{0}||_{p}}{||1 + z||_{p}}||P||_{p},$$

where $B \in \mathcal{B}_n$, $\phi(R, r, \alpha, \beta)$ and Λ are as defined by (1.10) and (1.14) respectively. The result is sharp and equality holds for $P(z) = az^n + b$, $|a| = |b| \neq 0$. If we assume that $\beta = 0$ so that $\phi(R, r, \alpha, \beta) = -\alpha$, then we get from Theorem 2.1

the following:

Corollary 2.1. If $P \in \mathcal{P}_n$ and P(z) does not vanish in |z| < 1, then for every real or complex number α with $|\alpha| \le 1$, $R > r \ge 1$ and $0 \le p < \infty$, we have

$$||B[P](R.) - \alpha B[P](r.)||_p \le \frac{||(R^n - \alpha r^n)\Lambda z + (1 - \alpha)\lambda_o||_p}{||1 + z||_p} ||P||_p,$$

where $B \in \mathcal{B}_n$ and Λ is defined by (1.14).

The result is best possible and equality holds for $P(z) = az^n + b$, $|a| = |b| \neq 0$.

Theorem 2.2. Suppose $P \in \mathcal{P}_n$ and P(z) does not vanish in |z| < 1. If $\alpha, \beta \in \mathbb{C}$ are such that $|\alpha| \le 1, |\beta| \le 1, R > r \ge 1$, then for every $\gamma \in \mathbb{C}$ with $|\gamma| \le 1$, and $0 \le p < \infty$, we have

$$\left\| B[P](R.) + \phi(R, r, \alpha, \beta) B[P](r.) \right\|$$

$$+ \frac{\gamma}{2} \left\{ \left| (R^n + \phi(R, r, \alpha, \beta) r^n) \Lambda \right| - \left| 1 + \phi(R, r, \alpha, \beta) \lambda_0 \right| \right\} m \right\|_p$$

$$\leq \frac{\left\| (R^n + \phi(R, r, \alpha, \beta) r^n) \Lambda z + (1 + \phi(R, r, \alpha, \beta)) \lambda_0 \right\|_p}{\|1 + z\|_p} \|P\|_p,$$

where $m = \min_{|z|=1} |P(z)|$, $B \in \mathcal{B}_n$, $\phi(R, r, \alpha, \beta)$ and Λ are defined in (1.10) and (1.14) respectively.

The result is sharp and equality holds for $P(z) = az^n + b$, $|a| = |b| \neq 0$.

If we assume that $\beta = 0$, so that $\phi(R, r, \alpha, \beta) = -\alpha$, then we get from Theorem 2.2 the following:

Corollary 2.2. Suppose $P \in \mathcal{P}_n$ and P(z) does not vanish in |z| < 1. If $\alpha \in \mathbb{C}$ is such that $|\alpha| \le 1$, then for every $\gamma \in \mathbb{C}$ with $|\gamma| \le 1$, $R > r \ge 1$ and $0 \le p < \infty$, we have

$$||B[P](R.) - \alpha B[P](r.) + \frac{\gamma}{2} \left(|(R^n - \alpha r^n)\Lambda| - |1 - \alpha||\lambda_0| \right) m||_p$$

$$\leq \frac{||(R^n - \alpha r^n)\Lambda z + (1 - \alpha)\lambda_o||_p}{||1 + z||_p} ||P||_p.$$

In particular if we let $p \to \infty$, we get

$$\left| B[P](R.) - \alpha B[P](r.) + \frac{\gamma}{2} \left(|(R^n - \alpha r^n)\Lambda| - |1 - \alpha||\lambda_0| \right) m \right|$$

$$\leq \frac{\|(R^n - \alpha r^n)\Lambda z + (1 - \alpha)\lambda_o\|_{\infty}}{\|1 + z\|_{\infty}} \|P\|_{\infty}.$$

Choosing argument of γ suitably we get

$$|B[P](R.) - \alpha B[P](r.)| + |\gamma| \frac{\|(R^n - \alpha r^n)\Lambda| - |1 - \alpha\|\lambda_0\|m}{2}$$

$$\leq \frac{\|(R^n - \alpha r^n)\Lambda z + (1 - \alpha)\lambda_o\|_{\infty}}{\|1 + z\|_{\infty}} \|P\|_{\infty}.$$

That is for |z| = 1,

$$|B[P](R\;.) - \alpha B[P](r\;.)| \\ \leq \frac{|(R^n - \alpha r^n)\Lambda| + |(1 - \alpha)\|\lambda_o|}{2} \|P\|_{\infty} - |\gamma| \frac{\|(R^n - \alpha r^n)\|\Lambda| - |1 - \alpha\|\lambda_0\|m}{2}.$$

Letting $|\gamma| \to 1$, we get

$$|B[P](R.) - \alpha B[P](r.)|$$

$$\leq \frac{|(R^{n} - \alpha r^{n})\Lambda| + |1 - \alpha||\lambda_{o}|}{2} \max_{|z|=1} |P(z)|$$

$$-\frac{(|(R^{n} - \alpha r^{n})\Lambda| - |1 - \alpha||\lambda_{o}|)}{2} \min_{|z|=1} |P(z)|.$$

A result of Shah and Liman [15] and the result of Aziz and Dawood [3] are special cases of Corollary 2.2, when $\alpha = 0$

3. Lemmas

For the proofs of above theorems we need the following lemmas. The first lemma is due to Govil. et. al [9].

Lemma 3.1. If $P \in \mathcal{P}_n$ and P(z) does not vanish in |z| < 1, then for every $R > r \ge 1$ and |z| = 1,

$$|P(Rz)| \ge \left(\frac{R+1}{r+1}\right)^n |P(rz)|.$$

The next Lemma follows from a result of Marden [12, Corollary 18.3, p.65]

Lemma 3.2. Suppose all the zeros of a polynomial $P \in \mathcal{P}_n$ lie in $|z| \leq 1$, then all the zeros of the polynomial B[P](z) also lie in $|z| \leq 1$.

We also need the following Lemma due to Wali. et. al [17]

Lemma 3.3. Suppose F(z) and P(z) are polynomials of degree n and m $(m \le n)$ respectively, such that on |z| = 1,

$$|P(z)| \le |F(z)|.$$

If all the zeros of F(z) are in $|z| \le 1$, then for arbitrary complex numbers α, β with $|\alpha| \le 1, |\beta| \le 1, R \ge r \ge 1$,

$$|B[P](Rz) + \phi(R, r, \alpha, \beta)B[P](rz) + \lambda_1 \frac{n - m}{2} z \left\{ (P(Rz))' + \phi(R, r, \alpha, \beta)(P(rz))' \right\}$$

$$+ \lambda_2 \frac{n^2 - m^2}{8} z^2 \{ (P(Rz))'' + \phi(R, r, \alpha, \beta)(P(rz))'' \} |$$

$$\leq |B[F](Rz)| + \phi(R, r, \alpha, \beta)|B[F](rz)| \qquad (1 \leq |z| < \infty).$$

Here $\phi(R, r, \alpha, \beta)$ is defined by (1.10) and $B \in \mathcal{B}_n$.

 $\lambda_0, \lambda_1, \lambda_2$ are such that $\lambda_0 + C(n,1)\lambda_1 z + C(n,2)\lambda_2 z^2$ has all zeros in $\text{Re}(z) \leq \frac{n}{4}$, and $v(z) = \lambda_0 + C(m,1)\lambda_1 z + C(m,2)\lambda_2 z^2$ has all zeros in $\text{Re}(z) \leq \frac{m}{4}$.

Lemma 3.4. If $P \in \mathcal{P}_n$ and P(z) does not vanish in |z| < 1, then for arbitrary real or complex numbers α, β with $|\alpha| \le 1, |\beta| \le 1, R > r \ge 1$ and $|z| \ge 1$

$$|B[P](R .) + \phi(R, r, \alpha, \beta)B[P](r .)| \le |B[P^*](R .) + \phi(R, r, \alpha, \beta)B[P^*](r .)|$$

where $P^*(z) := z^n \overline{P(\frac{1}{z})}, \phi(R, r, \alpha, \beta)$ is defined by (1.10) and $B \in \mathcal{B}_n$.

Proof of Lemma 3.4. By hypothesis the polynomial P(z) of degree n does not vanish in |z| < 1, therefore all the zeros of polynomial $P^*(z) = z^n \overline{P(\frac{1}{z})}$ of degree n lie in

 $|z| \le 1$. Since $|P(z)| = |P^*(z)|$ for |z| = 1, therefore applying Lemma 3.3 with F(z) replaced by $P^*(z)$, we get the desired result.

Next, we describe a result of Arestov [2].

For
$$\gamma = (\gamma_0, \gamma_1, \dots, \gamma_n) \in \mathbb{C}^{n+1}$$
 and $P(z) := \sum_{j=0}^n a_j z^j \in \mathcal{P}_n$, we define

$$C_{\gamma}P(z) := \sum_{j=0}^{n} \gamma_{j} a_{j} z^{j}.$$

The operator C_{γ} is said to be admissible if it preserves one of the following properties:

- 1. P(z) has all its zeros in $\{z \in \mathbb{C} : |z| \le 1\}$.
- 2. P(z) has all its zeros in $\{z \in \mathbb{C} : |z| \ge 1\}$.

The result of Arestov may now be stated as follows:

Lemma 3.5. [2, Theorem 4]. Let $\phi(x) := \psi(\log x)$, where ψ is a convex non decreasing function on R. Then for all $P \in \mathcal{P}_n$ and each admissible operator C_{γ}

$$\int\limits_{0}^{2\pi}\phi(|C_{\gamma}P(e^{i\theta})|)d\theta\leq\int\limits_{0}^{2\pi}\phi(C(\gamma,n)|P(e^{i\theta})|)d\theta$$

where $C(\gamma, n) = \max(|\gamma_0|, |\gamma_n|)$.

In particular Lemma 3.5 applies with $\phi: x \to x^p$ for every $p \in (0, \infty)$ and $\phi: x \to \log x$ as well. Therefore, we have for 0 ,

$$\left\{ \int_{0}^{2\pi} |C_{\gamma} P(e^{i\theta})|^{p} d\theta \right\}^{\frac{1}{p}} \le C(\gamma, n) \left\{ \int_{0}^{2\pi} |P(e^{i\theta})|^{p} d\theta \right\}^{\frac{1}{p}}. \tag{3.1}$$

We also need the following lemma which is due to Aziz and Shah [5].

Lemma 3.6. If A,B,C are non-negative real numbers such that $B+C \leq A$, then for every real number η

$$|(A-C) + e^{i\eta}(B+C)| \le |A + e^{i\eta}B|.$$

4. Proofs of Theorems

Proof of Theorem 2.1. Since P(z) does not vanish in |z| < 1 and $P^*(z) = z^n P\left(\frac{1}{z}\right)$, therefore by Lemma 3.4 we have

$$|B[P](Rz) + \phi(R, r, \alpha, \beta)B[P](rz)| \le |B[P^*](Rz) + \phi(R, r, \alpha, \beta)[P^*](rz)|. \tag{4.1}$$

Also

$$P^*(Rz) + \phi(R, r, \alpha, \beta)P^*(rz) = R^n z^n \overline{P\left(\frac{1}{R\overline{z}}\right)} + \phi(R, r, \alpha, \beta)r^n z^n \overline{P\left(\frac{1}{r\overline{z}}\right)},$$

implies

$$B[P^*](Rz) + \phi(R, r, \alpha, \beta)B[P^*](rz)$$

$$\begin{split} &=\lambda_o\bigg[R^nz^n\overline{P\bigg(\frac{1}{R\overline{z}}\bigg)}+\phi(R,r,\alpha,\beta)r^nz^n\overline{P\bigg(\frac{1}{r\overline{z}}\bigg)}\bigg]+\lambda_1\bigg(\frac{nz}{2}\bigg)\bigg[nR^nz^{n-1}\overline{P\bigg(\frac{1}{R\overline{z}}\bigg)}\\ &-R^{n-1}z^{n-2}\overline{P'\bigg(\frac{1}{R\overline{z}}\bigg)}+\phi(R,r,\alpha,\beta)\bigg\{nr^nz^{n-1}\overline{P\bigg(\frac{1}{r\overline{z}}\bigg)}-r^{n-1}z^{n-2}\overline{P'\bigg(\frac{1}{r\overline{z}}\bigg)}\bigg\}\bigg]\\ &+\lambda_2\frac{1}{2}\bigg(\frac{nz}{2}\bigg)^2\bigg[n(n-1)R^nz^{n-2}\overline{P\bigg(\frac{1}{R\overline{z}}\bigg)}-2(n-1)R^{n-1}z^{n-3}\overline{P'\bigg(\frac{1}{R\overline{z}}\bigg)}\\ &+R^{n-2}z^{n-4}\overline{P''\bigg(\frac{1}{R\overline{z}}\bigg)}+\phi(R,r,\alpha,\beta)\bigg\{(n-1)r^nz^{n-2}\overline{P\bigg(\frac{1}{r\overline{z}}\bigg)}\\ &-2(n-1)r^{n-1}z^{n-3}\overline{P'\bigg(\frac{1}{r\overline{z}}\bigg)}+r^{n-2}z^{n-4}\overline{P''\bigg(\frac{1}{r\overline{z}}\bigg)}\bigg\}\bigg]\\ &=\bigg(\lambda_0+\lambda_1\frac{n^2}{2}+\lambda_2\frac{n^3(n-1)}{8}\bigg)\bigg[R^n\overline{P\bigg(\frac{1}{R\overline{z}}\bigg)}+\phi(R,r,\alpha,\beta)r^n\overline{P\bigg(\frac{1}{r\overline{z}}\bigg)}\bigg]z^n\\ &+\bigg(\lambda_1\frac{n}{2}+\lambda_2\frac{n^2(n-1)}{4}\bigg)\bigg[-R^{n-1}\overline{P'\bigg(\frac{1}{R\overline{z}}\bigg)}-\phi(R,r,\alpha,\beta)r^{n-1}\overline{P'\bigg(\frac{1}{r\overline{z}}\bigg)}\bigg]z^{n-1}\\ &+\lambda_2\frac{n^2}{8}\bigg[R^{n-2}\overline{P''\bigg(\frac{1}{R\overline{z}}\bigg)}+\phi(R,r,\alpha,\beta)r^{n-2}\overline{P''\bigg(\frac{1}{r\overline{z}}\bigg)}\bigg]z^{n-2}. \end{split}$$

This gives,

$$(B[P^*](Rz))^* + \phi(R, r, \overline{\alpha}, \overline{\beta})(B[P^*](rz))^*$$

$$= \left(\overline{\lambda_o} + \overline{\lambda_1} \frac{n^2}{2} + \overline{\lambda_2} \frac{n^3(n-1)}{8}\right) \left\{ R^n P\left(\frac{z}{R}\right) + \phi(R, r, \overline{\alpha}, \overline{\beta}) r^n P\left(\frac{z}{r}\right) \right\}$$

$$- \left(\overline{\lambda_1} \frac{n}{2} + \overline{\lambda_2} \frac{n^2(n-1)}{4}\right) \quad \left\{ R^{n-1} P'\left(\frac{z}{R}\right) + \phi(R, r, \overline{\alpha}, \overline{\beta}) r^{n-1} z P'\left(\frac{z}{r}\right) \right\} z$$

$$+ \overline{\lambda_2} \frac{n^2}{8} \left\{ R^{n-2} P''\left(\frac{z}{R}\right) + \phi(R, r, \overline{\alpha}, \overline{\beta}) r^{n-2} P''\left(\frac{z}{r}\right) \right\} z^2.$$

This shows for |z| = 1

$$|B[P^*](Rz) + \phi(R, r, \alpha, \beta)B[P^*](rz)|$$

$$= |(B[P^*](Rz))^* + \phi(R, r, \overline{\alpha}, \overline{\beta})(B[P^*](rz))^*|.$$
(4.2)

Using (4.2) in (4.1), we get on |z| = 1,

$$|B[P](Rz) + \phi(R, r, \alpha, \beta)B[P](rz)|$$

$$\leq |(B[P^*](Rz))^* + \phi(R, r, \overline{\alpha}, \overline{\beta})(B[P^*](rz))^*|. \tag{4.3}$$

Since all the zeros of $P^*(z)$ lie in |z| < 1, therefore as shown earlier all the zeros of

$$P^*(Rz) + \phi(R, r, \alpha, \beta)P^*(rz)$$

lie in |z| < 1 for all real or complex numbers α, β with $|\alpha| \le 1, |\beta| \le 1$ and $R > r \ge 1$. Hence by Lemma 3.2, all the zeros of

$$B[P^*](Rz) + \phi(R, r, \alpha, \beta)B[P^*](rz)$$

lie in |z| < 1. This shows that all the zeros of

$$(B[P^*](Rz))^* + \phi(R, r, \overline{\alpha}, \overline{\beta})(B[P^*](rz))^*$$

lie in |z| > 1, and therefore

$$\frac{B[P](Rz)) + \phi(R, r, \alpha, \beta)(B[P](rz)}{(B[P^*](Rz))^* + \phi(R, r, \overline{\alpha}, \overline{\beta})(B[P^*](rz))^*}$$

is analytic in $|z| \leq 1$. Hence by maximum modulus principle

$$|B[P](Rz) + \phi(R, r, \alpha, \beta)B[P](rz)| < |(B[P^*](Rz))^* + \phi(R, r, \overline{\alpha}, \overline{\beta})(B[P^*](rz))^*|$$
(4.4)

for |z| < 1.

A direct application of Rouches theorem shows that

$$C_{\gamma}P(z) = (B[P](Rz) + \phi(R, r, \alpha, \beta)B[P](rz))e^{i\eta}$$

$$+ (B[P^*](Rz))^* + \phi(R, r, \overline{\alpha}, \overline{\beta})(B[P^*](rz))^*$$

$$= \left\{ (R^n + \phi(R, r, \alpha, \beta)r^n)\Lambda e^{i\eta} + (1 + \phi(R, r, \overline{\alpha}, \overline{\beta}))\overline{\lambda_0} \right\} a_n z^n$$

$$+ \ldots + \left\{ (R^n + \phi(R, r, \alpha, \beta)r^n)\overline{\Lambda} + e^{i\eta}(1 + \phi(R, r, \overline{\alpha}, \overline{\beta}))\lambda_0 \right\} a_0$$

does not vanish in |z| < 1. Therefore C_{γ} is an admissible operator. Applying Lemma 3.5, we have, for each p > 0 and η real, $R > r \ge 1$,

$$\int_{0}^{\pi} \left| \left\{ B[P](Re^{i\theta}) + \phi(R, r, \alpha, \beta)B[P](re^{i\theta}) \right\} e^{i\eta} \right.$$

$$+ (B[P^*](Re^{i\theta}))^* + \phi(R, r, \overline{\alpha}, \overline{\beta})(B[P^*](re^{i\theta}))^* \right|^{p} d\theta$$

$$\leq \left| (R^n + \phi(R, r, \alpha, \beta)r^n)\Lambda e^{i\eta} + (1 + \phi(R, r, \overline{\alpha}, \overline{\beta}))\overline{\lambda_0} \right|^{p} \int_{0}^{2\pi} |P(e^{i\theta})|^{p} d\theta$$

$$= \left| (R^n + \phi(R, r, \alpha, \beta)r^n)\Lambda e^{i\eta} + (1 + \phi(R, r, \alpha, \beta))\lambda_0 \right|^{p} \int_{0}^{2\pi} |P(e^{i\theta})|^{p} d\theta \tag{4.5}$$

Integrating both sides of (4.5) with respect to η from 0 to 2π , we have

$$\int_{0}^{2\pi} \int_{0}^{2\pi} \left| \left\{ B[P](Re^{i\theta}) + \phi(R, r, \alpha, \beta) B[P](re^{i\theta}) \right\} e^{i\eta} + (B[P^*](Re^{i\theta}))^* \right. \\
\left. + \phi(R, r, \overline{\alpha}, \overline{\beta}) (B[P^*](re^{i\theta}))^* \right|^p d\theta d\eta \\
\leq \int_{0}^{2\pi} \left| (R^n + \phi(R, r, \alpha, \beta) r^n) \Lambda e^{i\eta} + (1 + \phi(R, r, \alpha, \beta)) \lambda_0 \right|^p d\eta \int_{0}^{2\pi} |P(e^{i\theta})|^p d\theta. \tag{4.6}$$

Now it can be easily verified that for any real number t, and $s \ge 1$,

$$|s + e^{it}| \ge |1 + e^{it}|.$$

This implies for each p > 0

$$\int_{0}^{2\pi} |s + e^{it}|^{p} dt \ge \int_{0}^{2\pi} |1 + e^{it}|^{p} dt.$$
 (4.7)

If $B[P](Re^{i\theta}) + \phi(R, r, \alpha, \beta)B[P](re^{i\theta}) \neq 0$, then we take

$$s = \frac{|(B[P^*](Re^{i\theta}))^* + \phi(R, r, \overline{\alpha}, \overline{\beta})(B[P^*](re^{i\theta}))^*|}{|B[P](Re^{i\theta}) + \phi(R, r, \alpha, \beta)B[P](re^{i\theta})|}$$

so that by (4.3), $s \ge 1$. Using (4.7) we have

$$\int_{0}^{2\pi} \left| \left\{ B[P](Re^{i\theta}) + \phi(R, r, \alpha, \beta)B[P](re^{i\theta}) \right\} e^{i\eta} \right. \\
+ \left(B[P^*](Re^{i\theta}) \right)^* + \phi(R, r, \overline{\alpha}, \overline{\beta}) (B[P^*](re^{i\theta}))^*) |^p d\eta \\
= \left| B[P](Re^{i\theta}) + \phi(R, r, \alpha, \beta)B[P](re^{i\theta}) |^p \int_{0}^{2\pi} \left| e^{i\eta} \right| \\
+ \frac{(B[P^*](Re^{i\theta}))^* + \phi(R, r, \overline{\alpha}, \overline{\beta}) (B[P^*](re^{i\theta}))^*}{B[P](Re^{i\theta}) + \phi(R, r, \alpha, \beta)B[P](re^{i\theta})} \right|^p d\eta \\
= \left| B[P](Re^{i\theta}) + \phi(R, r, \alpha, \beta)B[P](re^{i\theta}) |^p \int_{0}^{2\pi} \left| e^{i\eta} \right| \\
+ \left| \frac{(B[P^*](Re^{i\theta}))^* + \phi(R, r, \overline{\alpha}, \overline{\beta}) (B[P^*](re^{i\theta}))^*}{B[P](Re^{i\theta}) + \phi(R, r, \alpha, \beta)B[P](re^{i\theta})} \right| d\eta \\
\geq \left| B[P](Re^{i\theta}) + \phi(R, r, \alpha, \beta)B[P](re^{i\theta}) |^p \int_{0}^{2\pi} |1 + e^{i\eta}|^p d\eta. \tag{4.8}$$

For $B[P](Re^{i\theta}) + \phi(R, r, \alpha, \beta)B[P](re^{i\theta}) = 0$, this inequality is trivially true. Using (4.7) in (4.8), we conclude that for each p > 0

$$\int_{0}^{2\pi} |B[P](Re^{i\theta}) + \phi(R, r, \alpha, \beta)B[P](re^{i\theta})|^{p}d\theta \int_{0}^{2\pi} |1 + e^{i\eta}|^{p}d\eta$$

$$\leq \int_{0}^{2\pi} |(R^{n} + \phi(R, r, \alpha, \beta)r^{n})\Lambda e^{i\eta} + (1 + \phi(R, r, \alpha, \beta))\lambda_{0}|^{p}d\eta \int_{0}^{2\pi} |P(e^{i\theta})|^{p}d\theta.$$

From this the conclusion of Theorem 2.1 follows immediately.

Proof of Theorem 2.2. By hypothesis $P \in \mathcal{P}_n$ does not vanish in |z| < 1.

Let $m = \min_{|z|=1} |P(z)|$, then $|P(z)| \ge m$ for |z| = 1. If m = 0, then the result follows from Theorem 2.1. We assume that m > 0, that is, P(z) has no zero on |z| = 1.

This gives for $|\delta| < 1$, $|\delta m z^n| < |P(z)|$ on |z| = 1. Since P(z) has no zero in |z| < 1, therefore $F(z) = P(z) + \delta m z^n$ has no zero in |z| < 1. If $F^*(z) = z^n \overline{F\left(\frac{1}{\overline{z}}\right)}$, then $F^*(z) = P^*(z) + m\overline{\delta}$ and by Lemma 3.4 we have for arbitrary complex numbers α, β with $|\alpha| \le 1, |\beta| \le 1, R \ge r \ge 1$,

$$|B[F](Rz) + \phi(R, r, \alpha, \beta)B[F](rz)| \le |B[F^*](Rz) + \phi(R, r, \alpha, \beta)B[F^*](rz)|.$$

This gives

$$|B[P(Rz) + \delta m R^n z^n] + \phi(R, r, \alpha, \beta) B[P(rz) + \delta m r^n z^n]|$$

$$\leq |B[P^*(Rz) + \overline{\delta} m] + \phi(R, r, \alpha, \beta) B[P^*(rz) + \overline{\delta} m]|. \tag{4.9}$$

Since P(z) and z^n are of same degree and in this case B is linear, therefore

$$B[P(Rz) + \delta mR^n z^n] = B[P](Rz) + \delta mB[E_n](Rz),$$

where $E_n(z) = z^n$. Also it can be easily verified that

$$B[P^*(Rz) + \overline{\delta}m] = B[P^*](Rz) + \overline{\delta}m\lambda_o \quad \text{for} \quad |z| = 1.$$

Therefore we have from inequality (4.9)

$$|B[P](Rz) + \delta m B[E_n](Rz) + \phi(R, r, \alpha, \beta) \{B[P](rz) + \delta m B[E_n](rz)\}|$$

$$\leq |B[P^*](Rz) + \overline{\delta} m \lambda_o + \phi(R, r, \alpha, \beta) \{B[P^*](rz) + \overline{\delta} m \lambda_o\}|, \quad |z| = 1.$$

That is

$$|B[P](Rz) + \phi(R, r, \alpha, \beta)B[P](rz) + \delta m\{B[E_n](Rz) + \phi(R, r, \alpha, \beta)B[E_n](rz)\}|$$

 $\leq |B[P^*](Rz) + \phi(R, r, \alpha, \beta)B[P^*](rz) + m\bar{\delta}\lambda_o(1 + \phi(R, r, \alpha, \beta))|, \quad |z| = 1. \quad (4.10)$
Choosing the argument of δ suitably on the left hand side of (4.10) and using triangle inequality on the right hand side, we get for $|z| = 1$,

$$|B[P](Rz) + \phi(R, r, \alpha, \beta)B[P](rz)| + |\delta|m|B[E_n](Rz) + \phi(R, r, \alpha, \beta)B[E_n](rz)|$$

$$\leq |B[P^*](Rz) + \phi(R, r, \alpha, \beta)B[P^*](rz)| + |\delta|m|\lambda_o||1 + \phi(R, r, \alpha, \beta)|.$$

Equivalently

$$|B[P](Rz) + \phi(R, r, \alpha, \beta)B[P](rz)|$$

$$\leq |B[P^*](Rz) + \phi(R, r, \alpha, \beta)B[P^*](rz)|$$

 $-m|\delta|\{|B[E_n](Rz) + \phi(R, r, \alpha, \beta)B[E_n](rz)| - |\lambda_o||1 + \phi(R, r, \alpha, \beta)|\}.$ (4.11) Since $|B[E_n](Rz)| = R^n|\Lambda|$ for |z| = 1, therefore we have from (4.11) after letting $|\delta| \to 1$

$$|B[P](Rz) + \phi(R, r, \alpha, \beta)B[P](rz)|$$

$$+ \left\{ \frac{|R^{n}\Lambda + \phi(R, r, \alpha, \beta)r^{n}\Lambda| - |1 + \phi(R, r, \alpha, \beta)||\lambda_{o}|}{2} \right\} m$$

$$\leq |B[P^{*}](Rz) + \phi(R, r, \alpha, \beta)B[P^{*}](rz)|$$

$$- \left\{ \frac{|R^{n}\Lambda + \phi(R, r, \alpha, \beta)r^{n}\Lambda| - |1 + \phi(R, r, \alpha, \beta)||\lambda_{o}|}{2} \right\} m. \tag{4.12}$$

If we take

$$\begin{split} L &= |B[P^*](Rz) + \phi(R,r,\alpha,\beta)B[P^*](rz)| \\ M &= |B[P](Rz) + \phi(R,r,\alpha,\beta)B[P](rz)| \\ N &= \left\{ \frac{|R^n + \phi(R,r,\alpha,\beta)r^n||\Lambda| - |1 + \phi(R,r,\alpha,\beta)||\lambda_o|}{2} \right\} m, \end{split}$$

so that $M+N \leq L-N \leq L$, we get by using Lemma 3.5 for arbitrary complex numbers α, β with $|\alpha| \leq 1, |\beta| \leq 1, R \geq r \geq 1$ and |z| = 1,

$$\begin{split} \left||B[P^*](Rz) + \phi(R,r,\alpha,\beta)B[P^*](rz)| \\ - \left\{ \frac{|R^n + \phi(R,r,\alpha,\beta)r^n||\Lambda| - |1 + \phi(R,r,\alpha,\beta)||\lambda_o|}{2} \right\} m \\ + e^{i\eta} \left[|B[P](Rz) + \phi(R,r,\alpha,\beta)B[P](rz)| \\ + \left\{ \frac{|R^n + \phi(R,r,\alpha,\beta)r^n||\Lambda| - |1 + \phi(R,r,\alpha,\beta)||\lambda_o|}{2} \right\} m \right] \right| \\ \leq \left| |B[P](Rz) + \phi(R,r,\alpha,\beta)B[P](rz)| + e^{i\eta}|B[P^*](Rz) + \phi(R,r,\alpha,\beta)B[P^*](rz)| \right| \\ = \left| |B[P](Rz) + \phi(R,r,\alpha,\beta)B[P](rz)| + e^{i\eta}|(B[P^*](Rz))^* + \phi(R,r,\overline{\alpha},\overline{\beta})(B[P^*](rz))^*| \right| \\ \text{This gives for each } p > 0 \text{ and } 0 \leq \theta < 2\pi, \end{split}$$

 $\int_{0}^{2\pi} |G(\theta) + e^{i\eta} H(\theta)|^{P} d\theta \le \int_{0}^{2\pi} \left| |B[P](Re^{i\theta}) + \phi(R, r, \alpha, \beta) B[P](re^{i\theta})| + e^{i\eta} |(B[P^{*}](Re^{i\theta}))^{*} + \phi(R, r, \overline{\alpha}, \overline{\beta}) (B[P^{*}](re^{i\theta})|)^{*} \right|^{p} d\theta, \tag{4.13}$

where

$$\begin{split} &H(\theta) := |B[P](Re^{i\theta}) + \phi(R,r,\alpha,\beta)B[P](re^{i\theta})| \\ &+ \left\{ \frac{|R^n + \phi(R,r,\alpha,\beta)r^n||\Lambda| - |1 + \phi(R,r,\alpha,\beta)||\lambda_o|}{2} \right\} m \end{split}$$

and

$$G(\theta) := |B[P^*](Re^{i\theta}) + \phi(R, r, \alpha, \beta)B[P^*](re^{i\theta})|$$

$$-\left\{\frac{|R^n + \phi(R, r, \alpha, \beta)r^n||\Lambda| - |1 + \phi(R, r, \alpha, \beta)||\lambda_o|}{2}\right\}m.$$

Integrating both sides of (4.13) with respect to η from 0 to 2π we get

$$\int_{0}^{2\pi} \int_{0}^{2\pi} |G(\theta) + e^{i\eta} H(\theta)|^{P} d\theta d\eta \leq \int_{0}^{2\pi} \int_{0}^{2\pi} \left| |B[P](Re^{i\theta}) + \phi(R, r, \alpha, \beta) B[P](re^{i\theta})| \right|$$

$$+ e^{i\eta} (|B[P^{*}](Re^{i\theta}))^{*} + \phi(R, r, \overline{\alpha}, \overline{\beta}) (B[P^{*}](re^{i\theta}))^{*} \Big|_{0}^{p} d\theta d\eta.$$

This gives using inequality (4.5), for every real θ , $0 \le \theta < 2\pi$ and η , $0 \le \eta < 2\pi$

$$\int_{0}^{2\pi} \int_{0}^{2\pi} |G(\theta) + e^{i\eta} H(\theta)|^{P} d\theta d\eta$$

$$\leq \int_{0}^{2\pi} |(R^{n} + \phi(R, r, \alpha, \beta)r^{n}) \Lambda e^{i\eta} + (1 + \phi(R, r, \alpha, \beta)) \lambda_{o}|^{p} d\eta \int_{0}^{2\pi} |P(e^{i\theta})|^{p} d\theta. \quad (4.1)$$

Now, if $H(\theta) \neq 0$, then from (4.12),

$$t = \frac{|G(\theta)|}{|H(\theta)|} \ge 1$$

and we have by using (4.7),

$$\int_{0}^{2\pi} |G(\theta) + e^{i\eta} H(\theta)|^{P} d\eta = |H(\theta)|^{p} \int_{0}^{2\pi} \left| \frac{G(\theta)}{H(\theta)} + e^{i\eta} \right|^{p} d\eta$$

$$= |H(\theta)|^{p} \int_{0}^{2\pi} \left| \left| \frac{G(\theta)}{H(\theta)} \right| + e^{i\eta} \right|^{p} d\eta \ge |H(\theta)|^{p} \int_{0}^{2\pi} |1 + e^{i\eta}|^{p} d\eta. \tag{4.15}$$

Clearly inequality (4.15) is trivial in case $H(\theta) = 0$. Substituting for $H(\theta)$ and $G(\theta)$ and then integrating the two sides of (4.15) with respect to θ and using (4.14), we get for every $R > r \ge 1$ and p > 0,

$$\int_{0}^{2\pi} \left| |B[P](Re^{i\theta}) + \phi(R, r, \alpha, \beta)B[P](re^{i\theta})| - \frac{|R^n + \phi(R, r, \alpha, \beta)r^n||\Lambda| - |\lambda_o||1 + \phi(R, r, \alpha, \beta)|}{2} m \right|^p d\theta$$

$$\leq \frac{\int_{0}^{2\pi} |(R^n + \phi(R, r, \alpha, \beta)r^n)e^{i\eta} + (1 + \phi(R, r, \alpha, \beta))\lambda_o|^p d\eta}{\int_{0}^{2\pi} |1 + e^{i\eta}|^p d\eta} \int_{0}^{2\pi} |P(e^{i\theta})|^p d\theta. \quad (4.16)$$

Now, since we have for every γ , with $|\gamma| < 1$

$$\begin{vmatrix} B[P](Re^{i\theta}) + \phi(R, r, \alpha, \beta)B[P](re^{i\theta}) \\ + m\gamma \frac{|R^n + \phi(R, r, \alpha, \beta)r^n||\Lambda| - |\lambda_o||1 + \phi(R, r, \alpha, \beta)|}{2} \\ \leq |B[P](Re^{i\theta}) + \phi(R, r, \alpha, \beta)B[P](re^{i\theta})| \\ + m|\gamma| \begin{vmatrix} |R^n + \phi(R, r, \alpha, \beta)r^n||\Lambda| - |\lambda_o||1 + \phi(R, r, \alpha, \beta)||\\ 2 \end{vmatrix} \\ \leq |B[P](Re^{i\theta}) + \phi(R, r, \alpha, \beta)B[P](re^{i\theta})| \end{aligned}$$

$$+m\left|\frac{|R^n + \phi(R, r, \alpha, \beta)r^n||\Lambda| - |\lambda_o||1 + \phi(R, r, \alpha, \beta)|}{2}\right|. \tag{4.17}$$

Therefore using (4.17) in (4.16) the desired result follows.

References

- Ankeny, N.C., Rivlin, T.J., On a Theorem of S. Bernstein, Pacific J. Math., 5(1955), 849–852.
- [2] Arestöv, V.V., On integral inequalities for trigonometric polynomials and their derivatives, Izv. Akad. Nauk. SSSR. Ser. Mat., 45(1981), 3-22 (in Russian); Math. USSR-Izv., 18(1982), 1-17 (in English).
- [3] Aziz, A., Dawood, Q.M., Inequalities for a polynomial and its derivative, J. Approx. Theory, 54(1988), 306-313.
- [4] Aziz, A., Rather, N.A., Some compact generalizations of Zygmund-type inequalities for polynomials, Nonlinear Studies, 6(1999), 241–255.
- [5] Aziz, A., Shah, W.M., L^p inequalities for polynomials with restricted zeros, Glasnik Matematicki, 57(2002), 73–81.
- [6] Bernstein, S., Sur la limitation des dérivées des polynomes, C. R. Acad. Sci. Paris, 190(1930), 338-340.
- [7] Boas Jr., R.P., Rahman, Q.I., L^p inequalities for polynomials and entire functions, Arch. Rational Mech. Anal., 11(1962), 34–39.
- [8] de Bruijn, N.G., Inequalities concerning polynomials in the complex domain, Neder. Akad. Wetensch. Proc., 50(1947), 1265–1272.
- [9] Govil, N.K., Liman, A., Shah, W.M., Some inequalities concerning derivative and maximum modulus of polynomials, Aust. J. Math. Anal. Appl., 8(2011), 1–8.
- [10] Hardy, G.H., The mean value of the modulus of an analytic function, Proc. London. Math. Soc., 14(1915), 269–277.
- [11] Lax, P.D., Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc., 50(1944), 509–513.
- [12] Marden, M., Geometry of polynomials, Second Ed., Math. Surveys, no. 3, Amer. Math. Pro., R.I., 1996.
- [13] Rahman, Q.I., Schmeisser, G., L^p inequalities for polynomials, J. Approx. Theory, 53(1988), 26–32.
- [14] Rahman, Q.I., Schmeisser, G., Analytic Theory of Polynomials, Oxford Univ. Press, 2002.
- [15] Shah, W.M., Liman, A., An operator preserving inequalities between polynomials, J. Inequal. Pure Appl. Math., 9(2009), 1–12.
- [16] Shah, W.M., Liman, A., Integral estimates for the family of B-operators, Operators and Matrices, 5(2011), 79–87.
- [17] Wali, S.L., Shah, W.M., Liman, A., Inequalities Concerning B-Operators, Probl. Anal. Issues Anal. 23(5)(2016), 55-72.
- [18] Zygmund, A., A remark on conjugate series, Proc. London Math. Soc., 34(2)(1932), 392–400.

Shah Lubna Wali Department of Mathematics, Central University of Kashmir Srinagar, Kashmir, India e-mail: shahlw@yahoo.co.in

Abdul Liman Department of Mathematics, National Institute of Technology Srinagar, India

e-mail: abliman@rediffmail.com