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1. Introduction

Let A be the class of analytic functions f in the open unit disc D := {z ∈ C : |z| < 1}
normalized by the conditions f(0) = 0 and f ′(0) = 1. If f ∈ A, then

f(z) = z +

∞∑
n=2

anz
n, z ∈ D, (1.1)

and denotes by S the subclass of A consisting of univalent functions in D (see [6] for
details).

For two functions f and g analytic in D, we say that the function f is subordinate
to g in D, and write f(z) ≺ g(z), if there exists an analytic function in D denoted by
w, with w(0) = 0 and |w(z)| < 1, z ∈ D, such that f(z) = g(w(z)) for all z ∈ D. In
particular, if the function g is univalent in D, the above subordination is equivalent
to f(0) = g(0) and f(D) ⊂ g(D).

We recall that B denote the class of analytic self-mappings of the unit disc, that
maps the origin onto the origin [13], that is

B :=

{
w(z) =

∞∑
n=1

wnz
n : |w(z)| < 1, z ∈ D

}
, (1.2)

and the class B is known as the class of Schwarz functions.
In 2018, Yunus et. al. [21] studied the subclass of starlike functions associated

with a limaçon domain. The limaçon of Pascal also known as limaçon is a curve that
in polar coordinates has the form r = b+ a cos θ, where a and b are real positive real
and θ ∈ (0, 2π). If b ≥ 2a the limaçon is a convex curve and if 2a > b > a it has an
indentation bounded by two inflection points. For b = a the limaçon degenerates to a
cardioid.

Recently, Kanas et. al. [13] introduced subclasses STL(s) and CVL(s) of starlike
and convex function respectively. Geometrically, they consist of functions f ∈ A such

that
zf ′(z)

f(z)
and

(
zf ′(z)

)′
f ′(z)

lie in the region bounded by the limaçon curve defined as

∂Ds :=

{
u+ iv ∈ C :

[
(u− 1)2 + v2 − s4

]2
= 4s2

[(
u− 1 + s2

)2
+ v2

]}
,

where s ∈ [−1, 1] \ {0}. If we define the limaçon function

Ls(z) := (1 + sz)2, s ∈ [−1, 1] \ {0}, (1.3)

then the analytic characterization of the limaçon domain Ls(D) is given by the inclu-
sion relation (see [13] inclusions (9) and (10)){

w ∈ C : |w − 1| < 1− (1− |s|)2
}
⊂ Ls(D)

⊂
{
w ∈ C : |w − 1| < (1 + |s|)2 − 1

}
.

In 1991 Chakrabarti and Jagannathan [5] introduced the concept of (p, q)–
calculus in order to generalize or unify several forms of q–oscillator algebras. In the
last three decades, applications of the q–calculus have been studied and investigated
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extensively. Inspired and motivated by these applications many researchers (for exam-
ple [1], [4]) have developed the theory of quantum calculus based on two-parameter
(p, q)–integer which is used efficiently in many fields such as difference equations, Lie
group, hypergeometric series, physical sciences, etc.

The (p, q)–bracket or twin basic number [n]p,q is defined by

[n]p,q :=


pn − qn

p− q
, if q 6= p,

npn−1, if q = p,

where 0 < q ≤ p < 1.
For 0 < q < 1, the q-bracket [n]q for n = 0, 1, 2, . . . is given by [n]q := [n]1,q. The

(p, q)–derivative of a function f is defined by

Dp,qf(z) :=


f(pz)− f(qz)

(p− q)z
, if q 6= p, z 6= 0,

1, if p 6= q, z = 0,
f ′(z), if p = q.

In particular, Dp,qz
n = [n]p,qz

n−1, therefore, for a function f ∈ A of the form (1.1)
the (p, q)–derivative operator is given by

Dp,qf(z) = 1 +

∞∑
n=2

[n]p,qanz
n−1, z ∈ D.

In the univalent function theory many extensive studies were given to estimate
the upper bounds of the Hankel determinants, and for further reading one may refer
to [15], [16], [18]. The closer connection with the Hankel determinants are the Toeplitz
determinants. A Toeplitz determinant can be thought of as an “upside-down” Hankel
determinant, in that Hankel determinant have constant entries along the reverse di-
agonal, whereas Toeplitz matrices have constant entries along the diagonal. In recent
past, many researchers have focussed on finding sharp estimates for second and third
order Toeplitz determinants [10], [7], etc.

Thomas and Halim [19] defined the symmetric Toeplitz determinant Tm(n) by

Tm(n) :=

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+m−1
an+1 an · · · an+m−2

...
...

...
...

an+m−1 an+m−2 · · · an

∣∣∣∣∣∣∣∣∣ ,
and in particular

T2(2) =

∣∣∣∣ a2 a3
a3 a2

∣∣∣∣ , T3(1) =

∣∣∣∣∣∣
1 a2 a3
a2 1 a2
a3 a2 1

∣∣∣∣∣∣ .
For a good summary of the applications of Toeplitz matrices to the wide range of
areas of pure and applied mathematics, one can refer to [20].

The logarithmic coefficients γn := γn(f), n ≥ 1, for a function f ∈ S of the form
(1.1) play an important role in Milin’s conjecture [14] and Brennan’s conjecture [12],
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and can also be used to find estimations for the coefficients of an inverse function. It
is given by the power series representation (see [14, p. 53])

log
f(z)

z
= 2

∞∑
n=1

γnz
n, z ∈ D, (1.4)

where the function “log” is considered to the main branch, i.e. log 1 = 0. Differ-
entiating the definition relation (1.4) and then equating the coefficients of zn, the
logarithmic coefficients γ1 and γ2 will be given by

γ1 =
a2
2
, (1.5)

γ2 =
1

2

(
a3 −

a22
2

)
. (1.6)

In the theory of univalent functions the problem of finding the sharp estimates
for the logarithmic coefficients for various significant classes have gained a high im-
portance (see, for details, [2], [3]). Recently, S. Giri and S. Kumar [8] initiated the
study of Toeplitz determinants whose elements are logarithmic coefficients of f ∈ S
which is given by

Tm,n (γf ) :=

∣∣∣∣∣∣∣∣∣
γn γn+1 . . . γn+m−1
γn+1 γn · · · γn+m−2
...

...
...

...
γn+m−1 γn+m−2 · · · γn

∣∣∣∣∣∣∣∣∣ ,
thus

T2,1 (γf ) =

∣∣∣∣ γ1 γ2
γ2 γ1

∣∣∣∣ .
In this paper we obtained the estimates of Toeplitz determinants and Toeplitz

determinanats of logarithmic coefficients for the subclasses LsSqp , LsCqp , and LsSqp ∩S,
LsCqp ∩ S, 0 < q ≤ p ≤ 1, respectively, defined by post quantum operators which map
the open unit disc D in a domain included in the limaçon domain.

2. The subclasses LsSq
p , LsCqp and preliminary results

The new subclasses of A we will define and investigate extend and are connected
with the below subclass functions:

Definition 2.1. [17] Denote by S∗S the subclass of A consisting of functions given by
(1.1) and satisfying

Re
zf ′(z)

f(z)− f(−z)
> 0, z ∈ D.

These functions introduced by Sakaguchi are called functions starlike with respect
to symmetric points, and for a function f ∈ A the above inequality is a necessary and
sufficient condition for f to b e univalent and starlike with respect to symmetrical
points in D (see [17, Theorem 1]).
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Like we can see in [13, Lemma 2], the function Ls defined by (1.3) is starlike with
respect to the point z0 = 1 for all s ∈ [−1, 1] \ {0}, hence is univalent in D. Moreover,

if 0 < s ≤ 1/
√

2 then Ls has real positive part in D, i.e. Ls is a Carathéodory function
(see [13, p. 10]).

Now we define the classes LsSqp and LsCqp which maps the open unit disc onto
the region included in the limaçon domain Ls(D) as follows:

Definition 2.2. Let LsSqp be the subclass of function f ∈ A of the form (1.1) and
satisfying the condition

2zDp,qf(z)

f(z)− f(−z)
≺ Ls(z), 0 < s ≤ 1√

2
.

Definition 2.3. Let LsCqp be the subclass of A consisting of the function f of the form
(1.1) such that (

2zDp,qf(z)
)′(

f(z)− f(−z)
)′ ≺ Ls(z), 0 < s ≤ 1√

2
.

Remark 2.4. The above mentioned classes are not empty, as we will show in the below
examples.

(i) Taking f∗(z) = z + az2, a ∈ C, then

Φ∗(z) :=
2zDp,qf∗(z)

f∗(z)− f∗(−z)
= 1 + (p+ q)az, z ∈ D.

For the values q = 0.3, p = 0.5, a = 0.9, and s = 1/
√

3, like we see in the below
Figure 1(A) made with MAPLE� computer software we have Φ∗(D) ⊂ L1/

√
3(D),

and because Φ∗(0) = L1/
√
3(0) from the univalence of L1/

√
3 it follows that Φ∗(z) ≺

L1/
√
3(z), i.e. f∗ ∈ LsSqp for the previous parameters. Also, the Figure 1(B) shows

that the function f∗ is not univalent in D because f∗(D) twice overlaps a subset of C.

(A) The images of Φ∗(∂D) (B) The domain f∗(D)

(red color) and L1/
√
3(∂D)

(blue color)

Figure 1. Figures for the Remark 2.4(i)
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(ii) For f̂(z) = z + az2 + bz3, a, b ∈ C, we get

Φ̂(z) :=
2zDp,q f̂(z)

f̂(z)− f̂(−z)
=

1 + (p+ q)az +
(
p2 + pq + q2

)
bz2

1 + bz2
, z ∈ D.

If q = 0.85, p = 0.95, a = 0.1, b = 0.2, and s = 1/
√

3, we see in the Figure

2(A) made with MAPLE� that Φ̂(D) ⊂ L1/
√
3(D), and from Φ̂(0) = L1/

√
3(0) and

the univalence of L1/
√
3 we have Φ̂(z) ≺ L1/

√
3(z), that is Φ̂ ∈ LsSqp for this choice of

the parameters. Moreover, from this figure we wee that Φ̂ is not univalent in D, while

the Figure 2(B) shows that f̂ is univalent in D.

(A) The images of (B) The domain f̂(D)

Φ̂(∂D) (blue color) and

L1/
√
3(∂D) (red color)

Figure 2. Figures for the Remark 2.4(ii)

(iii) Using the above notations, and

Ψ∗(z) :=

(
2zDp,qf(z)

)′(
f(z)− f(−z)

)′ = 1 + 2(p+ q)az, z ∈ D.

for q = 0.15, p = 0.25, a = 0.9, and s = 1/
√

3, the Figure 3(A) made with MAPLE�
computer software shows that Ψ∗(D) ⊂ L1/

√
3(D), and because Ψ∗(0) = L1/

√
3(0)

from the univalence of L1/
√
3 it follows Ψ∗(z) ≺ L1/

√
3(z), i.e. f∗ ∈ LsCqp for these

values of the parameters. The Figure 3(B) shows that the function f∗ is not univalent
in D since there exists a subset of C that’s twice overlapped by f∗(D).

(iv) Considering the function f̂(z) = z + az2 + bz3, a, b ∈ C, we get

Ψ̂(z) :=

(
2zDp,qf(z)

)′(
f(z)− f(−z)

)′ =
1 + 2(p+ q)az + 3

(
p2 + pq + q2

)
bz2

1 + 3bz2
, z ∈ D.

For q = 0.4, p = 0.5, a = 0.25, b = 0.2, and s = 1/
√

3, we see in the Figure 4(A)

made with MAPLE� that Ψ̂(D) ⊂ L1/
√
3(D). Using that Ψ̂(0) = L1/

√
3(0) together

with the univalence of L1/
√
3 we have Ψ̂(z) ≺ L1/

√
3(z), that is Ψ̂ ∈ LsSqp for these
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(A) The images of Φ∗(∂D) (B) The domain f∗(D)

(red color) and L1/
√
3(∂D)

(blue color)

Figure 3. Figures for the Remark 2.4(iii)

choice of the parameters. Moreover, from this figure we wee that Ψ̂ is not univalent

in D, and from the Figure 4(B) we see that f̂ is univalent in D.

(A) The images of (B) The domain f̂(D)

Ψ̂(∂D) (blue color) and

L1/
√
3(∂D) (red color)

Figure 4. Figures for the Remark 2.4(iv)

(v) Concluding, the examples given in the Remark 2.4(i)–(iv) show that LsSqp 6= ∅
and LsCqp 6= ∅. From the examples of the Remark 2.4(i) and (iii) it follows that
LsSqp 6⊂ S and LsCqp 6⊂ S. In addition, the examples of the Remark 2.4(ii) and (iv)

show that the corresponding functions of the form f∗ and f̂ belong to LsSqp ∩ S and
LsCqp ∩S, respectively, i.e. LsSqp ∩S 6= ∅ and LsSqp ∩C 6= ∅. These above comments are
very important for the motivations of the results presented in the Sections 3 and 4.

In our investigations we will use the next lemmas:
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Lemma 2.5. [11, Lemma 2.1] If the function w ∈ B is of the form (1.2), then for some
complex numbers ξ and ζ such that |ξ| ≤ 1 and |ζ| ≤ 1, we have

w2 = ξ
(
1− w2

1

)
, and

w3 =
(
1− w2

1

) (
1− |ξ|2

)
ζ − w1

(
1− w2

1

)
ξ2.

Lemma 2.6. [9, p. 3, Lemma 1], [6] If the function w ∈ B is of the form (1.2), then
the sharp estimate |wn| ≤ 1 holds for n ≥ 1.

3. Symmetric Toeplitz determinants of the coefficients for the classes
LsSq

p and LsCqp
Now we will give upper bounds for some symmetric Toeplitz determinants for

the functions belonging to the above defined classes LsSqp and LsCqp , emphasizing that
for |T2(2)| the results are sharp.

Theorem 3.1. If the function f ∈ LsSqp has the form (1.1), then

|T2(2)| ≤ s2(s+ 4)2(
[3]p,q − 1

)2 +
4s2(

[2]p,q
)2 ,

and this inequality is sharp (i.e. the best possible).

Proof. Assuming that f ∈ LsSqp , according to the definition of the subordination there
exists a function w ∈ B of the form (1.2) such that

2zDp,qf(z)

f(z)− f(−z)
=
(
1 + sw(z)

)2
, z ∈ D. (3.1)

Since (3.1) is equivalent to

2zDp,qf(z) =
(
f(z)− f(−z)

)(
1 + sw(z)

)2
, z ∈ D,

expanding in Taylor series the both sides of the above relation and equating the
corresponding terms we have

z + z2[2]p,qa2 + z3a3[3]p,q + z4a4[4]p,q + · · · =
z + 2sw1z

2 + z3
(
a3 + 2sw2 + s2w2

1

)
+ 2z4 (sw1a3 + sw3 + w1w2) + . . . ,

thus

a2 =
2sw1

[2]p,q
=

2sw1

t2
, (3.2)

a3 =
2sw2 + s2w2

1

[3]p,q − 1
=

2sw2 + s2w2
1

t3 − 1
, (3.3)

where, for simplicity, we use the notation tn:=[n]p,q.
It follows that

|T2(2)| =
∣∣a23 − a22∣∣ =

∣∣∣∣∣
(

2sw2 + s2w2
1

t3 − 1

)2

−
(

2sw1

t2

)2
∣∣∣∣∣ , (3.4)



Symmetric Toeplitz determinants 307

and rewriting w2 in terms of w1 from Lemma 2.5, we get

|T2(2)| =

∣∣∣∣∣∣
(

2s
(
1− w2

1

)
ξ + s2w2

1

t3 − 1

)2

−
(

2sw1

t2

)2
∣∣∣∣∣∣ . (3.5)

From the relation (3.5), using the triangle’s inequality and the fact that s > 0 we get
first that

|T2(2)| =

∣∣∣∣∣4s2
(
1− w2

1

)2
ξ2 + s4w4

1 + 4s3
(
1− w2

1

)
ξ w2

1

(t3 − 1)
2 − 4s2w2

1

t22

∣∣∣∣∣
≤

4s2
∣∣1− w2

1

∣∣2 |ξ|2 + s4|w1|4 + 4s3
∣∣1− w2

1

∣∣ |ξ| |w1|2

(t3 − 1)
2 +

4s2|w1|2

t22
. (3.6)

Denoting x := |w1| and y := |ξ|, then x, y ∈ [0, 1], and∣∣1− w2
1

∣∣ ≤ 1 + x2,
∣∣1− w2

1

∣∣2 ≤ (1 + x2
)2
, (3.7)

if we combine the inequalities (3.7) with (3.6) it follows

|T2(2)| ≤
4s2

(
1 + x2

)2
y2 + s4 x4 + 4s3

(
1 + x2

)
y x2

(t3 − 1)
2 +

4s2 x2

t22
=: h(x, y). (3.8)

Since

∂

∂y
h(x, y) =

8s2
(
x2 + 1

)2
y + 4s3

(
x2 + 1

)
x2

(t3 − 1)
2 ≥ 0, (x, y) ∈ [0, 1]× [0, 1],

we obtain that for any x ∈ [0, 1] we have

max
{
h(x, y) : y ∈ [0, 1]

}
= h(x, 1) =: g(x)

and consequently, from (3.8) we get

|T2(2)| ≤
4s2

(
1 + x2

)2
+ s4 x4 + 4s3

(
1 + x2

)
x2

(t3 − 1)
2 +

4s2 x2

t22
= g(x). (3.9)

Using the fact that

g′(x) =

8x

[
(s+ 2)

(
s x2 + 2x2 + 2

)
t22

2
+ (t3 − 1)

2

]
s2

(t3 − 1)
2
t22

≥ 0, x ∈ [0, 1],

we have that g is an increasing function on [0, 1]. Therefore, the inequality (3.9) leads
us to

|T2(2)| ≤ g(1) =
s2(s+ 4)2

(t3 − 1)
2 +

4s2

t22
, x ∈ [0, 1],

that proves the required inequality.
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To prove the sharpness of our result, let consider the function f ∈ A given by
(3.1) with w(z) = iz − 2z2. Since w1 = i, w2 = −2, using the relation (3.4) we have

|T2(2)| =

∣∣∣∣∣
(
−4s− s2

t3 − 1

)2

+

(
2s

t2

)2
∣∣∣∣∣ =

s2(s+ 4)2

(t3 − 1)
2 +

4s2

t22
,

which shows the sharpness of our inequality. �

Theorem 3.2. If the function f ∈ LsSqp has the form (1.1), then

|T3(1)| ≤ 1 +
8s2(

[2]p,q
)2 +

8s3(s+ 4)(
[2]p,q

)2∣∣∣[3]p,q − 1
∣∣∣ +

s2(s+ 4)2(
[3]p,q − 1

)2 .
Proof. Using the same techniques and notations like in the proof of Theorem 3.1 we
have

|T3(1)| =
∣∣1− 2a22 + 2a22a3 − a23

∣∣
=

∣∣∣∣∣1− 2

(
2sw1

t2

)2

+ 2

(
2sw1

t2

)2

· 2sw2 + s2w2
1

t3 − 1
−
(

2sw2 + s2w2
1

t3 − 1

)2
∣∣∣∣∣ .

From Lemma 2.5, rewriting the expression w2 in terms of w1 the above relation leads
to

|T3(1)| =

∣∣∣∣∣1− 2

(
2sw1

t2

)2

+ 2

(
2sw1

t2

)2

·
2s
(
1− w2

1

)
ξ + s2w2

1

t3 − 1

−
4s2

(
1− w2

1

)2
ξ2 + s4w4

1 + 4s3w2
1

(
1− w2

1

)
ξ

(t3 − 1)
2

∣∣∣∣∣ . (3.10)

Letting x := |w1| and y := |ξ|, then x, y ∈ [0, 1], and applying the triangle’s inequality
in the right hand side of (3.10), since s > 0 we obtain

|T3(1)| ≤ 1 +
8s2x2

t22
+

8s2x2
[
2s
(
1 + x2

)
y + s2x2

]
t22 |t3 − 1|

+
4s2

(
1 + x2

)2
y2 + s4x4 + 4s3x2

(
1 + x2

)
y

(t3 − 1)
2 =: q(x, y). (3.11)

A simple computation shows that for all (x, y) ∈ [0, 1]× [0, 1] we have

∂

∂y
q(x, y) =

16s3x2
(
x2 + 1

)
t22|t3 − 1|

+
8s2

(
x2 + 1

)2
y + 4s3x2

(
x2 + 1

)
(t3 − 1)

3 ≥ 0,

therefore, for any x ∈ [0, 1] we have

max
{
q(x, y) : y ∈ [0, 1]

}
= q(x, 1) = 1 +

8s2x2

t22
+

8s2x2
[
2s
(
1 + x2

)
+ s2x2

]
t22 |t3 − 1|

+
4s2

(
1 + x2

)2
+ s4x4 + 4s3x2

(
1 + x2

)
(t3 − 1)

2 =: t(x),
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hence, from (3.11) it follows

|T3(1)| ≤ t(x), x ∈ [0, 1]. (3.12)

Moreover, since

t′(x) =
16s2x

t22
+

16s2x
[
2s
(
x2 + 1

)
+ s2x2

]
t22|t3 − 1|

+
8s2x2

(
2s2x+ 4sx

)
t22 |t3 − 1|

+
16s2

(
x2 + 1

)
x+ 4s4x3 + 8s3x

(
x2 + 1

)
+ 8s3x3

(t3 − 1)
3 ≥ 0, x ∈ [0, 1],

the function t is increasing on [0, 1], and from (3.12) we deduce that

|T3(1)| ≤ t(1) = 1 +
8s2

t22
+

8s3(s+ 4)

t22 |t3 − 1|
+
s2(s+ 4)2

(t3 − 1)
2 ,

which represents the required inequality. �

Theorem 3.3. If the function f ∈ LsCqp has the form (1.1), then

|T2(2)| ≤ s2(s+ 4)2

9
(
[3]p,q − 1

)2 +
s2(

[2]p,q
)2 ,

and this inequality is sharp (i.e. the best possible).

Proof. For the function f ∈ LsCqp , using the definition of the subordination there

exists a function w(z) = w1z + w2z
2 + · · · ∈ B, z ∈ D, such that(

2zDp,qf(z)
)′(

f(z)− f(−z)
)′ =

(
1 + sw(z)

)2
, z ∈ D. (3.13)

The relation (3.13) could be written in the form(
2zDp,qf(z)

)′
=
(
f(z)− f(−z)

)′(
1 + sw(z)

)2
, z ∈ D,

and expanding in Taylor series both sides of this equality we get

1 + 2z[2]p,qa2 + 3z2a3[3]p,q + 4z3a4[4]p,q + · · · =
1 + 2sw1z + z2

(
s2w2

1 + 2sw2 + 3a3
)

+ z3
(
2s2w1w2 + 2sw3 + 6sw1a3

)
+ . . . .

Equating the corresponding coefficients it follows that

a2 =
sw1

[2]p,q
, (3.14)

a3 =
2sw2 + s2w2

1

3
(
[3]p,q − 1

) . (3.15)

Using Lemma 2.5 it’s easy to check that

|T2(2)| =
∣∣a23 − a22∣∣ =

∣∣∣∣∣4s2w2
2 + s4w4

1 + 4s3w2
1w2

9 (t3 − 1)
2 − s2w2

1

t22

∣∣∣∣∣
=

∣∣∣∣∣4s2
(
1− w2

1

)2
ξ2 + s4w4

1 + 4s3w2
1

(
1− w2

1

)
ξ

9 (t3 − 1)
2 − s2w2

1

t22

∣∣∣∣∣ , (3.16)
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where we use the previous notation tn:=[n]p,q.
Denoting x := |w1| and y := |ξ|, then x, y ∈ [0, 1], and using the triangle’s

inequality in the right hand side of the above relation, since s > 0 we have

|T2(2)| ≤
4s2

(
1 + x2

)2
y2 + s4x4 + 4s3

(
1 + x2

)
x2y

9 (t3 − 1)
2 +

s2x2

t22
=: h(x, y). (3.17)

It is easy to see that

∂

∂y
h(x, y) =

4s2
(
x2 + 1

) [
(s+ 2y)x2 + 2y

]
9 (t3 − 1)

2 ≥ 0, (x, y) ∈ [0, 1]× [0, 1],

consequently, for each x ∈ [0, 1] we have

max
{
h(x, y) : y ∈ [0, 1]

}
= h(x, 1)

=
4s2

(
1 + x2

)2
+ s4x4 + 4s3

(
1 + x2

)
x2

9 (t3 − 1)
2 +

s2x2

t22
=: g(x).

Combining this last relation with the inequality (3.17) we obtain

|T2(2)| ≤ g(x). (3.18)

Since for all x ∈ [0, 1] we have

g′(x) =
16s2

(
x2 + 1

)
x+ 4s4x3 + 8s3x3 + 8s3

(
x2 + 1

)
x

9 (t3 − 1)
2 +

2s2x

t22
≥ 0,

the function g is increasing on [0, 1], therefore the inequality (3.18) leads to

|T2(2)| ≤ g(1) =
s2(s+ 4)2

9 (t3 − 1)
2 +

s2

t22
,

and our conclusion is proved.
The inequality is sharp for the function f ∈ A given by (3.1) with w(z) = iz−2z2.

In this case w1 = i, w2 = −2, and from the relation (3.16) we get

|T2(2)| = s2(s+ 4)2

(t3 − 1)
2 +

4s2

t22
,

which proves the sharpness of our inequality �

Using the same techniques as in the previous theorem, we obtain the next upper
bound for |T3(1)| if f ∈ LsCqp .

Theorem 3.4. If the function f ∈ LsCqp has the form (1.1), then

|T3(1)| ≤ 1 +
2s2(

[2]p,q
)2 +

2s3(s+ 4)

3
(
[2]p,q

)2∣∣∣[3]p,q − 1
∣∣∣ +

s2(s+ 4)2

9
(
[3]p,q − 1

)2 .
Proof. With the same techniques and notations as in the proof of the previous theorem
we have

|T3(1)| =

∣∣∣∣∣1− 2
s2w2

1

t22
+ 2

s2w2
1

t22
· s

2w2
1 + 2sw2

3 (t3 − 1)
− s4w4

1 + 4s2w2
2 + 4s3w2

1w2

9 (t3 − 1)
2

∣∣∣∣∣ .
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Rewriting the expression w2 in terms of w1 like in Lemma 2.5, applying the triangle’s
inequality, denoting x = |w1| ≤ 1, y = |ξ| ≤ 1, and using that s > 0 we get

|T3(1)| ≤ 1 +
2s2x2

t22
+

2s2x2
[
s2x2 + 2s

(
1 + x2

)
y
]

3t22 |t3 − 1|

+
s4x4 + 4s2

(
1 + x2

)2
y2 + 4s3x2

(
1 + x2

)
y

9 (t3 − 1)
2 =: p(x, y). (3.19)

It follows that

∂

∂y
p(x, y) =

4s3x2
(
x2 + 1

)
3t22|t3 − 1|

+
4s
[
2sy

(
x2 + 1

)
+ s2x2

] (
x2 + 1

)
9 (t3 − 1)

2 ≥ 0,

(x, y) ∈ [0, 1]× [0, 1],

hence, for each x ∈ [0, 1] we have

max
{
p(x, y) : y ∈ [0, 1]

}
= p(x, 1) = 1 +

2s2x2

t22
+

2s2x2
[
s2x2 + 2s

(
1 + x2

)]
3t22 |t3 − 1|

+
s4x4 + 4s2

(
1 + x2

)2
+ 4s3x2

(
1 + x2

)
9 (t3 − 1)

2 =: q(x). (3.20)

Using that

q′(x) =
8s3x

(
x2 + 1

)
3t22|t3 − 1|

+
8s3x3

3t22|t3 − 1|
+

(
2s2x+ 4syx

)
s
(
x2 + 1

)
9 (t3 − 1)

2

+
8
[
2sy

(
x2 + 1

)
+ s2x2

]
sx

9 (t3 − 1)
2 ≥ 0, x ∈ [0, 1],

the function q is increasing on [0, 1], and from the inequalities (3.19) and (3.20) we
conclude that

|T3(1)| ≤ q(1) = 1 +
2s2

t22
+

2s3(s+ 4)

3t22 |t3 − 1|
+
s2(s+ 4)2

9 (t3 − 1)
2 .

�

4. Symmetric Toeplitz determinants of the logarithmic coefficients for
the classes LsSq

p ∩ S and LsCqp ∩ S
In this section we find the estimates of initial two logarithmic coefficients and

then the estimate of symmetric Toeplitz determinants T2,1 (γf ) of logarithmic coeffi-
cients for the subclasses LsSqp ∩ S and LsCqp ∩ S.

Theorem 4.1. If the function f ∈ LsSqp ∩ S has the form (1.1) and the logarithmic
coefficients are given by (1.4), then

|γ1| ≤
s

[2]p,q
and |γ2| ≤

s(s+ 4)

2
∣∣[3]p,q − 1

∣∣ +
s2(

[2]p,q
)2 .
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Proof. Replacing the values of a2 and a3 given by (3.2) and (3.3) in (1.5) and (1.6),
using the notation tn:=[n]p,q, from Lemma 2.6 we obtain

|γ1| =
∣∣∣∣sw1

t2

∣∣∣∣ ≤ s

t2
=

s

[2]p,q
.

In addition, using Lemma 2.5 we get

|γ2| =
1

2

∣∣∣∣2sw2 + s2w2
1

t3 − 1
− 2s2w2

1

t22

∣∣∣∣ =
1

2

∣∣∣∣∣2s
(
1− w2

1

)
ξ + s2w2

1

t3 − 1
− 2s2w2

1

t22

∣∣∣∣∣ ,
where |ξ| ≤ 1. Letting x := |w1| and y := |ξ|, then x, ξ ∈ [0, 1] and using the triangle’s
inequality in the above relation together with s > 0 we obtain

|γ2| ≤
2s
(
1 + x2

)
y + s2x2

2 |t3 − 1|
+
s2x2

t22
=: F (x, y). (4.1)

It follows that

∂

∂y
F (x, y) =

s
(
1 + x2

)
|t3 − 1|

> 0, (x, y) ∈ [0, 1]× [0, 1],

hence, for each x ∈ [0, 1] we have

max
{
F (x, y) : y ∈ [0, 1]

}
= F (x, 1) =

2s
(
1 + x2

)
+ s2x2

2 |t3 − 1|
+
s2x2

t22
=: r(x). (4.2)

From the fact

r′(x) =
sx(s+ 2)

|t3 − 1|
+

2s2x

t22
≥ 0, x ∈ [0, 1],

the function r is increasing on [0, 1], and from (4.1) and (4.2) we conclude that

|γ2| ≤ r(1) =
4s+ s2

2 |t3 − 1|
+
s2

t22
,

which proves our second inequality. �

Theorem 4.2. If the function f ∈ LsCqp ∩ S has the form (1.1) and the logarithmic
coefficients are given by (1.4), then

|γ1| ≤
s

2 [2]p,q
and |γ2| ≤

s(s+ 4)

6
∣∣[3]p,q − 1

∣∣ +
s2

4
(
[2]p,q

)2 .
Proof. Using the values of a2 and a3 given by (3.14) and (3.15), from (1.5) and (1.6),
using Lemma 2.6 we obtain

|γ1| =
∣∣∣∣sw1

2t2

∣∣∣∣ ≤ s

2|t2|
and |γ2| =

1

2

∣∣∣∣2sw2 + s2w2
1

3 (t3 − 1)
− s2w2

1

2t22

∣∣∣∣ .
Rewriting the expression of w2 in terms of w1 according to Lemma 2.5, using the
triangle’s inequality in the above last relation, and the notations x := |w1|, y := |ξ|,
with x, ξ ∈ [0, 1], since s > 0 we obtain

|γ2| ≤
2s
(
1 + x2

)
y + s2x2

6 |t3 − 1|
+
s2x2

4t22
=: G(x, y). (4.3)
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Therefore

∂

∂y
G(x, y) =

s
(
1 + x2

)
3 |t3 − 1|

> 0, (x, y) ∈ [0, 1]× [0, 1],

hence, for each x ∈ [0, 1] we have

max
{
G(x, y) : y ∈ [0, 1]

}
= G(x, 1) =

2s
(
1 + x2

)
+ s2x2

6 |t3 − 1|
+
s2x2

4t22
=: k(x). (4.4)

Since

k′(x) =
sx(sx+ 2)

3 |t3 − 1|
+
s2x

2t22
≥ 0, x ∈ [0, 1],

the function k is increasing on [0, 1], and combining (4.3) with (4.4) it follows

|γ2| ≤ k(1) =
s(s+ 4)

6 |t3 − 1|
+

s2

4t22
,

and the proof is complete. �

The following two results, where we determined the upper bounds for the
Toeplitz determinant |T2,1 (γf )| for the classes LsSqp ∩S and LsCqp ∩S are immediately
consequences of the previous two theorems.

Corollary 4.3. For the class LsSqp ∩ S the next inequality holds:

|T2,1 (γf )| ≤
(

s

[2]p,q

)2

+

(
s(s+ 4)

2
∣∣[3]p,q − 1

∣∣ +
s2(

[2]p,q
)2
)2

.

Proof. Since

|T2,1 (γf )| = |γ21 − γ22 | ≤ |γ21 |+ |γ22 |

from the inequalities of Theorem 4.1 we get

|T2,1 (γf )| ≤
(
s

t2

)2

+

(
s(s+ 4)

2 |t3 − 1|
+
s2

t22

)2

.

�

Similarly, using the inequalities obtained in Theorem 4.2 it’s easy to prove the
next result:

Corollary 4.4. For the class LsCqp ∩ S the next inequality holds:

|T2,1 (γf )| ≤
(

s

2 [2]p,q

)2

+

(
s(s+ 4)

6
∣∣[3]p,q − 1

∣∣ +
s2

4
(
[2]p,q

)2
)2

.



314 S.P. Vijayalakshmi, T.V. Sudharsan and T. Bulboacă

5. Concluding remarks

The quantum calculus is one of the important tools in many area of mathematics,
physics and in the areas of ordinary fractional calculus, optimal control problems,
quantum physics, operator theory, and q–transform analysis, and in this paper we
made a connection with some subclasses of analytic functions.

In addition, the logarithmic coefficients play an important role for different es-
timates in the theory of univalent functions. Many researchers have found the upper
bounds for the second and third order Toeplitz determinants and logarithmic coeffi-
cients for various subclasses of analytic function. The present investigation deals with
the subclasses of symmetric function using the (p, q)–calculus for some functions de-
fined by subordinations to the limaçon domain, and we determined upper bounds for
some special symmetric Toeplitz determinants containing the coefficients and the log-
arithmic coefficients of the functions belonging to these classes. We obtained bounds
for the second and third order Toeplitz determinants and Toeplitz determinants for
logarithmic coefficients for the classes LsSqp , LsCqp , and LsSqp∩S, LsCqp∩S, respectively,
defined by the post-quantum operators and subordinated to Ls function.

We hope that these results could be important in several fields related to mathe-
matics, engineering, science and technology, and we encourage the researchers to find
the sharp estimates for third order Toeplitz determinants and Toeplitz determinants
for logarithmic coefficients.
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ciated with the limaçon domain, Symmetry, 12(2020), no. 6, 942, 1–11,
https://doi.org/10.3390/sym12060942.

[14] Milin, I.M., Univalent Functions and Orthonormal Systems, Izdat. Nauka, Moscow, 1971
(in Russian); English Transl. Amer. Math. Soc., Providence, 1977.
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