Stud. Univ. Babeş-Bolyai Math. 70
(2025), No. 1, 105–114 DOI: 10.24193/subbmath.2025.1.07

Hyers-Ulam stability of some positive linear operators

Jaspreet Kaur 🝺 and Meenu Goyal 🕩

Abstract. The present article deals with the Hyers-Ulam stability of positive linear operators in approximation theory. We discuss the HU-stability of Bernstein-Schurer type operators, Bernstein-Durrmeyer operators and find the HU-stability constant for these operators. Also, we show that the beta operators with Jacobi weights are HU-unstable.

Mathematics Subject Classification (2010): 39B82, 41A35, 41A44. Keywords: HU-stability, positive linear operators, approximation.

1. Introduction

In a conference at the University of Wisconsin, Madison, Ulam asked a question regarding the stability of an equation in a metric group. The question posed by Ulam was whether,

"Given a metric group $(G, ., \rho)$, a number $\epsilon > 0$, and a mapping $f : G \to G$ that satisfies the inequality

$$\rho(f(xy), f(x)f(y)) < \epsilon \text{ for all } x, y \in G,$$

does there exists a homomorphism a of G and a constant k > 0 (dependent only on G) such that

$$\rho(a(x), f(x)) \leq k\epsilon$$
 for all $x \in G?$ "

This question is concerned with finding an exact solution close to every approximate solution. If the answer to this question is positive, then the equation a(xy) = a(x)a(y) is called HU-stable, indicating the existence of a unique exact solution close to the

Received 04 December 2023; Accepted 23 October 2024.

[©] Studia UBB MATHEMATICA. Published by Babeş-Bolyai University

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

approximate solution.

In 1941, Hyers [8] provided a proof for a specific equation of the form

$$f(x+y) = f(x) + f(y)$$

in Banach spaces, known as the Cauchy functional equation. This equation is fundamental in Mathematics. Further developments in this field can be found in the references: [3, 4, 9, 10, 12, 15, 16, 21]. For unbounded Cauchy difference equations, Aoki [1] and Rassias [19] introduced another type of stability for functional equations, where the parameter ϵ is replaced by a function depending on x and y.

The Hyers-Ulam stability of linear operators was first observed in the papers by Miura et al. [2, 6, 7, 13], who provided characterizations of HU-stability and its constants for linear operators.

To the best of our knowledge, the HU-stability of positive linear operators in approximation theory was first investigated by Popa and Raşa [17], who examined the HU-stability of both discrete and integral operators. They established the general result that every positive linear operator with finite-dimensional range is HU-stable. Additionally, they determined the HU-stability constant for Bernstein operators and showed that Szász-Mirakyan and beta operators are unstable. In another article [18], the authors obtained stability constants for more general operators and improved the constant for Bernstein operators.

In 2015, Mursaleen and Ansari [14] found the best constant in terms of HUstability for Kantorovich-Stancu and King's operators. They also demonstrated the unstability of Szász-Mirakyan type operators.

Positive linear operators have many applications in various areas of Mathematics, including functional analysis, approximation theory, and numerical analysis. Hyers-Ulam stability helps us to see the change in behavior of positive linear operators under perturbations. This implies that the operators T has a stable behavior with respect to small perturbations in the function it operates on.

Motivated by the applications of positive linear operators and behavior of their solution with Hyers-Ulam stabiility, in the present article, we determine the stability and the best constant for Bernstein-Stancu type operators and Bernstein-Durrmeyer operators. We also establish the unstability of beta operators with Jacobi weights.

The paper is organized as: Section 1 includes introduction that provides an overview of the problem and the motivation behind studying HU-stability of operators in approximation theory. In section 2, we provide basic definitions and results useful in the subsequent sections. In next section, we discuss the HU-stability of two specific types of operators: Bernstein-Schurer type operators and Bernstein-Durrmeyer operators and determine the HU-stability constants for these operators, which quantify how close the approximate solutions are to the exact solutions. Section 4 investigates the unstability of beta operators with Jacobi weights.

2. Basic definitions and results

Definition 2.1. [20] Let X and Y are two normed spaces and $L: X \to Y$ is a mapping. We say that L has the Hyers-Ulam stability property or L is HU-stable if there exists a constant K such that

(i) for any $g \in L(X)$, $\epsilon > 0$ and $f \in X$ with $|| Lf - g || \le \epsilon$, there exists a $f_0 \in X$ such that $Lf_0 = g$ and $|| f - f_0 || \le K\epsilon$.

The condition expresses the Hyers-Ulam stabiliy of the equation

Lf = g,

where $g \in R(L)$ is given and $f \in X$ is unknown. The number K is called Hyers-Ulam stability (HUS) constant of L, and the infimum of all HUS contants is denoted by K_L , which, in general, is not a HUS constant.

For any bounded linear operator L with kernel N(L) and the range space R(L), we can consider a one-to-one operator \tilde{L} from the quotient space X/N(L) into Ydefined as:

$$\tilde{L}(f+N(L)) = Lf, \ f \in X.$$

The inverse of this operator is $\tilde{L}^{-1}: R(L) \to X/N(L)$.

Theorem 2.2. [20] Let X and Y be Banach spaces and $L: X \to Y$ be a bounded linear operator. Then the following statements are equivalent:

(I) L is HU-stable;

(II) R(L) is closed;

(III) \tilde{L}^{-1} is bounded.

Moreover, if any of the above conditions are satisfied, then $K_L = \| \tilde{L}^{-1} \|$.

Remark 2.3. If $L: X \to Y$ is bounded linear operator, then (i) in Definition 2.1 is equivalent to:

for any $f \in X$ with $||Lf|| \leq 1$ there exists an $f_0 \in N(L)$ such that

$$|| f - f_0 || \le K.$$
 (2.1)

It is clear from Remark 2.3 that, to study the HU-stability of a bounded linear operator $L: X \to Y$, we need to show either the existence of a constant K for (2.1) or the boundedness of the operators \tilde{L}^{-1} .

Let $g \in \Pi_n$, where Π_n is the set of all polynomials of degree at most n with real coefficients. Then g has a unique Lorentz representation of the form

$$g(x) = \sum_{k=0}^{n} c_k x^k (1-x)^{n-k},$$
(2.2)

where $c_k \in \mathbb{R}, \ k = 0, 1, \cdots, n$.

Let T_n denotes the usual *n*th degree Chebyshev polynomial of the first kind. Then the following representation [11] holds:

$$T_n(2x-1) = \sum_{k=0}^n d_{n,k} x^k (1-x)^{n-k} (-1)^{n-k}, \qquad (2.3)$$

where

$$d_{n,k} := \sum_{j=0}^{\min\{k,n-k\}} \binom{n}{2j} \binom{n-2j}{k-j} 4^j, \ k = 0, 1, \cdots, n.$$

It is proved in [17] that

$$d_{n,k} = \binom{2n}{2k}, \ k = 0, 1, \cdots, n.$$
 (2.4)

Therefore,

$$T_n(2x-1) = \sum_{k=0}^n \binom{2n}{2k} x^k (1-x)^{n-k} (-1)^{n-k}.$$

Theorem 2.4. [11] Let g(x) has the representation (2.2) and $0 \le k \le n$. Then

 $\mid c_k \mid \leq d_{n,k} \cdot \parallel g \parallel_{\infty},$

where equality holds if and only if g is a constant multiple of $T_n(2x-1)$.

3. HU-stability of Bernstein-Schurer type Operators and Bernstein-Durrmeyer Operators

3.1. Bernstein-Schurer type operators

For any integer $n \geq 1$. Let Π_n denote the space of all polynomials of degree $\leq n$, which is a subspace of C[0,1], a space consisting all continuous functions on [0,1]. Consider C[0,1+p] be the linear space of all continuous functions $f:[0,1+p] \to \mathbb{R}$ having supremum norm. Let $0 \leq a \leq b$, the Bernstein-Schurer type operators $S_{n,p}: C[0,1+p] \to \Pi_{n+p}$ are defined by

$$S_{n,p}(f;x) = \sum_{k=0}^{n+p} \binom{n+p}{k} x^k (1-x)^{n+p-k} f\left(\frac{k+a}{n+b}\right).$$

These operators are HU-stable being finite dimensional operators. Here, we find the HUS constant for Bernstein-Schurer type operators.

The kernel of $S_{n,p}$ is given as:

$$N(S_{n,p}) = \left\{ f \in C[0, 1+p]; f\left(\frac{k+a}{n+b}\right) = 0, 0 \le k \le n+p \right\}.$$

 $N(S_{n,p})$ is closed subspace of C[0, 1+p] and $R(S_{n,p}) = \prod_{n+p}$.

Thus, $S_{n,p}: \frac{C[0,1+p]}{N(S_{n,p})} \to \Pi_{n+p}$ is bijective. Hence, $\tilde{S}_{n,p}^{-1}: \Pi_{n+p} \to \frac{C[0,1+p]}{N(S_{n,p})}$ exists and bijective.

Now, to find the HUS constant, we need to find the $\|\tilde{S}_{n,p}^{-1}\|$. Let $g \in \prod_{n+p}$ with $\|g\| \leq 1$ has its Lorentz representation as

$$g(x) = \sum_{k=0}^{n+p} c_k(g) x^k (1-x)^{n+p-k}, \quad x \in [0,1].$$

Consider a piecewise function

$$f_{g}(x) = \begin{cases} c_{0}(g), & x \in \left[0, \frac{a}{n+b}\right) \\ \frac{c_{k}(g)}{\binom{n+p}{k}}, & x \in \left[\frac{k+a}{n+b}, \frac{k+a+1}{n+b}\right) & 0 \le k \le n-1 \\ c_{n+p}(g), & x \in \left[\frac{n+a}{n+b}, 1\right]. \end{cases}$$
(3.1)

Clearly, $S_{n,p}(f_g; x) = g(x)$ that is $\tilde{S}_{n,p}^{-1}(g(x)) = f_g + N(S_{n,p})$. Thus,

$$\begin{split} \|\tilde{S}_{n,p}^{-1}\| &= \sup_{\|g\| \le 1} \|\tilde{S}_{n,p}^{-1}(g)\| = \sup_{\|g\| \le 1} \inf_{h \in N(S_{n,p})} \|f_g + h\| \\ &= \sup_{\|g\| \le 1} \|f_g\| = \sup_{\|g\| \le 1} \max_{0 \le k \le n+p} \frac{|c_k(g)|}{\binom{n+p}{k}} \\ &\le \sup_{\|g\| \le 1} \max_{0 \le k \le n+p} \frac{d_{n+p,k} \|g\|}{\binom{n+p}{k}} \quad \text{[Using Theorem 2.4]} \\ &\le \max_{0 \le k \le n+p} \frac{d_{n+p,k}}{\binom{n+p}{k}}. \end{split}$$
(3.2)

Now, let $q(x) = T_n(2x - 1)$, $x \in [0, 1]$ be Chebyshev poynomials. Then ||q|| = 1 and from Theorem 2.4 $|c_k(q)| = d_{n+p,k}$. So,

$$\|\tilde{S}_{n,p}^{-1}\| \ge \max_{0 \le k \le n+p} \frac{|c_k(q)|}{\binom{n+p}{k}} = \max_{0 \le k \le n+p} \frac{d_{n+p,k}}{\binom{n+p}{k}}.$$
(3.3)

Combining (3.2) and (3.3), we get

$$\|\tilde{S}_{n,p}^{-1}\| = \max_{0 \le k \le n+p} \frac{d_{n+p,k}}{\binom{n+p}{k}} = \max_{0 \le k \le n+p} \frac{\binom{2n+2p}{2k}}{\binom{n+p}{k}} \quad [By (2.4)]$$

Let $a_k = \frac{\binom{2n+2p}{2k}}{\binom{n+p}{k}}, \ 0 \le k \le n+p.$ Then, $\frac{a_{k+1}}{a_k} = \frac{2n+2p-2k-1}{2k+1}, \ 0 \le k \le n+p-1.$

The inequality $\frac{a_{k+1}}{a_k} \ge 1$ is satisfied if and only if $k \le \left[\frac{n+p-1}{2}\right]$, where [x] denotes the greatest integer function. So, maximum value of a_k , $0 \le k \le n+p$ will be at $\left[\frac{n+p-1}{2}\right]+1$.

i.e.
$$\max_{0 \le k \le n+p} a_k = a_{\left[\frac{n+p-1}{2}\right]+1} = \begin{cases} a_{\left[\frac{n+p}{2}\right]}, & \text{if } n+p \text{ is even} \\ a_{\left[\frac{n+p}{2}\right]+1} = a_{\left[\frac{n+p}{2}\right]}, & \text{if } n+p \text{ is odd.} \end{cases}$$

Hence,
$$\max_{0 \le k \le n+p} a_k = a_{\left[\frac{n+p}{2}\right]}.$$

Finally, using (3.3),
$$\|\tilde{S}_{n,p}^{-1}\| = \frac{\binom{2(n+p)}{2\left[\frac{n+p}{2}\right]}}{\binom{n+p}{\left[\frac{n+p}{2}\right]}}.$$

When p = 0, it will reduce to HUS constant for Bernstein-Stancu operators. Also, when p = a = b = 0, it will reduce the HUS constant for Bernstein operators.

3.2. Bernstein-Durrmeyer operators

Durrmeyer [5] in 1967 defined Bernstein-Durrmeyer operators $D_n: C[0,1] \to C[0,1]$ as:

$$D_n(f;x) = \sum_{k=0}^n p_{n,k}(x) \int_0^1 p_{n,k}(t) f(t) dt, \quad x \in [0,1], n \ge 1.$$
(3.4)

As the range of the operators (3.4) is Π_n , which is finite dimensional. Hence, the operators are HU-stable. Now, we will find the HUS constant for these operators. Therefore, we will check that boundedness of its inverse operators. The kernel of $D_n(.;x)$ is:

$$N(D_n) = \left\{ f \in C[0,1]; \int_0^1 p_{n,k}(t) f(t) dt = 0 \right\}.$$

 $N(D_n)$ is closed subspace of C[0,1] and $R(D_n) = \prod_n$. Hence, $\tilde{D}_n : \frac{C[0,1]}{N(D_n)} \to \prod_n$ is bijective. So, \tilde{D}_n^{-1} exists and bijective, where

$$\tilde{D}_n^{-1}: \Pi_n \to \frac{C[0,1]}{N(D_n)}$$

Let Lorentz representation of $g(x) = \sum_{k=0}^{n} x^k (1-x)^{n-k} c_k(g)$ such that $g \in \Pi_n$ and $||g|| \le 1$.

Define a function $f_g \in C[0,1]$ as: $f_g(x) = \frac{c_k(g)}{\binom{n}{k}}, \ 0 \le k \le n$. Clearly, $D_n(f_g; x) = g(x)$, therefore $\tilde{D}_n^{-1}(g(x)) = f_g + N(D_n)$.

$$\begin{split} \|\tilde{D}_{n}^{-1}\| &= \sup_{\|g\| \leq 1} \|\tilde{D}_{n}^{-1}(g)\| = \sup_{\|g\| \leq 1} \inf_{h \in N(D_{n})} \|f_{g} + h\| \\ &= \sup_{\|g\| \leq 1} \|f_{g}\| \leq \sup_{\|g\| \leq 1} \max_{0 \leq k \leq n} \frac{|c_{k}(g)|}{\binom{n}{k}} \\ &\leq \sup_{\|g\| \leq 1} \max_{0 \leq k \leq n} \frac{d_{n,k} \|g\|}{\binom{n}{k}} \leq \max_{0 \leq k \leq n} \frac{d_{n,k}}{\binom{n}{k}} \quad [\text{Using Theorem 2.4}]. \quad (3.5) \end{split}$$

Now, choose $q(x) = T_n(2x-1)$, $x \in [0, 1]$. Clearly, ||q|| = 1 and $|c_k(q)| = d_{n,k}$.

$$\|\tilde{D}_{n}^{-1}\| \ge \max_{0 \le k \le n} \frac{|c_{k}(q)|}{\binom{n}{k}} = \max_{0 \le k \le n} \frac{d_{n,k}}{\binom{n}{k}}.$$
(3.6)

Using (3.5) and (3.6), we get:

$$\|\tilde{D}_n^{-1}\| = \max_{0 \le k \le n} \frac{d_{n,k}}{\binom{n}{k}} = \max_{0 \le k \le n} \frac{\binom{2n}{2k}}{\binom{n}{k}} \quad [By (2.4)].$$
(3.7)

Consider $a_k = \frac{\binom{2n}{2k}}{\binom{n}{k}}$ and $a_{k+1} = \frac{\binom{2n}{2k+2}}{\binom{n}{k+1}}$. By simple calculations, we get $\frac{a_{k+1}}{a_k} = \frac{2n-2k-1}{2k+1}$.

For $k \leq \left[\frac{n-1}{2}\right]$, we have $a_{k+1} \geq a_k$. Therefore,

$$\max_{0 \le k \le n} a_k = a_{\left[\frac{n-1}{2}\right]+1} = \begin{cases} a_{\left[\frac{n}{2}\right]}, & \text{if } n \text{ is even} \\ a_{\left[\frac{n}{2}\right]+1} = a_{\left[\frac{n}{2}\right]}, & \text{if } n \text{ is odd.} \end{cases}$$
(3.8)

Thus, $\max_{0 \le k \le n} a_k = a_{\left[\frac{n}{2}\right]}$, and by (3.7)

$$\|\tilde{D}_n^{-1}\| = \frac{\binom{2n}{2\left\lfloor\frac{n}{2}\right\rfloor}}{\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}}$$

which is the HUS constant for Bernstein-Durrmeyer operators.

4. Unstability of Beta Operators with Jacobi Weights

For any $\alpha, \beta \geq -1$, the operators are defined as:

$$B_n^{\alpha,\beta}(f;x) = \frac{\int_0^1 t^{nx+\alpha} (1-t)^{n-nx+\beta} f(t) dt}{B(nx+\alpha+1, n-nx+\beta+1)},$$
(4.1)

where B(m,n) is the beta function. For $\alpha = \beta = 0$, these operators reduce to beta operators by Lupaş.

Theorem 4.1. For each $n \ge 1$, the beta operators with Jacobi weights are HU-unstable.

Proof. To define the inverse of the operators (4.1), firstly, we prove that the operators $B_n^{\alpha,\beta}(.;x)$ are injective.

Consider $B_n^{\alpha,\beta}f = 0$, for some $f \in C[0,1]$. Thus,

$$\int_0^1 t^{nx+\alpha} (1-t)^{n-nx+\beta} f(t) \, dt = 0$$

Now, by changing the variable $\frac{t}{1-t} = u$, we get

$$\int_0^\infty \frac{u^{nx+\alpha}}{(1+u)^{n+\alpha+\beta+2}} f\left(\frac{u}{1+u}\right) \, du = 0.$$

As $f \in C[0, 1]$, therefore g defined as:

$$g(u) = \frac{1}{(1+u)^{n+\alpha+\beta+2}} f\left(\frac{u}{1+u}\right), \quad u \in [0,\infty).$$

is also continuous function on $[0, \infty)$. Now, we have $\int_0^\infty u^{nx+\alpha} g(u) du = 0$, $x \in [0, 1]$, Using Mellin transformation, we get:

$$M[g](nx + \alpha + 1) = 0, \quad x \in [0, 1].$$

Put $nx + \alpha + 1 = s$, we have: $M[g](s) = 0 \quad \forall s \in [\alpha + 1, n + \alpha + 1]$, which gives g(u) = 0 a.e. on $[0, \infty)$. But $g \in C[0, \infty)$, which implies g(u) = 0 on $[0, \infty)$. Therefore, f(t) = 0 on [0, 1]. Hence, $B_n^{\alpha,\beta}(.;x)$ are injective. Now, consider the inverse operators

$$(B_n^{\alpha,\beta})^{-1}: R(B_n^{\alpha,\beta}) \to C[0,1].$$

Denote $e_j(x) = x^j, j = 0, 1, \cdots, x \in [0, 1].$ Clearly, $B_n^{\alpha,\beta}(e_0; x) = 1$ and

$$B_n^{\alpha,\beta}(e_j;x) = \frac{(nx+\alpha+1)(nx+\alpha+2)\cdots(nx+\alpha+j)}{(n+\alpha+\beta+2)(n+\alpha+\beta+3)\cdots(n+\alpha+\beta+j+1)}$$

The eigenvalues of

$$B_n^{\alpha,\beta}(f;x) = \frac{n^j}{(n+\alpha+\beta+2)(n+\alpha+\beta+3)\cdots(n+\alpha+\beta+j+1)}.$$

Thus, eigenvalues of $(B_n^{\alpha,\beta})^{-1}$ are

$$\frac{(n+\alpha+\beta+2)(n+\alpha+\beta+3)\cdots(n+\alpha+\beta+j+1)}{n^j}.$$

m
$$\frac{(n+\alpha+\beta+2)(n+\alpha+\beta+3)\cdots(n+\alpha+\beta+j+1)}{n^j} = \infty$$

Since, $\lim_{j \to \infty} \frac{(n+\alpha+\beta+2)(n+\alpha+\beta+3)\cdots(n+\alpha+\beta+j+2)}{n^j} = \infty.$ We can say that $(B_n^{\alpha,\beta})^{-1}$ is unbounded, so the operators $B_n^{\alpha,\beta}(.;x)$ are HU-unstable.

Acknowledgments. The first author is thankful to the "University Grants Commission (UGC) (1001/(CSIR-UGC NET DEC. 2017))" India and DST-FIST (grant SR/FST/MS-1/2017/13) for financial support to carry out the above research work.

References

- Aoki, T., On the stability of linear transformation in Banach spaces, J. Math. Soc. Japan, 2(1950), 64-66.
- [2] Brzdek, J., Jung, S.M., A note on stability of an operator linear equation of the second order, Abstr. Appl. Anal., 367(2011), 1-15.
- [3] Brzdek, J., Popa, D., Xu, B., On approximate solution of the linear functional equation of higher order, J. Math. Anal. Appl., 373(2011), 680-689.
- [4] Brzdek, J., Rassias, Th.M., Functional Equations in Mathematical Analysis, Springer, 2011.
- [5] Durrmeyer, J.L., Une formule d'inversion de la transforme de Laplace: Applications a la theorie des moments, These de 3e cycle, Paris, 1967.
- [6] Hatori, O., Kobayasi, K., Miura, T., Takagi, H., Takahasi, S.E., On the best constant of Hyers-Ulam stability, J. Nonlinear Convex Anal., 5(2004), 387-393.
- Hirasawa, G., Miura, T., Hyers-Ulam stability of a closed operator in a Hilbert space, Bull. Korean Math. Soc., 43(2006), 107-117.
- [8] Hyers, D.H., On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27(1941), 222-224.
- [9] Hyers, D.H., Isac, G., Rassias, Th. M., Stability of Functional Equation in Several Variables, Birkhäuser, Basel, 1998.
- [10] Jung, S.M., Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Optim. Appl. 48, Springer, New York, 2011.
- [11] Lubinsky, D.S., Zeigler, Z., Coefficients bounds in the Lorentz representation of a polynomial, Canad. Math. Bull., 33(1990), 197-206.
- [12] Lungu, N., Popa, D., Hyers-Ulam stability of a first order partial differential equation, J. Math. Anal. Appl., 385(2012), 86-91.
- [13] Miura, T., Miyajima, M., Takahasi, S.E., Hyers-Ulam stability of linear differential operators wth constant coefficients, Math. Nachr., 258(2003), 90-96.
- [14] Mursaleen, M., Ansari, K.J., On the stability of some positive linear operators from approximation theory, Bull. Math. Sci., 5(2015), 147-157.
- [15] Popa, D., Raşa, I., On the Hyers-Ulam stability of the linear differential equation, J. Math. Anal. Appl., 381(2011), 530-537.
- [16] Popa, D., Raşa, I., The Fréchet functional equation with applications to the stability of certain operators, J. Approx. Theory, 1(2012), 138-144.
- [17] Popa, D., Raşa, I., On the stability of some classical operators from approximation theory, Expo. Math., 31(2013), 205-214.
- [18] Popa, D., Raşa, I., On the best constant in Hyers-Ulam stability of some positive linear operators, J. Math. Anal. Appl., 412(2014), 103-108.
- [19] Rassias, Th. M., On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc., 72(1978), 297-300.
- [20] Takagi, H., Miura, T., Takahasi, S.E., Essential norms and stability constants of weighted composition operators on C(X), Bull. Korean Math. Soc., 40(2003), 583-591.
- [21] Ulam, S.M., A Collection of Mathematical problems, Interscience, New York, 1960.

Jaspreet Kaur and Meenu Goyal

Jaspreet Kaur in Department of Mathematics, Thapar Institute of Engineering and Technology, Patiala, Patiala 147004, India and Department of Mathematics, GLA University, Mathura 281406, India e-mail: jazzbagri3@gmail.com

Meenu Goyal () Department of Mathematics, Thapar Institute of Engineering and Technology, Patiala, Patiala-147004, India e-mail: meenu_rani@thapar.edu