Stud. Univ. Babes-Bolyai Math. 70(2025), No. 1, 161–174 DOI: 10.24193/subbmath.2025.1.11

Metric conditions, graphic contractions and weakly Picard operators

Alexandru-Darius Filip (D)

Abstract. In the paper of S. Park (Almost all about Rus-Hicks-Rhoades maps in quasi-metric spaces, Adv. Theory Nonlinear Anal. Appl., 7(2023), No. 2, 455-472), the author solves the following problem: Which metric conditions imposed on f imply that f is a graphic contraction? In this paper we study the following problem: Which metric conditions imposed on f imply that f satisfies the conditions of Rus saturated principle of graphic contractions?

Mathematics Subject Classification (2010): 54H25, 47H10, 54C60.

Keywords: Metric space, generalized metric space, contraction type mapping, metric condition, graphic contraction, successive approximation, Picard mapping, pre-weakly Picard mapping, weakly Picard mapping, interpolative Hardy-Rogers mapping, well-posedness of fixed point problem, Ulam-Hyers stability, Ostrowski property.

1. Introduction and preliminaries

Let (X, d) be an L-space and $f: X \to X$ be a mapping. By following [17], [16] and [15], we present the following notions and notations, which will be used in the sequel of this paper.

By definition, f is a pre-weakly Picard mapping (PWPM) if the sequence ${f^n(x)}_{n\in\mathbb{N}}$ converges for all $x\in X$. If f is PWPM, then we consider the mapping, $f^{\infty}: X \to X$ defined by, $f^{\infty}(x) := \lim_{n \to \infty} f^n(x)$, for all $x \in X$. If f is a PWPM and $f^{\infty}(x) \in F_f$, for any $x \in X$, then by definition, f is a

weakly Picard mapping (WPM). Each WPM generates a partition of X. Let $x^* \in F_f$

Received 23 October 2023; Accepted 11 March 2024.

[©] Studia UBB MATHEMATICA. Published by Babes-Bolyai University

ERE This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

and $X_{x^*} := \{x \in X \mid f^n(x) \to x^* \text{ as } n \to \infty\}$. Then, $X = \bigcup_{x^* \in F_f} X_{x^*}$ is a partition of

X. In this case, we have that: $f(X_{x^*}) \subset X_{x^*}$ and $X_{x^*} \cap F_f = \{x^*\}$, for all $x^* \in F_f$. If f is WPM and $F_f = \{x^*\}$, then by definition, f is Picard mapping (PM). The following result was given by I.A. Rus in [15].

Theorem 1.1 (Saturated principle of graphic contractions). Let (X,d) be a complete metric space and $f: X \to X$ be a graphic l-contraction, i.e., 0 < l < 1 and $d(f^2(x), f(x)) \leq ld(x, f(x))$, for all $x \in X$. Then we have that:

(i) $\{f^n(x)\}_{n\in\mathbb{N}}$ converges for all $x \in X$ and $\sum_{n\in\mathbb{N}} d(f^n(x), f^{n+1}(x)) < +\infty$, for all $x \in X$.

If in addition, $\lim_{n\to\infty} f(f^n(x)) = f(\lim_{n\to\infty} f^n(x))$, for all $x \in X$, then:

- (*ii*) $F_f = F_{f^n} \neq \emptyset$, for all $n \in \mathbb{N}^*$.
- (iii) f is a WPM.
- (iv) $d(x, f^{\infty}(x)) \leq \frac{1}{1-l} d(x, f(x)), \text{ for all } x \in X.$
- (v) The fixed point equation corresponding to f is Ulam-Hyers stable.
- (vi) $x^* \in F_f$, $y_n \in X_{x^*}$, $d(y_n, f(y_n)) \to 0$ as $n \to \infty \Rightarrow y_n \to x^*$ as $n \to \infty$, *i.e.*, the fixed point problem for f is well-posed.
- (vii) If in addition, $l < \frac{1}{3}$, then, $x^* \in F_f$, $y_n \in X_{x^*}$, $d(y_{n+1}, f(y_n)) \to 0$ as $n \to \infty$ $\Rightarrow y_n \to x^*$ as $n \to \infty$, i.e., f has the Ostrowski property.

Notice that if $cardF_f \leq 1$, then Theorem 1.1 takes the following form:

Theorem 1.2. Let (X, d) be a complete metric space and $f : X \to X$ be a graphic *l*-contraction. We assume that $cardF_f \leq 1$. Then we have that:

(i) $\{f^n(x)\}_{n\in\mathbb{N}}$ converges for all $x \in X$ and $\sum_{n\in\mathbb{N}} d(f^n(x), f^{n+1}(x)) < +\infty$, for all $x \in X$.

If in addition, $\lim_{n\to\infty} f(f^n(x)) = f(\lim_{n\to\infty} f^n(x))$, for all $x \in X$, then:

- (*ii*) $F_f = F_{f^n} = \{x^*\}, \text{ for all } n \in \mathbb{N}^*.$
- (iii) f is a PM.
- (iv) $d(x, x^*) \leq \frac{1}{1-l} d(x, f(x))$, for all $x \in X$.
- (v) The fixed point equation corresponding to f is Ulam-Hyers stable.
- (vi) $y_n \in X$, $d(y_n, f(y_n)) \to 0$ as $n \to \infty \Rightarrow y_n \to x^*$ as $n \to \infty$, i.e., the fixed point problem for f is well-posed.
- (vii) If in addition, $l < \frac{1}{3}$, then $y_n \in X$, $d(y_{n+1}, f(y_n)) \to 0$ as $n \to \infty \Rightarrow y_n \to x^*$ as $n \to \infty$, i.e., f has the Ostrowski property.

On the other hand, in the metric fixed point theory, there is a large number of metric conditions (see [12], [9], [2], [18], [14], [13], [1], [4], [20], ...).

In the paper [10], S. Park solves the following problem: Which metric conditions imposed on f imply that f is a graphic contraction?

In this paper we study the following problem: Which metric conditions imposed on f imply that f satisfies the conditions of Rus saturated principle of graphic contractions? Throughout this paper we follow the notation and terminology used in [15], [17], [3] and [19].

2. Conditions with respect to a standard metric

Let (X, d) be a metric space and $f: X \to X$ be a mapping. In many fixed point results, there are several standard metric conditions imposed on f with respect to d, which imply that f is a graphic contraction. For example, we have the Banach, Kannan, Ćirić-Reich-Rus, Ćirić, Berinde, Zamfirescu's metric conditions. More of them can be found in the paper of S. Park [10].

In this section we will focus on some other interesting metric conditions, implying the graphic contraction property of the mapping f.

• Hardy-Rogers' metric condition (see [6] and also [13]).

f is called *HR mapping* if there exist three constants $a, b, c \in \mathbb{R}_+$, with $a + 2b + 2c \in (0, 1)$, such that

$$\begin{split} d(f(x), f(y)) &\leq a d(x, y) + b [d(x, f(x)) + d(y, f(y))] + \\ &\quad + c [d(x, f(y)) + d(y, f(x))], \text{ for all } x, y \in X. \end{split}$$

• Khojasteh, Abbas and Costache's metric condition (see [8]). f is called KAC mapping if

$$d(f(x), f(y)) \le \frac{d(y, f(x)) + d(x, f(y))}{d(x, f(x)) + d(y, f(y)) + 1} d(x, y), \text{ for all } x, y \in X.$$

• Interpolative Kannan's metric condition (see [7]). f is called *IK* mapping if there exist two constants $\lambda \in [0, 1)$ and $\alpha \in (0, 1)$ such that

$$d(f(x), f(y)) \le \lambda [d(x, f(x))]^{\alpha} \cdot [d(y, f(y))]^{1-\alpha}, \text{ for all } x, y \in X \setminus F_f.$$

2.1. The case of *HR* mappings

Lemma 2.1. Let (X, d) be a metric space. Let $f : X \to X$ be a HR mapping. Then f is a graphic l_{HR} -contraction, i.e.,

$$d(f(x), f^2(x)) \le l_{HR} \cdot d(x, f(x)), \text{ for all } x \in X,$$

where the constant $l_{HR} = \frac{a+b+c}{1-b-c}$, with $a, b, c \in \mathbb{R}_+$ and $a+2b+2c \in (0,1)$.

Proof. The conclusion follows by replacing y with f(x) in the Hardy-Rogers' metric condition.

Lemma 2.2. Let (X, d) be a complete metric space. Let $f : X \to X$ be a HR mapping. Then $f(f^n(x)) \to f(f^{\infty}(x))$ as $n \to \infty$, for all $x \in X$. *Proof.* By replacing x with $f^n(x)$ and y with $f^{\infty}(x)$ in the Hardy-Rogers' metric condition, we get that

$$\begin{aligned} d(f(f^{n}(x)), f(f^{\infty}(x))) &\leq ad(f^{n}(x), f^{\infty}(x)) + \\ &+ b[d(f^{n}(x), f(f^{n}(x))) + d(f^{\infty}(x), f(f^{\infty}(x)))] + \\ &+ c[d(f^{n}(x), f(f^{\infty}(x))) + d(f^{\infty}(x), f(f^{n}(x)))]. \end{aligned}$$

Next, by using the triangle inequality satisfied by the metric d we get

$$\begin{split} &d(f(f^n(x)), f(f^{\infty}(x))) \leq ad(f^n(x), f^{\infty}(x)) + \\ &+ b[d(f^n(x), f(f^n(x))) + d(f^{\infty}(x), f(f^n(x))) + d(f(f^n(x)), f(f^{\infty}(x)))] + \\ &+ c[d(f^n(x), f(f^n(x))) + d(f(f^n(x)), f(f^{\infty}(x))) + d(f^{\infty}(x), f(f^n(x)))]. \end{split}$$

By letting $n \to \infty$ in the above inequality and taking into account the continuity of the metric d and the fact that the operator f is a graphic l_{HR} -contraction via Lemma 2.1, we get that $d(f^n(x), f^{\infty}(x)) \to 0$ as $n \to \infty$ and $d(f^n(x), f(f^n(x))) \to 0$ as $n \to \infty$. It follows that $f(f^n(x)) \to f(f^{\infty}(x))$ as $n \to \infty$, for all $x \in X$. \Box

In the paper [6], G.E. Hardy and T.D. Rogers showed that any HR mapping is a PM. In the following theorem, we give a simple proof of this result and several other conclusions concerning HR mappings.

Theorem 2.3 (Saturated principle of HR **mappings).** Let (X, d) be a complete metric space and $f : X \to X$ be a HR mapping. Then we have that:

- (*i*) $F_f = F_{f^n} = \{x^*\}, \text{ for all } n \in \mathbb{N}^*.$
- (ii) f is a PM.

(*iii*) $d(x, x^*) \le \frac{1}{1 - l_{HR}} d(x, f(x))$, for all $x \in X$.

- (iv) The fixed point equation corresponding to f is Ulam-Hyers stable.
- (v) $y_n \in X$, $d(y_n, f(y_n)) \to 0$ as $n \to \infty \Rightarrow y_n \to x^*$ as $n \to \infty$, *i.e.*, the fixed point problem for f is well-posed.
- (vi) If in addition, $l_{HR} < \frac{1}{3}$, then $y_n \in X$, $d(y_{n+1}, f(y_n)) \to 0$ as $n \to \infty \Rightarrow y_n \to x^*$ as $n \to \infty$, *i.e.*, f has the Ostrowski property.

Proof. From Lemma 2.1, f is a graphic l_{HR} -contraction.

From Lemma 2.2, it follows that $f^{n+1}(x) \to f(f^{\infty}(x))$ as $n \to \infty$. But $f^{n+1}(x) \to f^{\infty}(x)$ as $n \to \infty$. So, $f^{\infty}(x) \in F_f$. Hence, $F_f \neq \emptyset$.

Let $x^*, y^* \in F_f$ with $x^* \neq y^*$. By replacing x with x^* and y with y^* in the Hardy-Rogers' metric condition, we get $(1 - a - 2c)d(x^*, y^*) \leq 0$, which implies that $x^* = y^*$. So, $cardF_f = 1$. We apply next Theorem 1.2.

2.2. The case of KAC mappings

Lemma 2.4. Let (X, d) be a bounded metric space. Let $f : X \to X$ be a KAC mapping. Then f is a graphic l_{KAC} -contraction, i.e.,

$$d(f(x), f^2(x)) \le l_{KAC} \cdot d(x, f(x)), \text{ for all } x \in X,$$

where the constant $l_{KAC} = \frac{2\delta(X)}{2\delta(X)+1}$ and $\delta(X)$ is the diameter functional of the space X.

Proof. By taking y = f(x) in the Khojasteh, Abbas and Costache's metric condition, we obtain the following estimation:

$$d(f(x), f^{2}(x)) \leq \frac{d(x, f^{2}(x))}{d(x, f(x)) + d(f(x), f^{2}(x)) + 1} d(x, f(x)), \text{ for all } x \in X.$$

Let us notice that the number $\frac{d(x,f^2(x))}{d(x,f(x))+d(f(x),f^2(x))+1}$ is not a constant, since it depends on $x \in X$. However, we can find an upper bound for it, by considering the diameter functional of the space X,

$$\delta(X) := \sup\{d(x,y) \mid x, y \in X\}.$$

Let us consider the function $\psi : \mathbb{R}_+ \to \mathbb{R}_+$, defined by $\psi(x) := \frac{x}{x+1}$, for all $x \in \mathbb{R}_+$. By calculating its first derivative, we conclude that the function ψ is increasing on \mathbb{R}_+ . We have the following estimations:

$$\frac{d(x, f^2(x))}{d(x, f(x)) + d(f(x), f^2(x)) + 1} \le \frac{d(x, f(x)) + d(f(x), f^2(x))}{d(x, f(x)) + d(f(x), f^2(x)) + 1} = \psi(d(x, f(x)) + d(f(x), f^2(x))) \le \psi(2\delta(X)) = \frac{2\delta(X)}{2\delta(X) + 1}, \text{ for all } x \in X$$

Hence, for $l_{KAC} = \frac{2\delta(X)}{2\delta(X)+1}$ we have that $d(f(x), f^2(x)) \leq l_{KAC} \cdot d(x, f(x))$, for all $x \in X$.

Lemma 2.5. Let (X, d) be a bounded complete metric space and $f : X \to X$ be a KAC mapping. Then, $f(f^n(x)) \to f(f^\infty(x))$ as $n \to \infty$, for all $x \in X$ and $f^\infty(x) \in F_f$, for all $x \in X$.

Proof. We have that $d(f(f^n(x)), f(f^{\infty}(x))) = d(f^{n+1}(x), f(f^{\infty}(x))) \leq$

$$\leq \frac{d(f^{\infty}(x), f^{n+1}(x)) + d(f^{n}(x), f(f^{\infty}(x)))}{d(f^{n}(x), f^{n+1}(x)) + d(f^{\infty}(x), f(f^{\infty}(x))) + 1} d(f^{n}(x), f^{\infty}(x))$$

By letting $n \to \infty$, it follows that,

$$d(f^{\infty}(x), f(f^{\infty}(x))) \leq \frac{d(f^{\infty}(x), f(f^{\infty}(x)))}{d(f^{\infty}(x), f(f^{\infty}(x))) + 1} \cdot 0 = 0.$$

So, $f(f^{n}(x)) \rightarrow f(f^{\infty}(x))$ as $n \rightarrow \infty$ and $f^{\infty}(x) \in F_{f}$, for all $x \in X$.

So, $f(f^{-}(x)) \to f(f^{-}(x))$ as $n \to \infty$ and $f^{-}(x) \in F_f$, for all $x \in A$. Theorem 2.6 (Setupoted principle of KAC mappings). Let (X, d) be a const

Theorem 2.6 (Saturated principle of KAC mappings). Let (X, d) be a complete bounded metric space and $f: X \to X$ be a KAC mapping. Then we have that:

- (i) $\{f^n(x)\}_{n\in\mathbb{N}}$ converges for all $x \in X$ and $\sum_{n\in\mathbb{N}} d(f^n(x), f^{n+1}(x)) < +\infty$, for all $x \in X$.
- (*ii*) $F_f = F_{f^n} \neq \emptyset$, for all $n \in \mathbb{N}^*$.
- (iii) f is a WPM.
- (*iv*) $d(x, f^{\infty}(x)) \leq \frac{1}{1 l_{KAC}} d(x, f(x))$, for all $x \in X$.
- (v) The fixed point equation corresponding to f is Ulam-Hyers stable.
- (vi) $x^* \in F_f$, $y_n \in X_{x^*}$, $d(y_n, f(y_n)) \to 0$ as $n \to \infty \Rightarrow y_n \to x^*$ as $n \to \infty$, *i.e.*, the fixed point problem for f is well-posed.

Alexandru-Darius Filip

(vii) If in addition, $l_{KAC} < \frac{1}{3}$, then, $x^* \in F_f$, $y_n \in X_{x^*}$, $d(y_{n+1}, f(y_n)) \to 0$ as $n \to \infty \Rightarrow y_n \to x^*$ as $n \to \infty$, i.e., f has the Ostrowski property.

Proof. The conclusions follow from the saturated principle of graphic contractions. \Box

2.3. The case of *IK* mappings

Lemma 2.7. Let (X, d) be a metric space. Let $f : X \to X$ be an IK mapping. Then f is a graphic l_{IK} -contraction, i.e.,

$$d(f(x), f^2(x)) \le l_{IK} \cdot d(x, f(x)), \text{ for all } x \in X,$$

where $l_{IK} = \lambda^{\frac{1}{\alpha}}$, with $\lambda \in [0, 1)$ and $\alpha \in (0, 1)$.

Proof. By replacing y with f(x) in the interpolative Kannan's metric condition, we get the conclusion.

Lemma 2.8. Let (X,d) be a metric space. Let $f : X \to X$ be an IK mapping. Then $f(f^n(x)) \to f(f^{\infty}(x))$ as $n \to \infty$, for all $x \in X$.

Proof. If $f^{\infty}(x) \notin F_f$ then, by replacing x with $f^n(x)$ and y with $f^{\infty}(x)$ in the interpolative Kannan's metric condition, we have

$$d(f(f^{n}(x)), f(f^{\infty}(x))) \leq \lambda [d(f^{n}(x), f^{n+1}(x))]^{\alpha} [d(f^{\infty}(x), f(f^{\infty}(x)))]^{1-\alpha}$$

for all $x \in X$. By letting $n \to \infty$ and taking into account the Lemma 2.7, $d(f^n(x), f^{n+1}(x)) \to 0$ as $n \to \infty$, for all $x \in X$. The conclusion follows.

Theorem 2.9 (Saturated principle of *IK* **mappings).** *Let* (*X*, *d*) *be a complete metric space and* $f : X \to X$ *be an IK mapping. Then we have that:*

- (i) $\{f^n(x)\}_{n\in\mathbb{N}}$ converges for all $x \in X$ and $\sum_{n\in\mathbb{N}} d(f^n(x), f^{n+1}(x)) < +\infty$, for all $x \in X$.
- (*ii*) $F_f = F_{f^n} \neq \emptyset$, for all $n \in \mathbb{N}^*$.
- (iii) f is a WPM.
- (*iv*) $d(x, f^{\infty}(x)) \leq \frac{1}{1 l_{IK}} d(x, f(x))$, for all $x \in X$.
- (v) The fixed point equation corresponding to f is Ulam-Hyers stable.
- (vi) $x^* \in F_f$, $y_n \in X_{x^*}$, $d(y_n, f(y_n)) \to 0$ as $n \to \infty \Rightarrow y_n \to x^*$ as $n \to \infty$, *i.e.*, the fixed point problem for f is well-posed.
- (vii) If in addition, $l_{IK} < \frac{1}{3}$, then, $x^* \in F_f$, $y_n \in X_{x^*}$, $d(y_{n+1}, f(y_n)) \to 0$ as $n \to \infty$ $\Rightarrow y_n \to x^*$ as $n \to \infty$, i.e., f has the Ostrowski property.

Proof. The conclusions follow from Lemmas 2.7, 2.8 and Theorem 1.1.

In the case when $cardF_f \leq 1$, Theorem 2.9 takes the following form:

Theorem 2.10. Let (X, d) be a complete metric space and $f : X \to X$ be an IK mapping. We assume that $cardF_f \leq 1$. Then we have that:

- (i) $\{f^n(x)\}_{n\in\mathbb{N}}$ converges for all $x \in X$ and $\sum_{n\in\mathbb{N}} d(f^n(x), f^{n+1}(x)) < +\infty$, for all $x \in X$.
- (ii) $F_f = F_{f^n} = \{x^*\}, \text{ for all } n \in \mathbb{N}^*.$
- (iii) f is a PM.
- (iv) $d(x, x^*) \leq \frac{1}{1 l_{TK}} d(x, f(x))$, for all $x \in X$.
- (v) The fixed point equation corresponding to f is Ulam-Hyers stable.
- (vi) $y_n \in X$, $d(y_n, f(y_n)) \to 0$ as $n \to \infty \Rightarrow y_n \to x^*$ as $n \to \infty$, i.e., the fixed point problem for f is well-posed.
- (vii) If in addition, $l_{IK} < \frac{1}{3}$, then, $y_n \in X$, $d(y_{n+1}, f(y_n)) \to 0$ as $n \to \infty \Rightarrow y_n \to x^*$ as $n \to \infty$, i.e., f has the Ostrowski property.

Proof. The conclusions follow from Lemmas 2.7, 2.8 and Theorem 1.2.

Remark 2.11. Not any metric condition yields a graphic contraction. For instance, if we consider a metric space (X, d) and the mapping $f : X \to X$ with the property that there exist two constants $\theta \in [0, 1)$ and $L \ge 0$ such that

$$d(f(x), f(y)) \le \theta d(x, y) + L[d(x, f(x)) + d(y, f(y))],$$

for all $x, y \in X$, then f is not a graphic contraction.

Indeed, by choosing y := f(x) we get $d(f(x), f^2(x)) \leq \frac{\theta + L}{1 - L} d(x, f(x))$, for all $x \in X$. By taking $L = \frac{1}{2}$, the condition $\frac{\theta + L}{1 - L} < 1$ implies $\theta < 0$, which is a contradiction with $\theta \in [0, 1)$.

3. Conditions with respect to a dislocated metric

Let us recall first the notion of dislocated metric.

Definition 3.1. Let X be a nonempty set. A functional $d : X \times X \to \mathbb{R}_+$ is called dislocated metric on X if the following conditions hold:

- (i) $d(x,y) = d(y,x) = 0 \Rightarrow x = y.$
- (*ii*) d(x, y) = d(y, x), for all $x, y \in X$.
- (*iii*) $d(x,y) \le d(x,z) + d(z,y)$, for all $x, y, z \in X$.

If X is a nonempty set and $d: X \times X \to \mathbb{R}_+$ is a dislocated metric on X, then the couple (X, d) is called dislocated metric space.

In the above setting, we have the following results.

Theorem 3.2 (Saturated principle of graphic contraction). Let (X, d) be a complete dislocated metric space and $f: X \to X$ be a graphic l-contraction, i.e., 0 < l < 1 and $d(f^2(x), f(x)) \leq ld(x, f(x))$, for all $x \in X$. Then we have that:

(i) $\{f^n(x)\}_{n\in\mathbb{N}}$ converges for all $x \in X$ and $\sum_{n\in\mathbb{N}} d(f^n(x), f^{n+1}(x)) < +\infty$, for all $x \in X$.

If in addition, $\lim_{n \to \infty} f(f^n(x)) = f(\lim_{n \to \infty} f^n(x))$, for all $x \in X$, then: (ii) $F_f = F_{f^n} \neq \emptyset$, for all $n \in \mathbb{N}^*$.

- (iii) f is a WPM.
- (iv) $d(x, f^{\infty}(x)) \leq \frac{1}{1-l}d(x, f(x)), \text{ for all } x \in X.$
- (v) The fixed point equation corresponding to f is Ulam-Hyers stable.
- (vi) $x^* \in F_f$, $y_n \in X_{x^*}$, $d(y_n, f(y_n)) \to 0$ as $n \to \infty \Rightarrow y_n \to x^*$ as $n \to \infty$, *i.e.*, the fixed point problem for f is well-posed.
- (vii) If in addition, $l < \frac{1}{3}$, then, $x^* \in F_f$, $y_n \in X_{x^*}$, $d(y_{n+1}, f(y_n)) \to 0$ as $n \to \infty$ $\Rightarrow y_n \to x^*$ as $n \to \infty$, i.e., f has the Ostrowski property.

Proof. (i). Let $x \in X$. We construct the sequence of successive approximations, $\{f^n(x)\}_{n\in\mathbb{N}}$, for f starting from x.

Since f is a graphic l-contraction, we have the following estimations:

$$\begin{aligned} d(f(x), f^{2}(x)) &\leq ld(x, f(x)), \\ d(f^{2}(x), f^{3}(x)) &\leq ld(f(x), f^{2}(x)) \leq l^{2}d(x, f(x)), \\ &\vdots \\ d(f^{n}(x), f^{n+1}(x)) &\leq ld(f^{n-1}(x), f^{n}(x)) \leq \ldots \leq l^{n}d(x, f(x)) \end{aligned}$$

for all $x \in X$ and $n \in \mathbb{N}$. By summing up the left hand side of the above inequalities, we have

$$\sum_{n \in \mathbb{N}} d(f^n(x), f^{n+1}(x)) \le \sum_{n \in \mathbb{N}} l^n d(x, f(x)) = \frac{1}{1-l} d(x, f(x)) < +\infty.$$

It follows that $\{f^n(x)\}_{n\in\mathbb{N}}$ is a Cauchy sequence in (X,d) and, since (X,d) is complete, we get that $\{f^n(x)\}_{n\in\mathbb{N}}$ is convergent in (X,d).

(ii) + (iii). Since $\{f^n(x)\}_{n \in \mathbb{N}}$ is convergent in (X, d), there exists $f^{\infty}(x) = \lim_{n \to \infty} f^n(x) \in X$. By using the assumption $\lim_{n \to \infty} f(f^n(x)) = f(\lim_{n \to \infty} f^n(x))$, for all $x \in X$, it follows that $f^{\infty}(x) \in F_f$ and also that $f^{\infty}(x) \in F_{f^n}$. So (ii) holds. By definition, f is a WPM. So, (iii) also holds.

(iv). Let $x \in X$. Since f is a graphic l-contraction, we have

$$\begin{aligned} d(x, f^{\infty}(x)) &\leq \sum_{k=0}^{n} d(f^{k}(x), f^{k+1}(x)) + d(f^{n+1}(x), f^{\infty}(x)) \\ &\leq \sum_{k=0}^{n} l^{k} d(x, f(x)) + d(f^{n+1}(x), f^{\infty}(x)). \end{aligned}$$

By letting $n \to \infty$, the conclusion follows.

(v). We recall that the fixed point equation x = f(x), $x \in X$ is Ulam-Hyers stable if there exists a constant c > 0 such that for any $\varepsilon > 0$ and any ε -solution z of the fixed point equation, i.e., $d(z, f(z)) \leq \varepsilon$, there exists $x^* \in F_f$ such that $d(z, x^*) \leq c\varepsilon$.

Let $\varepsilon > 0$ and let z be the ε -solution of the fixed point equation x = f(x), for all $x \in X$. Since $f^{\infty}(x) \in F_f$, by using the inequality (iv), we have

$$d(z, f^{\infty}(x)) \le \frac{1}{1-l}d(z, f(z)) \le \frac{1}{1-l}\varepsilon$$

168

So, there exists $c := \frac{1}{1-l} > 0$ such that $d(z, f^{\infty}(x)) \le c\varepsilon$.

(vi). Let $x^* \in F_f$ and $y_n \in X_x^* := \{x \in X \mid f^n(x) \to x^*, \text{ as } n \to \infty\}$, such that $d(y_n, f(y_n)) \to 0$ as $n \to \infty$. We have the following estimations

$$d(y_n, x^*) \le \sum_{k=0}^{n-1} d(f^k(y_n), f^{k+1}(y_n)) + d(f^n(y_n), x^*)$$
$$\le \sum_{k=0}^{n-1} l^k d(y_n, f(y_n)) + d(f^n(y_n), x^*).$$

By letting $n \to \infty$, it follows that $d(y_n, x^*) \to 0$. So, (vi) holds.

(vii). First, we show that

$$d(f(x), f^{\infty}(x)) \le \frac{l}{1-2l} d(x, f^{\infty}(x)), \text{ for all } x \in X.$$

$$(3.1)$$

Indeed, for any $x \in X$, we have the following estimations

$$\begin{split} d(f(x), f^{\infty}(x)) &\leq \sum_{k=0}^{\infty} d(f^{k}(x), f^{k+1}(x)) - d(x, f(x)) \\ &\leq \sum_{k=0}^{\infty} l^{k} d(x, f(x)) - d(x, f(x)) = \left(\frac{1}{1-l} - 1\right) d(x, f(x)) \\ &\leq \frac{l}{1-l} d(x, f^{\infty}(x)) + \frac{l}{1-l} d(f^{\infty}(x), f(x)). \end{split}$$

It follows that $\frac{1-2l}{1-l}d(f(x), f^{\infty}(x)) \leq \frac{l}{1-l}d(x, f^{\infty}(x))$. Hence (3.1) holds. Notice also that the constant $\frac{l}{1-2l} < 1$ if and only if $l < \frac{1}{3}$.

Now, let $x^* \in F_f$ and $y_n \in X_x^* := \{x \in X \mid f^n(x) \to x^*, \text{ as } n \to \infty\}$, such that $d(y_{n+1}, f(y_n)) \to 0$ as $n \to \infty$. By using (3.1), we have

$$d(y_{n+1}, x^*) \leq d(y_{n+1}, f(y_n)) + d(f(y_n), x^*)$$

$$\leq d(y_{n+1}, f(y_n)) + \frac{l}{1-2l} d(y_n, x^*)$$

$$\leq d(y_{n+1}, f(y_n)) + \frac{l}{1-2l} d(y_n, f(y_{n-1})) + \frac{l}{1-2l} d(f(y_{n-1}), x^*)$$

$$\leq d(y_{n+1}, f(y_n)) + \frac{l}{1-2l} d(y_n, f(y_{n-1})) + \left(\frac{l}{1-2l}\right)^2 d(y_{n-1}, x^*)$$

$$\vdots$$

$$\leq d(y_{n+1}, f(y_n)) + \frac{l}{1-2l} d(y_n, f(y_{n-1})) + \left(\frac{l}{1-2l}\right)^2 d(f(y_0), x^*).$$

By letting $n \to \infty$ and applying a Cauchy (or Toeplitz) lemma, we obtain $d(y_{n+1}, x^*) \to 0$. The conclusion follows.

In the case when $cardF_f \leq 1$, Theorem 3.2 takes the following form:

Theorem 3.3. Let (X, d) be a complete dislocated metric space and $f : X \to X$ be a graphic *l*-contraction. We assume that $cardF_f \leq 1$. Then we have that:

(i) $\{f^n(x)\}_{n\in\mathbb{N}}$ converges for all $x \in X$ and $\sum_{n\in\mathbb{N}} d(f^n(x), f^{n+1}(x)) < +\infty$, for all $x \in X$.

If in addition, $\lim_{n\to\infty} f(f^n(x)) = f(\lim_{n\to\infty} f^n(x))$, for all $x \in X$, then:

- (*ii*) $F_f = F_{f^n} = \{x^*\}, \text{ for all } n \in \mathbb{N}^*.$
- (iii) f is a PM.
- (iv) $d(x, x^*) \leq \frac{1}{1-l} d(x, f(x))$, for all $x \in X$.
- (v) The fixed point equation corresponding to f is Ulam-Hyers stable.
- (vi) $y_n \in X$, $d(y_n, f(y_n)) \to 0$ as $n \to \infty \Rightarrow y_n \to x^*$ as $n \to \infty$, i.e., the fixed point problem for f is well-posed.
- (vii) If in addition, $l < \frac{1}{3}$, then, $y_n \in X$, $d(y_{n+1}, f(y_n)) \to 0$ as $n \to \infty \Rightarrow y_n \to x^*$ as $n \to \infty$, i.e., f has the Ostrowski property.

Remark 3.4. Notice that the Theorem 2.3 for HR mappings and the Theorems 2.9 and 2.10 for IK mappings also hold in the context of a complete dislocated metric space. Theorem 2.6 for KAC mappings also holds in the context of a complete bounded dislocated metric space.

4. Conditions with respect to an \mathbb{R}^m_+ -metric

In this section we follow the terminology and notations given in [5], concerning vector-valued metric (\mathbb{R}^m_+ -metric) and matrices convergent to zero. Regarding the properties of these matrices, we recall the following result (see [5]).

Theorem 4.1. Let $S \in \mathcal{M}_m(\mathbb{R}_+)$. The following assertions are equivalent:

- (1) S is convergent to zero;
- (2) $S^n \to O_m \text{ as } n \to \infty;$
- (3) the spectral radius $\rho(S)$ is strictly less than 1;
- (4) the matrix $(I_m S)$ is nonsingular and

 $(I_m - S)^{-1} = I_m + S + S^2 + \dots + S^n + \dots;$

- (5) the matrix $(I_m S)$ is nonsingular and $(I_m S)^{-1}$ has nonnegative elements;
- (6) $S^n x \to 0 \in \mathbb{R}^m$ as $n \to \infty$, for all $x \in \mathbb{R}^m$.

The main result of this section is the following one.

Theorem 4.2 (Saturated principle of graphic contraction). Let (X, d) be a complete \mathbb{R}^m_+ -metric space and $f : X \to X$ be a graphic S-contraction, i.e., there exists a matrix convergent to zero, $S \in \mathcal{M}_m(\mathbb{R}_+)$, such that $d(f^2(x), f(x)) \leq Sd(x, f(x))$, for all $x \in X$. Then we have that:

(i)
$$\{f^n(x)\}_{n\in\mathbb{N}}$$
 converges for all $x \in X$ and $\sum_{n\in\mathbb{N}} d(f^n(x), f^{n+1}(x)) < +\infty$, for all $x \in X$.

If in addition, $\lim_{n\to\infty} f(f^n(x)) = f(\lim_{n\to\infty} f^n(x))$, for all $x \in X$, then:

- (*ii*) $F_f = F_{f^n} \neq \emptyset$, for all $n \in \mathbb{N}^*$.
- (iii) f is a WPM.
- (iv) $d(x, f^{\infty}(x)) \leq (I_m S)^{-1} d(x, f(x)), \text{ for all } x \in X.$
- (v) The fixed point equation corresponding to f is Ulam-Hyers stable.
- (vi) $x^* \in F_f$, $y_n \in X_{x^*}$, $d(y_n, f(y_n)) \to 0$ as $n \to \infty \Rightarrow y_n \to x^*$ as $n \to \infty$, *i.e.*, the fixed point problem for f is well-posed.
- (vii) If in addition, the matrix $[2I_m (I_m S)^{-1}]^{-1}[(I_m S)^{-1} I_m]$ converges to zero, then, $x^* \in F_f$, $y_n \in X_{x^*}$, $d(y_{n+1}, f(y_n)) \to 0$ as $n \to \infty \Rightarrow y_n \to x^*$ as $n \to \infty$, i.e., f has the Ostrowski property.

Proof. (i) + (ii) + (iii) + (iv). We follow the proof given for Theorem 3.2, by replacing the constant l with the matrix S. We also take into account the assertions (4) and (5) of Theorem 4.1.

(v). We say that the fixed point equation x = f(x), $x \in X$ is Ulam-Hyers stable if there exists a matrix $C \in \mathcal{M}_m(\mathbb{R}_+)$ such that for any $\varepsilon \in \mathbb{R}^m_+$ and any ε -solution z of the fixed point equation, i.e., $d(z, f(z)) \leq \varepsilon$, there exists $x^* \in F_f$ such that $d(z, x^*) \leq C\varepsilon$.

Let $\varepsilon \in \mathbb{R}^m_+$ and let z be the ε -solution of the fixed point equation x = f(x), for all $x \in X$. Since $f^{\infty}(x) \in F_f$, by using the inequality (iv), we have

$$d(z, f^{\infty}(x)) \le (I_m - S)^{-1} d(z, f(z)) \le (I_m - S)^{-1} \varepsilon$$

So, there exists $C := (I_m - S)^{-1} \in \mathcal{M}_m(\mathbb{R}_+)$ such that $d(z, f^{\infty}(x)) \leq C\varepsilon$.

(vi). Let $x^* \in F_f$ and $y_n \in X_x^* := \{x \in X \mid f^n(x) \to x^*, \text{ as } n \to \infty\}$, such that $d(y_n, f(y_n)) \to 0$ as $n \to \infty$. We have the following estimations

$$d(y_n, x^*) \le \sum_{k=0}^{n-1} d(f^k(y_n), f^{k+1}(y_n)) + d(f^n(y_n), x^*)$$

$$\le \sum_{k=0}^{n-1} S^k d(y_n, f(y_n)) + d(f^n(y_n), x^*)$$

$$\le (I_m - S)^{-1} d(y_n, f(y_n)) + d(f^n(y_n), x^*).$$

By letting $n \to \infty$, it follows that $d(y_n, x^*) \to 0$. So, (vi) holds.

(vii). First, we show that

$$d(f(x), f^{\infty}(x)) \le \Lambda d(x, f^{\infty}(x)), \text{ for all } x \in X,$$

$$(4.1)$$

where $\Lambda := [2I_m - (I_m - S)^{-1}]^{-1}[(I_m - S)^{-1} - I_m].$ Indeed, for any $x \in X$, we have the following estimations

$$\begin{split} d(f(x), f^{\infty}(x)) &\leq \sum_{k=0}^{\infty} d(f^{k}(x), f^{k+1}(x)) - d(x, f(x)) \\ &\leq \sum_{k=0}^{\infty} S^{k} d(x, f(x)) - d(x, f(x)) = [(I_{m} - S)^{-1} - I_{m}] d(x, f(x)) \\ &\leq [(I_{m} - S)^{-1} - I_{m}] d(x, f^{\infty}(x)) + [(I_{m} - S)^{-1} - I_{m}] d(f^{\infty}(x), f(x)). \end{split}$$

It follows that

 $[2I_m - (I_m - S)^{-1}]d(f(x), f^{\infty}(x)) \le [(I_m - S)^{-1} - I_m]d(x, f^{\infty}(x)).$ and hence, (4.1) holds.

Now, let $x^* \in F_f$ and $y_n \in X_x^* := \{x \in X \mid f^n(x) \to x^*, \text{ as } n \to \infty\}$, such that $d(y_{n+1}, f(y_n)) \to 0$ as $n \to \infty$. By using (4.1) we have

$$d(y_{n+1}, x^*) \leq d(y_{n+1}, f(y_n)) + d(f(y_n), x^*)$$

$$\leq d(y_{n+1}, f(y_n)) + \Lambda d(y_n, x^*)$$

$$\leq d(y_{n+1}, f(y_n)) + \Lambda d(y_n, f(y_{n-1})) + \Lambda^2 d(f(y_{n-1}), x^*)$$

$$\vdots$$

$$\leq d(y_{n+1}, f(y_n)) + \Lambda d(y_n, f(y_{n-1})) + \Lambda^2 d(y_{n-1}, x^*)$$

$$\vdots$$

$$\leq d(y_{n+1}, f(y_n)) + \Lambda d(y_n, f(y_{n-1})) + \dots + \Lambda^n d(y_1, f(y_0)) + \Lambda^n d(f(y_0), x^*).$$

By letting $n \to \infty$ and applying a Cauchy (or Toeplitz) lemma, we get that $d(y_{n+1}, x^*) \to 0$. The conclusion follows.

In the case when $cardF_f \leq 1$, Theorem 4.2 takes the following form:

Theorem 4.3. Let (X, d) be a complete \mathbb{R}^m_+ -metric space and $f: X \to X$ be a graphic S-contraction, i.e., there exists a matrix convergent to zero, $S \in \mathcal{M}_m(\mathbb{R}_+)$, such that $d(f^2(x), f(x)) \leq Sd(x, f(x))$, for all $x \in X$. We assume that $cardF_f \leq 1$. Then we have that:

(i) $\{f^n(x)\}_{n\in\mathbb{N}}$ converges for all $x \in X$ and $\sum_{n\in\mathbb{N}} d(f^n(x), f^{n+1}(x)) < +\infty$, for all $x \in X$.

If in addition, $\lim_{n\to\infty} f(f^n(x)) = f(\lim_{n\to\infty} f^n(x))$, for all $x \in X$, then:

- (*ii*) $F_f = F_{f^n} = \{x^*\}, \text{ for all } n \in \mathbb{N}^*.$
- (iii) f is a PM.
- (iv) $d(x, x^*) \leq (I_m S)^{-1} d(x, f(x))$, for all $x \in X$.
- (v) The fixed point equation corresponding to f is Ulam-Hyers stable.
- (vi) $y_n \in X$, $d(y_n, f(y_n)) \to 0$ as $n \to \infty \Rightarrow y_n \to x^*$ as $n \to \infty$, i.e., the fixed point problem for f is well-posed.
- (vii) If in addition, the matrix $[2I_m (I_m S)^{-1}]^{-1}[(I_m S)^{-1} I_m]$ converges to zero, then, $y_n \in X$, $d(y_{n+1}, f(y_n)) \to 0$ as $n \to \infty \Rightarrow y_n \to x^*$ as $n \to \infty$, i.e., f has the Ostrowski property.

We introduce next the notion of interpolative Kannan mapping defined on a \mathbb{R}^m_+ -metric space.

Definition 4.4. Let (X, d) be a \mathbb{R}^m_+ -metric space. A mapping $f : X \to X$ is called interpolative Kannan mapping (*IK* mapping) on X, if there exists a convergent to zero matrix, $\Lambda \in \mathcal{M}_m(\mathbb{R}_+)$, and a real constant $\alpha \in (0, 1)$ such that

$$d(f(x), f(y)) \leq \Lambda[d(x, f(x))]^{\alpha} \cdot [d(y, f(y))]^{1-\alpha}, \text{ for all } x, y \in X \setminus F_f.$$

Lemma 4.5. Let (X,d) be a \mathbb{R}^m_+ -metric space. Let $f: X \to X$ be an IK mapping. Then f is a graphic L_{IK} -contraction, i.e.,

$$d(f(x), f^2(x)) \leq L_{IK} \cdot d(x, f(x)), \text{ for all } x \in X \setminus F_f,$$

where $L_{IK} = \Lambda^{\frac{1}{\alpha}}$ is a matrix that converges to zero, having positive real values.

Proof. Let $x \in X \setminus F_f$. By replacing y with f(x) in the interpolative Kannan's metric condition, the conclusion follows.

Lemma 4.6. Let (X,d) be a \mathbb{R}^m_+ -metric space. Let $f: X \to X$ be an IK mapping. Then $f(f^n(x)) \to f(f^{\infty}(x))$ as $n \to \infty$, for all $x \in X$.

Proof. If $f^{\infty}(x) \notin F_f$ then, by replacing x with $f^n(x)$ and y with $f^{\infty}(x)$ in the interpolative Kannan's metric condition, we have

$$d(f(f^{n}(x)), f(f^{\infty}(x))) \leq \Lambda[d(f^{n}(x), f^{n+1}(x))]^{\alpha}[d(f^{\infty}(x), f(f^{\infty}(x)))]^{1-\alpha},$$

for all $x \in X$. By letting $n \to \infty$ and taking into account the Lemma 4.5, $d(f^n(x), f^{n+1}(x)) \to 0 \in \mathbb{R}^m$ as $n \to \infty$, for all $x \in X$. The conclusion follows. \Box

Theorem 4.7 (Saturated principle of *IK* **mappings).** Let (X, d) be a complete \mathbb{R}^m_+ metric space and $f: X \to X$ be an *IK* mapping. Then we have that:

- (i) $\{f^n(x)\}_{n\in\mathbb{N}}$ converges for all $x \in X$ and $\sum_{n\in\mathbb{N}} d(f^n(x), f^{n+1}(x)) < +\infty$, for all $x \in X$.
- (*ii*) $F_f = F_{f^n} \neq \emptyset$, for all $n \in \mathbb{N}^*$.
- (iii) f is a WPM.
- (iv) $d(x, f^{\infty}(x)) \leq (I_m L_{IK})^{-1} d(x, f(x))$, for all $x \in X$.
- (v) The fixed point equation corresponding to f is Ulam-Hyers stable.
- (vi) $x^* \in F_f$, $y_n \in X_{x^*}$, $d(y_n, f(y_n)) \to 0$ as $n \to \infty \Rightarrow y_n \to x^*$ as $n \to \infty$, *i.e.*, the fixed point problem for f is well-posed.
- (vii) If in addition, the matrix $[2I_m (I_m L_{IK})^{-1}]^{-1}[(I_m L_{IK})^{-1} I_m]$ converges to zero, then, $x^* \in F_f$, $y_n \in X_{x^*}$, $d(y_{n+1}, f(y_n)) \to 0$ as $n \to \infty \Rightarrow y_n \to x^*$ as $n \to \infty$, i.e., f has the Ostrowski property.

Proof. The conclusions follow from the Lemmas 4.5, 4.6 and Theorem 4.2. \Box

References

- [1] Agarwal, R.P., Jleli, M., Samet, B., Fixed Point Theory in Metric spaces, Springer, 2018.
- [2] Berinde, V., Iterative Approximation of Fixed Points, Springer-Verlag Heidelberg Berlin, 2007.
- [3] Berinde, V., Petruşel, A., Rus, I.A., Remarks on the terminology of the mappings in fixed point iterative methods in metric spaces, Fixed Point Theory, 24(2023), No. 2, 525-540.
- [4] Filip, A.-D., Fixed Point Theory in Kasahara Spaces, Casa Cărții de Știință, Cluj-Napoca, 2015.
- [5] Filip, A.-D., Fixed point theorems for nonself generalized contractions on a large Kasahara space, Carpathian J. Math., 38(2022), No. 3, 799-809.

- [6] Hardy, G.E., Rogers, T.D., A generalization of a fixed point theorem of Reich, Canad. Math. Bull., 16(1973), 201-206.
- [7] Karapinar, E., Agarwal, R., Aydi, H., Interpolative Reich-Rus-Cirić type contractions on partial metric spaces, Mathematics, 6(2018) 256.
- [8] Khojasteh, F., Abbas, M, Costache, S., Two new types of fixed point theorems in complete metric spaces, Abstr. Appl. Anal., 2014, Art. ID 325840, 5pp.
- [9] Kirk, W.A., Sims, B., (eds.), Handbook of Metric Fixed Point Theory, Kluwer, 2001.
- [10] Park, S., Almost all about Rus-Hicks-Rhoades maps in quasi-metric spaces, Adv. Theory Nonlinear Anal. Appl., 7(2023), No. 2, 455-472.
- [11] Petruşel, A., Rus, I.A., Graphic contraction principle and application, In: Th. Rassis et al. (eds.), Mathematical Analysis and Application, Springer, 2019, 395-416.
- [12] Rhoades, B.E., A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., 226(1977), 257-290.
- [13] Rus, I.A., On common fixed points, Stud. Univ. Babes-Bolyai Math., 18(1973), 31-33.
- [14] Rus, I.A., Generalized Contractions and Applications, Cluj Univ. Press, Cluj-Napoca, 2001.
- [15] Rus, I.A., Relevant classes of weakly Picard operators, An. Univ. Vest Timişoara, Mat.-Inform., 54(2016), no. 2, 3-19.
- [16] Rus, I.A., Some variants of contraction principle, generalizations and applications, Stud. Univ. Babeş-Bolyai Math., 61(2016), No. 3, 343-358.
- [17] Rus, I.A., Around metric coincidence point theory, Stud. Univ. Babeş-Bolyai Math., 68(2023), No. 2, 449-463.
- [18] Rus, I.A., Petruşel, A., Petruşel, G., Fixed Point Theory, Cluj Univ. Press, Cluj-Napoca, 2008.
- [19] Rus, I.A., Şerban, M.-A., Basic problems of the metric fixed point theory, Carpathian J. Math., 29(2013), 239-258.
- [20] Tongnoi, B., Saturated versions of some fixed point theorems for generalized contractions, Fixed Point Theory, 21(2020), No. 2, 755-766.

Alexandru-Darius Filip 🝺

"Babeş-Bolyai" University,

Faculty of Economics and Business Administration,

Department of Statistics-Forecasts-Mathematics,

- Teodor Mihali Street, No. 58-60,
- 400591 Cluj-Napoca, Romania

e-mail: darius.filip@econ.ubbcluj.ro