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1. Introduction and preliminaries

Throughout the sequel of the paper, let set of real numbers be denoted by R,
I = [a, b] ⊂ R be the real interval and I◦ be the interior of I unless otherwise specified.

Definition 1.1. A function f : I → R is said to be classical convex function, if

f ((1− t)x+ ty) ≤ (1− t)f(x) + tf(y), ∀x, y ∈ I, t ∈ [0, 1]. (1.1)

In recent years numerous generalizations of classical convex functions have been pro-
posed, see [1, 2, 3, 4, 5, 6, 11, 19]. Varosanec [19] investigated a new class of convex
functions which she named as h-convex functions. This class is unifying one and it
includes some other classes of convex functions, such as, s-Breckner convex functions
[1], s-Godunova-Levin-Dragomir convex functions [3], Godunova-Levin functions [6]
and P -functions [5].
The h-convexity is defined as:

Definition 1.2. [19] Let h : [0, 1] → R be a non-negative function. A non-negative
function f : I → R is said to be h-convex function, if

f ((1− t)x+ ty) ≤ h(1− t)f(x) + h(t)f(y), ∀x, y ∈ I, t ∈ [0, 1]. (1.2)
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For different suitable choices of function h(.) one can have other classes of convex
functions.
Every one is familiar with the fact that theory of convex functions has a close re-
lation with theory of inequalities. In fact many classical inequalities are derived
using convexity property. Thus these facts inspired a number of researchers to in-
vestigate both theories. Consequently several new generalizations of classical in-
equalities have been obtained via different generalizations of convex functions, see
[3, 4, 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24].
Nowadays fractional calculus is a vibrant area of research in mathematics. The history
of fractional calculus started with the letter of L’Hospital to Leibniz on 30th Septem-
ber 1695 in which he enquired Leibniz about the notation he used in his publications
for n-th order derivative of the linear function f(x) = x, D

nx
Dxn . L’Hospital asked a ques-

tion to Leibniz that what would happen if n = 1
2 . Leibniz’s replied: ”An apparent

paradox, from which one day useful consequences will be drawn.” With this the study
of fractional calculus had begun. Several applications of fractional calculus have been
found till now. For some useful information on fractional calculus and its applications,
see [7, 8, 9]. A recent approach of obtaining fractional version of classical integral in-
equalities has also attracted researchers. For example, see [11, 12, 15, 19, 22]. The
motivation of this article is to establish some new fractional estimates of Hermite-
Hadamard type inequalities via h-convex functions. Some special cases which can be
derived from our main results are also discussed. In the end some application to spe-
cial means of real numbers are also discussed.
We now recall some preliminary concepts which are widely used throughout the paper.

Definition 1.3. [9] Let f ∈ L1[a, b]. Then Riemann-Liouville integrals Jαa+f and Jαb−f
of order α > 0 with a ≥ 0 are defined by

Jαa+f(x) =
1

Γ(α)

x∫
a

(x− t)α−1f(t)dt, x > a,

and

Jαb−f(x) =
1

Γ(α)

b∫
x

(t− x)α−1f(t)dt, x < b,

where

Γ(α) =

∫ ∞
0

e−txα−1dx,

is the Gamma function.

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt =
Γ(x)Γ(y)

Γ(x+ y)
.

The integral form of the hypergeometric function is

2F1(x, y; c; z) =
1

B(y, c− y)

∫ 1

0

ty−1(1− t)c−y−1(1− zt)−xdt

for |z| < 1, c > y > 0.
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Recall that

1. For arbitrary a, b ∈ R \ {0} and a 6= b, L(b, a) =
b− a

log b− log a
, is the logarithmic

mean.

2. For arbitrary a, b ∈ R and a 6= b, A(a, b) =
a+ b

2
, is the arithmetic mean.

3. The extended logarithmic mean Lp of two positive numbers a, b is given for a = b
by Lp(a, a) = a and for a 6= b by

Lp(a, b) =



[
bp+1−ap+1

(p+1)(b−a)

] 1
p

, p 6= −1, 0,

b−a
log b−log a , p = −1,

1
e

(
bb

aa

) 1
b−a

, p = 0.

2. Main results

To prove our main results, we need following auxiliary result.

Lemma 2.1. Let f : I → R be three times differentiable function on the interior I◦ of
I. If f ′′′ ∈ L[a, b], then

Lf (a, b;n;α) =
(b− a)3

(n+ 1)4(α+ 1)(α+ 2)

×
1∫

0

(1− t)α+2

[
−f ′′′

(
n+ t

n+ 1
a+

1− t
n+ 1

b

)
+ f ′′′

(
1− t
n+ 1

a+
n+ t

n+ 1
b

)]
dt,

where

Lf (a, b;n;α) =
(n+ 1)α−1Γ(α+ 1)

(b− a)α

[
Jα
( n

n+1a+
1

n+1 b)
−f(a) + Jα

( 1
n+1a+

n
n+1 b)

+f(b)

]
− (b− a)2

(n+ 1)3(α+ 1)(α+ 2)

[
f ′′
(

n

n+ 1
a+

1

n+ 1
b

)
+f ′′

(
1

n+ 1
a+

n

n+ 1
b

)]
+

b− a
(n+ 1)2(α+ 1)

[
f ′
(

n

n+ 1
a+

1

n+ 1
b

)
+f ′

(
1

n+ 1
a+

n

n+ 1
b

)]
− 1

n+ 1

[
f

(
n

n+ 1
a+

1

n+ 1
b

)
+f

(
1

n+ 1
a+

n

n+ 1
b

)]
.
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Proof. Let

I ,

1∫
0

(1− t)α+2

[
−f ′′′

(
n+ t

n+ 1
a+

1− t
n+ 1

b

)
+ f ′′′

(
1− t
n+ 1

a+
n+ t

n+ 1
b

)]
dt

= −
1∫

0

(1− t)α+2f ′′′
(
n+ t

n+ 1
a+

1− t
n+ 1

b

)
dt+

1∫
0

(1− t)αf ′′′
(

1− t
n+ 1

a+
n+ t

n+ 1
b

)
dt

= −I1 + I2. (2.1)

Integrating I1 on [0, 1] yields

I1 ,

1∫
0

(1− t)α+2f ′′′
(
n+ t

n+ 1
a+

1− t
n+ 1

b

)
dt

=
n+ 1

b− a
f ′′
(

n

n+ 1
a+

1

n+ 1
b

)
− (n+ 1)2(α+ 2)

(b− a)2
f ′
(

n

n+ 1
a+

1

n+ 1
b

)
+

(n+ 1)3(α+ 1)(α+ 2)

(b− a)3
f

(
n

n+ 1
a+

1

n+ 1
b

)
− (n+ 1)α+3Γ(α+ 3)

(b− a)α+3
Jα
( n

n+1a+
1

n+1 b)
−f(a). (2.2)

Similarly, integrating I2 on [0, 1], we have

I2 ,

1∫
0

(1− t)α+2f ′′′
(

1− t
n+ 1

a+
n+ t

n+ 1
b

)
dt

= −n+ 1

b− a
f ′′
(

1

n+ 1
a+

n

n+ 1
b

)
− (n+ 1)2(α+ 2)

(b− a)2
f ′
(

1

n+ 1
a+

n

n+ 1
b

)
− (n+ 1)3(α+ 1)(α+ 2)

(b− a)3
f

(
1

n+ 1
a+

n

n+ 1
b

)
+

(n+ 1)α+3Γ(α+ 3)

(b− a)α+3
Jα
( 1

n+1a+
n

n+1 b)
+f(b). (2.3)

Summation of (2.2), (2.3) and (2.1) and then multiplying both sides by

(b− a)3

(n+ 1)4(α+ 1)(α+ 2)

completes the proof. �

Note that for n = 1 and α = 1 in Lemma 2.1, we have previously Lemma [24].
If n = 1 in Lemma 2.1, then, we have Lemma 3.1 [14].

Theorem 2.2. Let f : I → R be three times differentiable function on the interior I◦

of I. If f ′′′ ∈ L[a, b] and |f ′′′| is h-convex function, then

|Lf (a, b;n;α)| ≤ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)
Ψ(n;h; t) [|f ′′′(a)|+ |f ′′′(b)|] ,
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where

Ψ(h;n; t) =

1∫
0

(1− t)α+2

[
h

(
n+ t

n+ 1

)
+ h

(
1− t
n+ 1

)]
dt.

Proof. Using Lemma 2.1 and the given hypothesis, we have

|Lf (a, b;n;α)|

=

∣∣∣∣∣ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)

×
1∫

0

(1− t)α+2

[
−f ′′′

(
n+ t

n+ 1
a+

1− t
n+ 1

b

)
+ f ′′′

(
1− t
n+ 1

a+
n+ t

n+ 1
b

)]
dt

∣∣∣∣∣
≤ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)

×

{∣∣∣∣∣
1∫

0

(1− t)α+2f ′′′
(
n+ t

n+ 1
a+

1− t
n+ 1

b

)
dt

∣∣∣∣∣
+

∣∣∣∣∣
1∫

0

(1− t)α+2f ′′′
(

1− t
n+ 1

a+
n+ t

n+ 1
b

)
dt

∣∣∣∣∣
}

≤ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)

1∫
0

(1− t)α+2

∣∣∣∣f ′′′( n+ t

n+ 1
a+

1− t
n+ 1

b

)∣∣∣∣dt
+

(b− a)3

(n+ 1)4(α+ 1)(α+ 2)

1∫
0

(1− t)α+2

∣∣∣∣f ′′′( 1− t
n+ 1

a+
n+ t

n+ 1
b

)∣∣∣∣dt
≤ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)

1∫
0

(1− t)α+2

[
h

(
n+ t

n+ 1

)
|f ′′′(a)|+ h

(
1− t
n+ 1

)
|f ′′′(b)|

]
dt

+
(b− a)3

(n+ 1)4(α+ 1)(α+ 2)

1∫
0

(1− t)α+2

[
h

(
1− t
n+ 1

)
|f ′′′(a)|+ h

(
n+ t

n+ 1

)
|f ′′′(b)|

]
dt

=
(b− a)3

(n+ 1)4(α+ 1)(α+ 2)

×

 1∫
0

(1− t)α+2

[
h

(
n+ t

n+ 1

)
+ h

(
1− t
n+ 1

)]
dt

 [|f ′′′(a)|+ |f ′′′(b)|] .

This completes the proof. �
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Theorem 2.3. Let f : I → R be three times differentiable function on the interior I◦

of I. If f ′′′ ∈ L[a, b] and |f ′′′|q is h-convex function where 1
p + 1

q = 1, p, q > 1, then

|Lf (a, b;n;α)| ≤ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)

(
1

p(α+ 2) + 1

) 1
p

×




1∫
0

h

(
n+ t

n+ 1

)
dt

 |f ′′′(a)|q +


1∫

0

h

(
1− t
n+ 1

)
dt

 |f ′′′(b)|q


1
q

+


1∫

0

h

(
1− t
n+ 1

)
dt

 |f ′′′(a)|q +


1∫

0

h

(
n+ t

n+ 1

)
dt

 |f ′′′(b)|q


1
q

 .
Proof. Using given hypothesis, Lemma 2.1 and the Hölder’s inequality, we have

|Lf (a, b;n;α)|

=

∣∣∣∣∣ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)

×
1∫

0

(1− t)α+2

[
−f ′′′

(
n+ t

n+ 1
a+

1− t
n+ 1

b

)
+ f ′′′

(
1− t
n+ 1

a+
n+ t

n+ 1
b

)]
dt

∣∣∣∣∣
≤

∣∣∣∣∣∣ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)

1∫
0

(1− t)α+2f ′′′
(
n+ t

n+ 1
a+

1− t
n+ 1

b

)
dt

∣∣∣∣∣∣
+

∣∣∣∣∣∣ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)

1∫
0

(1− t)α+2f ′′′
(

1− t
n+ 1

a+
n+ t

n+ 1
b

)
dt

∣∣∣∣∣∣
≤ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)

1∫
0

(1− t)α+2

∣∣∣∣f ′′′( n+ t

n+ 1
a+

1− t
n+ 1

b

)∣∣∣∣dt
+

(b− a)3

(n+ 1)4(α+ 1)(α+ 2)

1∫
0

(1− t)α+2

∣∣∣∣f ′′′( 1− t
n+ 1

a+
n+ t

n+ 1
b

)∣∣∣∣dt
≤ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)

 1∫
0

(1− t)p(α+2)dt


1
p
 1∫

0

∣∣∣∣f ′′′( n+ t

n+ 1
a+

1− t
n+ 1

b

)∣∣∣∣q dt


1
q

+
(b− a)3

(n+ 1)4(α+ 1)(α+ 2)

 1∫
0

(1− t)p(α+2)dt


1
p
 1∫

0

∣∣∣∣f ′′′( 1− t
n+ 1

a+
n+ t

n+ 1
b

)∣∣∣∣q dt


1
q



New fractional estimates of Hermite-Hadamard inequalities 9

≤ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)

(
1

p(α+ 2) + 1

) 1
p

×




1∫
0

h

(
n+ t

n+ 1

)
dt

 |f ′′′(a)|q +


1∫

0

h

(
1− t
n+ 1

)
dt

 |f ′′′(b)|q


1
q

+


1∫

0

h

(
1− t
n+ 1

)
dt

 |f ′′′(a)|q +


1∫

0

h

(
n+ t

n+ 1

)
dt

 |f ′′′(b)|q


1
q

 .
This completes the proof. �

Theorem 2.4. Let f : I → R be three times differentiable function on the interior I◦

of I. If f ′′′ ∈ L[a, b] and |f ′′′|q is h-convex function where q > 1, then

|Lf (a, b;n;α)|

≤ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)

(
1

α+ 3

)1− 1
q

×


 1∫

0

(1− t)α+2

{
h

(
n+ t

n+ 1

)
|f ′′′(a)|q + h

(
1− t
n+ 1

)
|f ′′′(b)|q

}
dt


1
q

+

 1∫
0

(1− t)α+2

{
h

(
1− t
n+ 1

)
|f ′′′(a)|q + h

(
n+ t

n+ 1

)
|f ′′′(b)|q

}
dt


1
q

 .
Proof. Using given hypothesis, Lemma 2.1 and power mean inequality, we have

|Lf (a, b;n;α)|

=

∣∣∣∣∣ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)

×
1∫

0

(1− t)α+2

[
−f ′′′

(
n+ t

n+ 1
a+

1− t
n+ 1

b

)
+ f ′′′

(
1− t
n+ 1

a+
n+ t

n+ 1
b

)]
dt

∣∣∣∣∣
≤

∣∣∣∣∣∣ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)

1∫
0

(1− t)α+2f ′′′
(
n+ t

n+ 1
a+

1− t
n+ 1

b

)
dt

∣∣∣∣∣∣
+

∣∣∣∣∣∣ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)

1∫
0

(1− t)α+2f ′′′
(

1− t
n+ 1

a+
n+ t

n+ 1
b

)
dt

∣∣∣∣∣∣
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≤ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)

 1∫
0

(1− t)α+2dt

1− 1
q

×

 1∫
0

(1− t)α+2

∣∣∣∣f ′′′( n+ t

n+ 1
a+

1− t
n+ 1

b

)∣∣∣∣q dt


1
q

+
(b− a)3

(n+ 1)4(α+ 1)(α+ 2)

 1∫
0

(1− t)α+2dt

1− 1
q

×

 1∫
0

(1− t)α+2

∣∣∣∣f ′′′( 1− t
n+ 1

a+
n+ t

n+ 1
b

)∣∣∣∣q dt


1
q

≤ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)

 1∫
0

(1− t)α+2dt

1− 1
q

×

 1∫
0

(1− t)α+2

{
h

(
n+ t

n+ 1

)
|f ′′′(a)|q + h

(
1− t
n+ 1

)
|f ′′′(b)|q

}
dt


1
q

+
(b− a)3

(n+ 1)4(α+ 1)(α+ 2)

 1∫
0

(1− t)α+2dt

1− 1
q

×

 1∫
0

(1− t)α+2

{
h

(
1− t
n+ 1

)
|f ′′′(a)|q + h

(
n+ t

n+ 1

)
|f ′′′(b)|q

}
dt


1
q

≤ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)

(
1

α+ 3

)1− 1
q

×


 1∫

0

(1− t)α+2

{
h

(
n+ t

n+ 1

)
|f ′′′(a)|q + h

(
1− t
n+ 1

)
|f ′′′(b)|q

}
dt


1
q

+

 1∫
0

(1− t)α+2

{
h

(
1− t
n+ 1

)
|f ′′′(a)|q + h

(
n+ t

n+ 1

)
|f ′′′(b)|q

}
dt


1
q

 .
This completes the proof. �

We now discuss some special cases of the results proved in previous section.

I. If h(t) = ts in Theorem 2.2, then, we have result for s-Breckner convex function.
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Corollary 2.5. Under the assumptions of Theorem 2.2, if |f ′′′| is s-Breckner convex
function, then

|Lf (a, b;n;α)| ≤ (b− a)3

(n+ 1)s+4(α+ 1)(α+ 2)
Ψ(n; s; t) [|f ′′′(a)|+ |f ′′′(b)|] ,

where

Ψ(n; s; t) =

1∫
0

(1− t)α+2 [(n+ t)
s

+ (1− t)s] dt

=
ns

α+ 3
2F1

[
1,−s;α+ 4;− 1

n

]
+

1

α+ s+ 3
.

II. If h(t) = t−s in Theorem 2.2, then, we have result for s-Godunova-Levin-Dragomir
function.

Corollary 2.6. Under the assumptions of Theorem 2.2, if |f ′′′| is s-Godunova-Levin-
Dragomir function, then

|Lf (a, b;n;α)| ≤ (b− a)3

(n+ 1)4−s(α+ 1)(α+ 2)
Ψ(n;−s; t) [|f ′′′(a)|+ |f ′′′(b)|] ,

where

Ψ(n;−s; t) =

1∫
0

(1− t)α+2
[
(n+ t)

−s
+ (1− t)−s

]
dt

=
1

ns(α+ 3)
2F1

[
1, s;α+ 4;− 1

n

]
+

1

α− s+ 3
.

III. If h(t) = 1 in Theorem 2.2, then, we have result for P -function.

Corollary 2.7. Under the assumptions of Theorem 2.2, if |f ′′′| is P -function, then

|Lf (a, b;n;α)| ≤ 2(b− a)3

(n+ 1)4(α+ 1)(α+ 2)(α+ 3)
[|f ′′′(a)|+ |f ′′′(b)|] .

IV. If h(t) = ts in Theorem 2.3, then, we have result for s-Breckner convex function.

Corollary 2.8. Under the assumptions of Theorem 2.3, if |f ′′′|q is s-Breckner convex
function, then

|Lf (a, b;n;α)|

≤ (b− a)3

(n+ 1)4+
s
q (α+ 1)(α+ 2)

(
1

p(α+ 2) + 1

) 1
p

×

[({
(1 + n)1+s − n1+s

1 + s

}
|f ′′′(a)|q +

{
1

1 + s

}
|f ′′′(b)|q

) 1
q

+

({
1

1 + s

}
|f ′′′(a)|q +

{
(1 + n)1+s − n1+s

1 + s

}
|f ′′′(b)|q

) 1
q

]
.
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V. If h(t) = t−s in Theorem 2.3, then, we have result for s-Godunova-Levin-Dragomir
convex function.

Corollary 2.9. Under the assumptions of Theorem 2.3, if |f ′′′|q is s-Godunova-Levin-
Dragomir convex function, then

|Lf (a, b;n;α)|

≤ (b− a)3

(n+ 1)4−
s
q (α+ 1)(α+ 2)

(
1

p(α+ 2) + 1

) 1
p

×

[({
(n(1 + n))−s(−ns(1 + n) + n(1 + n)s)

s− 1

}
|f ′′′(a)|q +

{
1

1− s

}
|f ′′′(b)|q

) 1
q

+

({
1

1− s

}
|f ′′′(a)|q +

{
(n(1 + n))−s(−ns(1 + n) + n(1 + n)s)

s− 1

}
|f ′′′(b)|q

) 1
q

]
.

VI. If h(t) = 1 in Theorem 2.3, then, we have result for P -function.

Corollary 2.10. Under the assumptions of Theorem 2.3, if |f ′′′|q is P -function, then

|Lf (a, b;n;α)| ≤ 2(b− a)3

(n+ 1)4(α+ 1)(α+ 2)

(
1

p(α+ 2) + 1

) 1
p

[|f ′′′(a)|q + |f ′′′(b)|q]
1
q .

VII. If h(t) = ts in Theorem 2.4, then, we have result for s-Breckner convex function.

Corollary 2.11. Under the assumptions of Theorem 2.4, if h(t) = ts, then, we have
result for s-Breckner convex function.

|Lf (a, b;n;α)|

≤ (b− a)3

(n+ 1)4+
s
q (α+ 1)(α+ 2)

(
1

α+ 3

)1− 1
q

×

({(ns 2F1

[
1,−s;α+ 4;− 1

n

]
α+ 3

)
|f ′′′(a)|q +

(
1

α+ s+ 3

)
|f ′′′(b)|q

}
dt

) 1
q

+

({(
1

α+ s+ 3

)
|f ′′′(a)|q +

(
ns 2F1

[
1,−s;α+ 4;− 1

n

]
α+ 3

)
|f ′′′(b)|q

}
dt

) 1
q

 .
VIII. If h(t) = t−s in Theorem 2.4, then, we have result for s-Godunova-Levin-
Dragomir convex function.
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Corollary 2.12. Under the assumptions of Theorem 2.4, if h(t) = ts, then, we have
result for s-Godunova-Levin-Dragomir convex function.

|Lf (a, b;n;α)|

≤ (b− a)3

(n+ 1)4−
s
q (α+ 1)(α+ 2)

(
1

α+ 3

)1− 1
q

×

({( 2F1

[
1, 2;α+ 4; 1

n

]
ns(α+ 3)

)
|f ′′′(a)|q +

(
1

α− s+ 3

)
|f ′′′(b)|q

}
dt

) 1
q

+

({(
1

α− s+ 3

)
|f ′′′(a)|q +

(
2F1

[
1, 2;α+ 4; 1

n

]
ns(α+ 3)

)
|f ′′′(b)|q

}
dt

) 1
q

 .
IX. If h(t) = 1 in Theorem 2.4, then, we have result for P -function.

Corollary 2.13. Under the assumptions of Theorem 2.4, if h(t) = ts, then, we have
result for p-function.

|Lf (a, b;n;α)|

≤ 2(b− a)3

(n+ 1)4(α+ 1)(α+ 2)(α+ 3)
[|f ′′′(a)|q + |f ′′′(b)|q] .

3. Applications

In this section, we present some applications to means of real numbers.

Proposition 3.1. For some s ∈ (0, 1), 0 ≤ a < b, then∣∣∣∣L(a, b)− s(s− 1)(b− a)3

24
As−2(a, b)−As(a, b)

∣∣∣∣
≤ s(s− 1)(s− 2)(b− a)3

192

[
|a|s−3 + |b|s−3

]
.

Proof. The assertion directly follows from Theorem 2.2 applying for h(t) = ts,
f : [0, 1]→ [0, 1], f(x) = xs and α = 1, n = 1. �

Proposition 3.2. For some s ∈ (0, 1), 0 ≤ a < b and 1
p + 1

q = 1, 1 < q <∞, then∣∣∣∣L(a, b)− s(s− 1)(b− a)3

24
As−2(a, b)−As(a, b)

∣∣∣∣
≤ s(s− 1)(s− 2)(b− a)3

96

(
1

3p+ 1

) 1
p

×

[(
3

4
|a|q(s−3) +

1

2
|b|q(s−3)

) 1
q

+

(
1

2
|a|q(s−3) +

3

4
|b|q(s−3)

) 1
q

]
.

Proof. The assertion directly follows from Theorem 2.3 applying for h(t) = ts,
f : [0, 1]→ [0, 1], f(x) = xs and α = 1, n = 1. �
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Proposition 3.3. For some s ∈ (0, 1), 0 ≤ a < b and q > 1, then∣∣∣∣L(a, b)− s(s− 1)(b− a)3

24
As−2(a, b)−As(a, b)

∣∣∣∣
≤ s(s− 1)(s− 2)(b− a)3

384

(
4

5

) 1
q

×

[(
3

2
|a|q(s−3) + |b|q(s−3)

) 1
q

+

(
|a|q(s−3) +

3

2
|b|q(s−3)

) 1
q

]
.

Proof. The assertion directly follows from Theorem 2.4 applying for h(t) = ts,
f : [0, 1]→ [0, 1], f(x) = xs and α = 1, n = 1. �
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