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Hyers-Ulam stability of some positive linear
operators

Jaspreet Kaur and Meenu Goyal

Abstract. The present article deals with the Hyers-Ulam stability of positive lin-
ear operators in approximation theory. We discuss the HU-stability of Bernstein-
Schurer type operators, Bernstein-Durrmeyer operators and find the HU-stability
constant for these operators. Also, we show that the beta operators with Jacobi
weights are HU-unstable.
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1. Introduction

In a conference at the University of Wisconsin, Madison, Ulam asked a question
regarding the stability of an equation in a metric group. The question posed by Ulam
was whether,
“Given a metric group (G, ., ρ), a number ε > 0, and a mapping f : G → G that
satisfies the inequality

ρ(f(xy), f(x)f(y)) < ε for all x, y ∈ G,
does there exists a homomorphism a of G and a constant k > 0 (dependent only on
G) such that

ρ(a(x), f(x)) ≤ kε for all x ∈ G?”

This question is concerned with finding an exact solution close to every approximate
solution. If the answer to this question is positive, then the equation a(xy) = a(x)a(y)
is called HU-stable, indicating the existence of a unique exact solution close to the
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approximate solution.
In 1941, Hyers [8] provided a proof for a specific equation of the form

f(x+ y) = f(x) + f(y)

in Banach spaces, known as the Cauchy functional equation. This equation is fun-
damental in Mathematics. Further developments in this field can be found in the
references: [3, 4, 9, 10, 12, 15, 16, 21]. For unbounded Cauchy difference equations,
Aoki [1] and Rassias [19] introduced another type of stability for functional equations,
where the parameter ε is replaced by a function depending on x and y.

The Hyers-Ulam stability of linear operators was first observed in the papers
by Miura et al. [2, 6, 7, 13], who provided characterizations of HU-stability and its
constants for linear operators.

To the best of our knowledge, the HU-stability of positive linear operators in
approximation theory was first investigated by Popa and Raşa [17], who examined
the HU-stability of both discrete and integral operators. They established the general
result that every positive linear operator with finite-dimensional range is HU-stable.
Additionally, they determined the HU-stability constant for Bernstein operators and
showed that Szász-Mirakyan and beta operators are unstable. In another article [18],
the authors obtained stability constants for more general operators and improved the
constant for Bernstein operators.

In 2015, Mursaleen and Ansari [14] found the best constant in terms of HU-
stability for Kantorovich-Stancu and King’s operators. They also demonstrated the
unstability of Szász-Mirakyan type operators.

Positive linear operators have many applications in various areas of Mathematics,
including functional analysis, approximation theory, and numerical analysis. Hyers-
Ulam stability helps us to see the change in behavior of positive linear operators under
perturbations. This implies that the operators T has a stable behavior with respect
to small perturbations in the function it operates on.

Motivated by the applications of positive linear operators and behavior of their
solution with Hyers-Ulam stabiility, in the present article, we determine the stability
and the best constant for Bernstein-Stancu type operators and Bernstein-Durrmeyer
operators. We also establish the unstability of beta operators with Jacobi weights.
The paper is organized as: Section 1 includes introduction that provides an overview
of the problem and the motivation behind studying HU-stability of operators in ap-
proximation theory. In section 2, we provide basic definitions and results useful in the
subsequent sections. In next section, we discuss the HU-stability of two specific types
of operators: Bernstein-Schurer type operators and Bernstein-Durrmeyer operators
and determine the HU-stability constants for these operators, which quantify how
close the approximate solutions are to the exact solutions. Section 4 investigates the
unstability of beta operators with Jacobi weights.

2. Basic definitions and results

Definition 2.1. [20] Let X and Y are two normed spaces and L : X → Y is a mapping.
We say that L has the Hyers-Ulam stability property or L is HU-stable if there exists
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a constant K such that
(i) for any g ∈ L(X), ε > 0 and f ∈ X with ‖ Lf − g ‖≤ ε, there exists a f0 ∈ X
such that Lf0 = g and ‖ f − f0 ‖≤ Kε.
The condition expresses the Hyers-Ulam stabiliy of the equation

Lf = g,

where g ∈ R(L) is given and f ∈ X is unknown. The number K is called Hyers-Ulam
stability (HUS) constant of L, and the infimum of all HUS contants is denoted by
KL, which, in general, is not a HUS constant.

For any bounded linear operator L with kernel N(L) and the range space R(L),

we can consider a one-to-one operator L̃ from the quotient space X/N(L) into Y
defined as:

L̃(f +N(L)) = Lf, f ∈ X.
The inverse of this operator is L̃−1 : R(L)→ X/N(L).

Theorem 2.2. [20] Let X and Y be Banach spaces and L : X → Y be a bounded linear
operator. Then the following statements are equivalent:

(I) L is HU-stable;
(II) R(L) is closed;

(III) L̃−1 is bounded.

Moreover, if any of the above conditions are satisfied, then KL =‖ L̃−1 ‖ .

Remark 2.3. If L : X → Y is bounded linear operator, then (i) in Definition 2.1 is
equivalent to:
for any f ∈ X with ‖ Lf ‖≤ 1 there exists an f0 ∈ N(L) such that

‖ f − f0 ‖≤ K. (2.1)

It is clear from Remark 2.3 that, to study the HU-stability of a bounded linear
operator L : X → Y , we need to show either the existence of a constant K for (2.1)

or the boundedness of the operators L̃−1.
Let g ∈ Πn, where Πn is the set of all polynomials of degree at most n with real
coefficients. Then g has a unique Lorentz representation of the form

g(x) =

n∑
k=0

ckx
k(1− x)n−k, (2.2)

where ck ∈ R, k = 0, 1, · · · , n.
Let Tn denotes the usual nth degree Chebyshev polynomial of the first kind. Then
the following representation [11] holds:

Tn(2x− 1) =

n∑
k=0

dn,k x
k(1− x)n−k(−1)n−k, (2.3)

where

dn,k :=

min{k,n−k}∑
j=0

(
n

2j

)(
n− 2j

k − j

)
4j , k = 0, 1, · · · , n.
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It is proved in [17] that

dn,k =

(
2n

2k

)
, k = 0, 1, · · · , n. (2.4)

Therefore,

Tn(2x− 1) =

n∑
k=0

(
2n

2k

)
xk(1− x)n−k(−1)n−k.

Theorem 2.4. [11] Let g(x) has the representation (2.2) and 0 ≤ k ≤ n. Then

| ck |≤ dn,k. ‖ g ‖∞,

where equality holds if and only if gis a constant multiple of Tn(2x− 1).

3. HU-stability of Bernstein-Schurer type Operators and
Bernstein-Durrmeyer Operators

3.1. Bernstein-Schurer type operators

For any integer n ≥ 1. Let Πn denote the space of all polynomials of degree ≤ n,
which is a subspace of C[0, 1], a space consisting all continuous functions on [0, 1].
Consider C[0, 1 + p] be the linear space of all continuous functions f : [0, 1 + p]→ R
having supremum norm. Let 0 ≤ a ≤ b, the Bernstein-Schurer type operators
Sn,p : C[0, 1 + p]→ Πn+p are defined by

Sn,p(f ;x) =

n+p∑
k=0

(
n+ p

k

)
xk(1− x)n+p−kf

(
k + a

n+ b

)
.

These operators are HU-stable being finite dimensional operators. Here, we find the
HUS constant for Bernstein-Schurer type operators.
The kernel of Sn,p is given as:

N(Sn,p) =

{
f ∈ C[0, 1 + p]; f

(
k + a

n+ b

)
= 0, 0 ≤ k ≤ n+ p

}
.

N(Sn,p) is closed subspace of C[0, 1 + p] and R(Sn,p) = Πn+p.

Thus, Sn,p :
C[0, 1 + p]

N(Sn,p)
→ Πn+p is bijective. Hence, S̃−1n,p : Πn+p →

C[0, 1 + p]

N(Sn,p)
exists

and bijective.
Now, to find the HUS constant, we need to find the ‖S̃−1n,p‖.
Let g ∈ Πn+pwith ‖g‖ ≤ 1 has its Lorentz representation as

g(x) =

n+p∑
k=0

ck(g)xk(1− x)n+p−k, x ∈ [0, 1].
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Consider a piecewise function

fg(x) =



c0(g), x ∈
[
0,

a

n+ b

)
ck(g)(
n+p
k

) , x ∈
[
k + a

n+ b
,
k + a+ 1

n+ b

)
0 ≤ k ≤ n− 1

cn+p(g), x ∈
[
n+ a

n+ b
, 1

]
.

(3.1)

Clearly, Sn,p(fg;x) = g(x) that is S̃−1n,p(g(x)) = fg +N(Sn,p).
Thus,

‖S̃−1n,p‖ = sup
‖g‖≤1

‖S̃−1n,p(g)‖ = sup
‖g‖≤1

inf
h∈N(Sn,p)

‖fg + h‖

= sup
‖g‖≤1

‖fg‖ = sup
‖g‖≤1

max
0≤k≤n+p

|ck(g)|(
n+p
k

)
≤ sup

‖g‖≤1
max

0≤k≤n+p

dn+p,k ‖g‖(
n+p
k

) [Using Theorem 2.4]

≤ max
0≤k≤n+p

dn+p,k(
n+p
k

) . (3.2)

Now, let q(x) = Tn(2x − 1), x ∈ [0, 1] be Chebyshev poynomials. Then ‖q‖ = 1 and
from Theorem 2.4 |ck(q)| = dn+p,k. So,

‖S̃−1n,p‖ ≥ max
0≤k≤n+p

|ck(q)|(
n+p
k

) = max
0≤k≤n+p

dn+p,k(
n+p
k

) . (3.3)

Combining (3.2) and (3.3), we get

‖S̃−1n,p‖ = max
0≤k≤n+p

dn+p,k(
n+p
k

) = max
0≤k≤n+p

(
2n+2p

2k

)(
n+p
k

) [By (2.4)]

Let ak =

(
2n+ 2p

2k

)
(
n+ p

k

) , 0 ≤ k ≤ n + p. Then,
ak+1

ak
=

2n+ 2p− 2k − 1

2k + 1
, 0 ≤ k ≤

n+ p− 1.

The inequality
ak+1

ak
≥ 1 is satisfied if and only if k ≤

[
n+p−1

2

]
, where [x] denotes

the greatest integer function. So, maximum value of ak, 0 ≤ k ≤ n + p will be at[
n+p−1

2

]
+ 1.

i.e. max
0≤k≤n+p

ak = a[n+p−1
2 ]+1 =

{
a[n+p

2 ], if n+ p is even

a[n+p
2 ]+1 = a[n+p

2 ], if n+ p is odd.

Hence, max
0≤k≤n+p

ak = a[n+p
2 ].
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Finally, using (3.3), ‖S̃−1n,p‖ =

(
2(n+ p)

2
[
n+p
2

])(
n+ p[
n+p
2

]) .

When p = 0, it will reduce to HUS constant for Bernstein-Stancu operators. Also,
when p = a = b = 0, it will reduce the HUS constant for Bernstein operators.

3.2. Bernstein-Durrmeyer operators

Durrmeyer [5] in 1967 defined Bernstein-Durrmeyer operators Dn : C[0, 1] →
C[0, 1] as:

Dn(f ;x) =

n∑
k=0

pn,k(x)

∫ 1

0

pn,k(t) f(t) dt, x ∈ [0, 1], n ≥ 1. (3.4)

As the range of the operators (3.4) is Πn, which is finite dimensional. Hence, the
operators are HU-stable. Now, we will find the HUS constant for these operators.
Therefore, we will check that boundedness of its inverse operators. The kernel of
Dn(.;x) is:

N(Dn) =

{
f ∈ C[0, 1];

∫ 1

0

pn,k(t) f(t) dt = 0

}
.

N(Dn) is closed subspace of C[0, 1] and R(Dn) = Πn.

Hence, D̃n :
C[0, 1]

N(Dn)
→ Πn is bijective. So, D̃−1n exists and bijective, where

D̃−1n : Πn →
C[0, 1]

N(Dn)
.

Let Lorentz representation of g(x) =

n∑
k=0

xk(1 − x)n−kck(g) such that g ∈ Πn and

‖g‖ ≤ 1.

Define a function fg ∈ C[0, 1] as: fg(x) =
ck(g)(
n
k

) , 0 ≤ k ≤ n.

Clearly, Dn(fg;x) = g(x), therefore D̃−1n (g(x)) = fg +N(Dn).

‖D̃−1n ‖ = sup
‖g‖≤1

‖D̃−1n (g)‖ = sup
‖g‖≤1

inf
h∈N(Dn)

‖fg + h‖

= sup
‖g‖≤1

‖fg‖ ≤ sup
‖g‖≤1

max
0≤k≤n

| ck(g) |(
n
k

)
≤ sup

‖g‖≤1
max

0≤k≤n

dn,k‖g‖(
n
k

) ≤ max
0≤k≤n

dn,k(
n
k

) [Using Theorem 2.4]. (3.5)

Now, choose q(x) = Tn(2x− 1), x ∈ [0, 1]. Clearly, ‖q‖ = 1 and |ck(q)| = dn,k.

‖D̃−1n ‖ ≥ max
0≤k≤n

| ck(q) |(
n
k

) = max
0≤k≤n

dn,k(
n
k

) . (3.6)
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Using (3.5) and (3.6), we get:

‖D̃−1n ‖ = max
0≤k≤n

dn,k(
n
k

) = max
0≤k≤n

(
2n
2k

)(
n
k

) [By (2.4)]. (3.7)

Consider ak =

(
2n
2k

)(
n
k

) and ak+1 =

(
2n

2k+2

)(
n
k+1

) . By simple calculations, we get

ak+1

ak
=

2n− 2k − 1

2k + 1
.

For k ≤
[
n−1
2

]
, we have ak+1 ≥ ak.

Therefore,

max
0≤k≤n

ak = a[n−1
2 ]+1

=

{
a[n

2 ], if n is even

a[n
2 ]+1 = a[n

2 ], if n is odd.
(3.8)

Thus, max
0≤k≤n

ak = a[n
2 ], and by (3.7)

‖D̃−1n ‖ =

(
2n

2
[
n
2

])(
n[
n
2

]) ,

which is the HUS constant for Bernstein-Durrmeyer operators.

4. Unstability of Beta Operators with Jacobi Weights

For any α, β ≥ −1, the operators are defined as:

Bα,βn (f ;x) =

∫ 1

0

tnx+α(1− t)n−nx+β f(t) dt

B(nx+ α+ 1, n− nx+ β + 1)
, (4.1)

where B(m,n) is the beta function. For α = β = 0, these operators reduce to beta
operators by Lupaş.

Theorem 4.1. For each n ≥ 1, the beta operators with Jacobi weights are HU-unstable.

Proof. To define the inverse of the operators (4.1), firstly, we prove that the operators
Bα,βn (.;x) are injective.
Consider Bα,βn f = 0, for some f ∈ C[0, 1].
Thus, ∫ 1

0

tnx+α(1− t)n−nx+β f(t) dt = 0.
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Now, by changing the variable
t

1− t
= u, we get∫ ∞

0

unx+α

(1 + u)n+α+β+2
f

(
u

1 + u

)
du = 0.

As f ∈ C[0, 1], therefore g defined as:

g(u) =
1

(1 + u)n+α+β+2
f

(
u

1 + u

)
, u ∈ [0,∞).

is also continuous function on [0,∞).

Now, we have

∫ ∞
0

unx+α g(u) du = 0, x ∈ [0, 1],

Using Mellin transformation, we get:

M [g](nx+ α+ 1) = 0, x ∈ [0, 1].

Put nx + α + 1 = s, we have: M [g](s) = 0 ∀s ∈ [α + 1, n + α + 1], which gives
g(u) = 0 a.e. on [0,∞).
But g ∈ C[0,∞), which implies g(u) = 0 on [0,∞). Therefore, f(t) = 0 on [0, 1].
Hence, Bα,βn (.;x) are injective.
Now, consider the inverse operators

(Bα,βn )−1 : R(Bα,βn )→ C[0, 1].

Denote ej(x) = xj , j = 0, 1, · · · , x ∈ [0, 1].
Clearly, Bα,βn (e0;x) = 1 and

Bα,βn (ej ;x) =
(nx+ α+ 1)(nx+ α+ 2) · · · (nx+ α+ j)

(n+ α+ β + 2)(n+ α+ β + 3) · · · (n+ α+ β + j + 1)
.

The eigenvalues of

Bα,βn (f ;x) =
nj

(n+ α+ β + 2)(n+ α+ β + 3) · · · (n+ α+ β + j + 1)
.

Thus, eigenvalues of (Bα,βn )−1 are

(n+ α+ β + 2)(n+ α+ β + 3) · · · (n+ α+ β + j + 1)

nj
.

Since, lim
j→∞

(n+ α+ β + 2)(n+ α+ β + 3) · · · (n+ α+ β + j + 1)

nj
=∞.

We can say that (Bα,βn )−1 is unbounded, so the operators Bα,βn (.;x) are HU-unstable.
�
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