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Metric conditions, graphic contractions
and weakly Picard operators
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Abstract. In the paper of S. Park (Almost all about Rus-Hicks-Rhoades maps in
quasi-metric spaces, Adv. Theory Nonlinear Anal. Appl., 7(2023), No. 2, 455-
472), the author solves the following problem: Which metric conditions imposed
on f imply that f is a graphic contraction? In this paper we study the follow-
ing problem: Which metric conditions imposed on f imply that f satisfies the
conditions of Rus saturated principle of graphic contractions?
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1. Introduction and preliminaries

Let (X, d) be an L-space and f : X → X be a mapping. By following [17], [16]
and [15], we present the following notions and notations, which will be used in the
sequel of this paper.

By definition, f is a pre-weakly Picard mapping (PWPM) if the sequence
{fn(x)}n∈N converges for all x ∈ X. If f is PWPM , then we consider the map-
ping, f∞ : X → X defined by, f∞(x) := lim

n→∞
fn(x), for all x ∈ X.

If f is a PWPM and f∞(x) ∈ Ff , for any x ∈ X, then by definition, f is a
weakly Picard mapping (WPM). Each WPM generates a partition of X. Let x∗ ∈ Ff
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and Xx∗ := {x ∈ X | fn(x)→ x∗ as n→∞}. Then, X =
⋃

x∗∈Ff

Xx∗ is a partition of

X. In this case, we have that: f(Xx∗) ⊂ Xx∗ and Xx∗ ∩ Ff = {x∗}, for all x∗ ∈ Ff .
If f is WPM and Ff = {x∗}, then by definition, f is Picard mapping (PM).
The following result was given by I.A. Rus in [15].

Theorem 1.1 (Saturated principle of graphic contractions). Let (X, d) be a com-
plete metric space and f : X → X be a graphic l-contraction, i.e., 0 < l < 1 and
d(f2(x), f(x)) ≤ ld(x, f(x)), for all x ∈ X. Then we have that:

(i) {fn(x)}n∈N converges for all x ∈ X and
∑
n∈N

d(fn(x), fn+1(x)) < +∞, for all

x ∈ X.

If in addition, lim
n→∞

f(fn(x)) = f( lim
n→∞

fn(x)), for all x ∈ X, then:

(ii) Ff = Ffn 6= ∅, for all n ∈ N∗.
(iii) f is a WPM .
(iv) d(x, f∞(x)) ≤ 1

1−ld(x, f(x)), for all x ∈ X.

(v) The fixed point equation corresponding to f is Ulam-Hyers stable.
(vi) x∗ ∈ Ff , yn ∈ Xx∗ , d(yn, f(yn))→ 0 as n→∞ ⇒ yn → x∗ as n→∞, i.e., the

fixed point problem for f is well-posed.
(vii) If in addition, l < 1

3 , then, x∗ ∈ Ff , yn ∈ Xx∗ , d(yn+1, f(yn)) → 0 as n → ∞
⇒ yn → x∗ as n→∞, i.e., f has the Ostrowski property.

Notice that if cardFf ≤ 1, then Theorem 1.1 takes the following form:

Theorem 1.2. Let (X, d) be a complete metric space and f : X → X be a graphic
l-contraction. We assume that cardFf ≤ 1. Then we have that:

(i) {fn(x)}n∈N converges for all x ∈ X and
∑
n∈N

d(fn(x), fn+1(x)) < +∞, for all

x ∈ X.

If in addition, lim
n→∞

f(fn(x)) = f( lim
n→∞

fn(x)), for all x ∈ X, then:

(ii) Ff = Ffn = {x∗}, for all n ∈ N∗.
(iii) f is a PM .
(iv) d(x, x∗) ≤ 1

1−ld(x, f(x)), for all x ∈ X.

(v) The fixed point equation corresponding to f is Ulam-Hyers stable.
(vi) yn ∈ X, d(yn, f(yn))→ 0 as n→∞ ⇒ yn → x∗ as n→∞, i.e., the fixed point

problem for f is well-posed.
(vii) If in addition, l < 1

3 , then yn ∈ X, d(yn+1, f(yn)) → 0 as n → ∞ ⇒ yn → x∗

as n→∞, i.e., f has the Ostrowski property.

On the other hand, in the metric fixed point theory, there is a large number of
metric conditions (see [12], [9], [2], [18], [14], [13], [1], [4], [20], . . .).

In the paper [10], S. Park solves the following problem: Which metric conditions
imposed on f imply that f is a graphic contraction?

In this paper we study the following problem: Which metric conditions imposed
on f imply that f satisfies the conditions of Rus saturated principle of graphic con-
tractions?
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Throughout this paper we follow the notation and terminology used in [15], [17],
[3] and [19].

2. Conditions with respect to a standard metric

Let (X, d) be a metric space and f : X → X be a mapping. In many fixed point
results, there are several standard metric conditions imposed on f with respect to d,
which imply that f is a graphic contraction. For example, we have the Banach, Kan-
nan, Ćirić-Reich-Rus, Ćirić, Berinde, Zamfirescu’s metric conditions. More of them
can be found in the paper of S. Park [10].

In this section we will focus on some other interesting metric conditions, implying
the graphic contraction property of the mapping f .

• Hardy-Rogers’ metric condition (see [6] and also [13]).
f is called HR mapping if there exist three constants a, b, c ∈ R+, with

a+ 2b+ 2c ∈ (0, 1), such that

d(f(x), f(y)) ≤ ad(x, y) + b[d(x, f(x)) + d(y, f(y))]+

+ c[d(x, f(y)) + d(y, f(x))], for all x, y ∈ X.

• Khojasteh, Abbas and Costache’s metric condition (see [8]).
f is called KAC mapping if

d(f(x), f(y)) ≤ d(y, f(x)) + d(x, f(y))

d(x, f(x)) + d(y, f(y)) + 1
d(x, y), for all x, y ∈ X.

• Interpolative Kannan’s metric condition (see [7]).
f is called IK mapping if there exist two constants λ ∈ [0, 1) and α ∈ (0, 1)

such that

d(f(x), f(y)) ≤ λ[d(x, f(x))]α · [d(y, f(y))]1−α, for all x, y ∈ X \ Ff .

2.1. The case of HR mappings

Lemma 2.1. Let (X, d) be a metric space. Let f : X → X be a HR mapping. Then f
is a graphic lHR-contraction, i.e.,

d(f(x), f2(x)) ≤ lHR · d(x, f(x)), for all x ∈ X,

where the constant lHR = a+b+c
1−b−c , with a, b, c ∈ R+ and a+ 2b+ 2c ∈ (0, 1).

Proof. The conclusion follows by replacing y with f(x) in the Hardy-Rogers’ metric
condition. �

Lemma 2.2. Let (X, d) be a complete metric space. Let f : X → X be a HR mapping.
Then f(fn(x))→ f(f∞(x)) as n→∞, for all x ∈ X.
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Proof. By replacing x with fn(x) and y with f∞(x) in the Hardy-Rogers’ metric
condition, we get that

d(f(fn(x)), f(f∞(x))) ≤ ad(fn(x), f∞(x))+

+ b[d(fn(x), f(fn(x))) + d(f∞(x), f(f∞(x)))]+

+ c[d(fn(x), f(f∞(x))) + d(f∞(x), f(fn(x)))].

Next, by using the triangle inequality satisfied by the metric d we get

d(f(fn(x)), f(f∞(x))) ≤ ad(fn(x), f∞(x))+

+ b[d(fn(x), f(fn(x))) + d(f∞(x), f(fn(x))) + d(f(fn(x)), f(f∞(x)))]+

+ c[d(fn(x), f(fn(x))) + d(f(fn(x)), f(f∞(x))) + d(f∞(x), f(fn(x)))].

By letting n→∞ in the above inequality and taking into account the continuity
of the metric d and the fact that the operator f is a graphic lHR-contraction via
Lemma 2.1, we get that d(fn(x), f∞(x))→ 0 as n→∞ and d(fn(x), f(fn(x)))→ 0
as n→∞. It follows that f(fn(x))→ f(f∞(x)) as n→∞, for all x ∈ X. �

In the paper [6], G.E. Hardy and T.D. Rogers showed that any HR mapping
is a PM . In the following theorem, we give a simple proof of this result and several
other conclusions concerning HR mappings.

Theorem 2.3 (Saturated principle of HR mappings). Let (X, d) be a complete metric
space and f : X → X be a HR mapping. Then we have that:

(i) Ff = Ffn = {x∗}, for all n ∈ N∗.
(ii) f is a PM .

(iii) d(x, x∗) ≤ 1
1−lHR d(x, f(x)), for all x ∈ X.

(iv) The fixed point equation corresponding to f is Ulam-Hyers stable.
(v) yn ∈ X, d(yn, f(yn))→ 0 as n→∞ ⇒ yn → x∗ as n→∞, i.e., the fixed point

problem for f is well-posed.
(vi) If in addition, lHR <

1
3 , then yn ∈ X, d(yn+1, f(yn))→ 0 as n→∞ ⇒ yn → x∗

as n→∞, i.e., f has the Ostrowski property.

Proof. From Lemma 2.1, f is a graphic lHR-contraction.
From Lemma 2.2, it follows that fn+1(x) → f(f∞(x)) as n → ∞. But

fn+1(x)→ f∞(x) as n→∞. So, f∞(x) ∈ Ff . Hence, Ff 6= ∅.
Let x∗, y∗ ∈ Ff with x∗ 6= y∗. By replacing x with x∗ and y with y∗ in the

Hardy-Rogers’ metric condition, we get (1− a− 2c)d(x∗, y∗) ≤ 0, which implies that
x∗ = y∗. So, cardFf = 1. We apply next Theorem 1.2. �

2.2. The case of KAC mappings

Lemma 2.4. Let (X, d) be a bounded metric space. Let f : X → X be a KAC mapping.
Then f is a graphic lKAC-contraction, i.e.,

d(f(x), f2(x)) ≤ lKAC · d(x, f(x)), for all x ∈ X,

where the constant lKAC = 2δ(X)
2δ(X)+1 and δ(X) is the diameter functional of the space

X.
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Proof. By taking y = f(x) in the Khojasteh, Abbas and Costache’s metric condition,
we obtain the following estimation:

d(f(x), f2(x)) ≤ d(x, f2(x))

d(x, f(x)) + d(f(x), f2(x)) + 1
d(x, f(x)), for all x ∈ X.

Let us notice that the number d(x,f2(x))
d(x,f(x))+d(f(x),f2(x))+1 is not a constant, since it de-

pends on x ∈ X. However, we can find an upper bound for it, by considering the
diameter functional of the space X,

δ(X) := sup{d(x, y) | x, y ∈ X}.

Let us consider the function ψ : R+ → R+, defined by ψ(x) := x
x+1 , for all x ∈

R+. By calculating its first derivative, we conclude that the function ψ is increasing
on R+. We have the following estimations:

d(x, f2(x))

d(x, f(x)) + d(f(x), f2(x)) + 1
≤ d(x, f(x)) + d(f(x), f2(x))

d(x, f(x)) + d(f(x), f2(x)) + 1
=

= ψ(d(x, f(x)) + d(f(x), f2(x))) ≤ ψ(2δ(X)) =
2δ(X)

2δ(X) + 1
, for all x ∈ X.

Hence, for lKAC = 2δ(X)
2δ(X)+1 we have that d(f(x), f2(x)) ≤ lKAC · d(x, f(x)), for all

x ∈ X. �

Lemma 2.5. Let (X, d) be a bounded complete metric space and f : X → X be a KAC
mapping. Then, f(fn(x)) → f(f∞(x)) as n → ∞, for all x ∈ X and f∞(x) ∈ Ff ,
for all x ∈ X.

Proof. We have that d(f(fn(x)), f(f∞(x))) = d(fn+1(x), f(f∞(x))) ≤

≤ d(f∞(x), fn+1(x)) + d(fn(x), f(f∞(x)))

d(fn(x), fn+1(x)) + d(f∞(x), f(f∞(x))) + 1
d(fn(x), f∞(x)).

By letting n→∞, it follows that,

d(f∞(x), f(f∞(x))) ≤ d(f∞(x), f(f∞(x)))

d(f∞(x), f(f∞(x))) + 1
· 0 = 0.

So, f(fn(x))→ f(f∞(x)) as n→∞ and f∞(x) ∈ Ff , for all x ∈ X. �

Theorem 2.6 (Saturated principle of KAC mappings). Let (X, d) be a complete
bounded metric space and f : X → X be a KAC mapping. Then we have that:

(i) {fn(x)}n∈N converges for all x ∈ X and
∑
n∈N

d(fn(x), fn+1(x)) < +∞, for all

x ∈ X.
(ii) Ff = Ffn 6= ∅, for all n ∈ N∗.

(iii) f is a WPM .
(iv) d(x, f∞(x)) ≤ 1

1−lKAC d(x, f(x)), for all x ∈ X.

(v) The fixed point equation corresponding to f is Ulam-Hyers stable.
(vi) x∗ ∈ Ff , yn ∈ Xx∗ , d(yn, f(yn))→ 0 as n→∞ ⇒ yn → x∗ as n→∞, i.e., the

fixed point problem for f is well-posed.
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(vii) If in addition, lKAC < 1
3 , then, x∗ ∈ Ff , yn ∈ Xx∗ , d(yn+1, f(yn)) → 0 as

n→∞ ⇒ yn → x∗ as n→∞, i.e., f has the Ostrowski property.

Proof. The conclusions follow from the saturated principle of graphic contractions.
�

2.3. The case of IK mappings

Lemma 2.7. Let (X, d) be a metric space. Let f : X → X be an IK mapping. Then f
is a graphic lIK-contraction, i.e.,

d(f(x), f2(x)) ≤ lIK · d(x, f(x)), for all x ∈ X,

where lIK = λ
1
α , with λ ∈ [0, 1) and α ∈ (0, 1).

Proof. By replacing y with f(x) in the interpolative Kannan’s metric condition, we
get the conclusion. �

Lemma 2.8. Let (X, d) be a metric space. Let f : X → X be an IK mapping. Then
f(fn(x))→ f(f∞(x)) as n→∞, for all x ∈ X.

Proof. If f∞(x) 6∈ Ff then, by replacing x with fn(x) and y with f∞(x) in the
interpolative Kannan’s metric condition, we have

d(f(fn(x)), f(f∞(x))) ≤ λ[d(fn(x), fn+1(x))]α[d(f∞(x), f(f∞(x)))]1−α,

for all x ∈ X. By letting n → ∞ and taking into account the Lemma 2.7,
d(fn(x), fn+1(x))→ 0 as n→∞, for all x ∈ X. The conclusion follows. �

Theorem 2.9 (Saturated principle of IK mappings). Let (X, d) be a complete metric
space and f : X → X be an IK mapping. Then we have that:

(i) {fn(x)}n∈N converges for all x ∈ X and
∑
n∈N

d(fn(x), fn+1(x)) < +∞, for all

x ∈ X.
(ii) Ff = Ffn 6= ∅, for all n ∈ N∗.

(iii) f is a WPM .
(iv) d(x, f∞(x)) ≤ 1

1−lIK d(x, f(x)), for all x ∈ X.

(v) The fixed point equation corresponding to f is Ulam-Hyers stable.
(vi) x∗ ∈ Ff , yn ∈ Xx∗ , d(yn, f(yn))→ 0 as n→∞ ⇒ yn → x∗ as n→∞, i.e., the

fixed point problem for f is well-posed.
(vii) If in addition, lIK < 1

3 , then, x∗ ∈ Ff , yn ∈ Xx∗ , d(yn+1, f(yn))→ 0 as n→∞
⇒ yn → x∗ as n→∞, i.e., f has the Ostrowski property.

Proof. The conclusions follow from Lemmas 2.7, 2.8 and Theorem 1.1. �

In the case when cardFf ≤ 1, Theorem 2.9 takes the following form:

Theorem 2.10. Let (X, d) be a complete metric space and f : X → X be an IK
mapping. We assume that cardFf ≤ 1. Then we have that:
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(i) {fn(x)}n∈N converges for all x ∈ X and
∑
n∈N

d(fn(x), fn+1(x)) < +∞, for all

x ∈ X.
(ii) Ff = Ffn = {x∗}, for all n ∈ N∗.

(iii) f is a PM .
(iv) d(x, x∗) ≤ 1

1−lIK d(x, f(x)), for all x ∈ X.

(v) The fixed point equation corresponding to f is Ulam-Hyers stable.
(vi) yn ∈ X, d(yn, f(yn))→ 0 as n→∞ ⇒ yn → x∗ as n→∞, i.e., the fixed point

problem for f is well-posed.
(vii) If in addition, lIK < 1

3 , then, yn ∈ X, d(yn+1, f(yn))→ 0 as n→∞⇒ yn → x∗

as n→∞, i.e., f has the Ostrowski property.

Proof. The conclusions follow from Lemmas 2.7, 2.8 and Theorem 1.2. �

Remark 2.11. Not any metric condition yields a graphic contraction. For instance, if
we consider a metric space (X, d) and the mapping f : X → X with the property
that there exist two constants θ ∈ [0, 1) and L ≥ 0 such that

d(f(x), f(y)) ≤ θd(x, y) + L[d(x, f(x)) + d(y, f(y))],

for all x, y ∈ X, then f is not a graphic contraction.
Indeed, by choosing y := f(x) we get d(f(x), f2(x)) ≤ θ+L

1−Ld(x, f(x)), for all

x ∈ X. By taking L = 1
2 , the condition θ+L

1−L < 1 implies θ < 0, which is a contradiction

with θ ∈ [0, 1).

3. Conditions with respect to a dislocated metric

Let us recall first the notion of dislocated metric.

Definition 3.1. Let X be a nonempty set. A functional d : X × X → R+ is called
dislocated metric on X if the following conditions hold:

(i) d(x, y) = d(y, x) = 0 ⇒ x = y.
(ii) d(x, y) = d(y, x), for all x, y ∈ X.

(iii) d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈ X.

If X is a nonempty set and d : X ×X → R+ is a dislocated metric on X, then
the couple (X, d) is called dislocated metric space.

In the above setting, we have the following results.

Theorem 3.2 (Saturated principle of graphic contraction). Let (X, d) be a complete
dislocated metric space and f : X → X be a graphic l-contraction, i.e., 0 < l < 1 and
d(f2(x), f(x)) ≤ ld(x, f(x)), for all x ∈ X. Then we have that:

(i) {fn(x)}n∈N converges for all x ∈ X and
∑
n∈N

d(fn(x), fn+1(x)) < +∞, for all

x ∈ X.

If in addition, lim
n→∞

f(fn(x)) = f( lim
n→∞

fn(x)), for all x ∈ X, then:

(ii) Ff = Ffn 6= ∅, for all n ∈ N∗.
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(iii) f is a WPM .
(iv) d(x, f∞(x)) ≤ 1

1−ld(x, f(x)), for all x ∈ X.

(v) The fixed point equation corresponding to f is Ulam-Hyers stable.
(vi) x∗ ∈ Ff , yn ∈ Xx∗ , d(yn, f(yn))→ 0 as n→∞ ⇒ yn → x∗ as n→∞, i.e., the

fixed point problem for f is well-posed.
(vii) If in addition, l < 1

3 , then, x∗ ∈ Ff , yn ∈ Xx∗ , d(yn+1, f(yn)) → 0 as n → ∞
⇒ yn → x∗ as n→∞, i.e., f has the Ostrowski property.

Proof. (i). Let x ∈ X. We construct the sequence of successive approximations,
{fn(x)}n∈N, for f starting from x.

Since f is a graphic l-contraction, we have the following estimations:

d(f(x), f2(x)) ≤ ld(x, f(x)),

d(f2(x), f3(x)) ≤ ld(f(x), f2(x)) ≤ l2d(x, f(x)),

...

d(fn(x), fn+1(x)) ≤ ld(fn−1(x), fn(x)) ≤ . . . ≤ lnd(x, f(x)),

for all x ∈ X and n ∈ N. By summing up the left hand side of the above inequalities,
we have ∑

n∈N
d(fn(x), fn+1(x)) ≤

∑
n∈N

lnd(x, f(x)) =
1

1− l
d(x, f(x)) < +∞.

It follows that {fn(x)}n∈N is a Cauchy sequence in (X, d) and, since (X, d) is
complete, we get that {fn(x)}n∈N is convergent in (X, d).

(ii) + (iii). Since {fn(x)}n∈N is convergent in (X, d), there exists f∞(x) =
lim
n→∞

fn(x) ∈ X. By using the assumption lim
n→∞

f(fn(x)) = f( lim
n→∞

fn(x)), for all

x ∈ X, it follows that f∞(x) ∈ Ff and also that f∞(x) ∈ Ffn . So (ii) holds. By
definition, f is a WPM . So, (iii) also holds.

(iv). Let x ∈ X. Since f is a graphic l-contraction, we have

d(x, f∞(x)) ≤
n∑
k=0

d(fk(x), fk+1(x)) + d(fn+1(x), f∞(x))

≤
n∑
k=0

lkd(x, f(x)) + d(fn+1(x), f∞(x)).

By letting n→∞, the conclusion follows.
(v). We recall that the fixed point equation x = f(x), x ∈ X is Ulam-Hyers

stable if there exists a constant c > 0 such that for any ε > 0 and any ε-solution
z of the fixed point equation, i.e., d(z, f(z)) ≤ ε, there exists x∗ ∈ Ff such that
d(z, x∗) ≤ cε.

Let ε > 0 and let z be the ε-solution of the fixed point equation x = f(x), for
all x ∈ X. Since f∞(x) ∈ Ff , by using the inequality (iv), we have

d(z, f∞(x)) ≤ 1

1− l
d(z, f(z)) ≤ 1

1− l
ε
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So, there exists c := 1
1−l > 0 such that d(z, f∞(x)) ≤ cε.

(vi). Let x∗ ∈ Ff and yn ∈ X∗x := {x ∈ X | fn(x)→ x∗, as n→∞}, such that
d(yn, f(yn))→ 0 as n→∞. We have the following estimations

d(yn, x
∗) ≤

n−1∑
k=0

d(fk(yn), fk+1(yn)) + d(fn(yn), x∗)

≤
n−1∑
k=0

lkd(yn, f(yn)) + d(fn(yn), x∗).

By letting n→∞, it follows that d(yn, x
∗)→ 0. So, (vi) holds.

(vii). First, we show that

d(f(x), f∞(x)) ≤ l

1− 2l
d(x, f∞(x)), for all x ∈ X. (3.1)

Indeed, for any x ∈ X, we have the following estimations

d(f(x), f∞(x)) ≤
∞∑
k=0

d(fk(x), fk+1(x))− d(x, f(x))

≤
∞∑
k=0

lkd(x, f(x))− d(x, f(x)) =

(
1

1− l
− 1

)
d(x, f(x))

≤ l

1− l
d(x, f∞(x)) +

l

1− l
d(f∞(x), f(x)).

It follows that 1−2l
1−l d(f(x), f∞(x)) ≤ l

1−ld(x, f∞(x)). Hence (3.1) holds. Notice also

that the constant l
1−2l < 1 if and only if l < 1

3 .

Now, let x∗ ∈ Ff and yn ∈ X∗x := {x ∈ X | fn(x)→ x∗, as n→∞}, such that
d(yn+1, f(yn))→ 0 as n→∞. By using (3.1), we have

d(yn+1, x
∗) ≤ d(yn+1, f(yn)) + d(f(yn), x∗)

≤ d(yn+1, f(yn)) +
l

1− 2l
d(yn, x

∗)

≤ d(yn+1, f(yn)) +
l

1− 2l
d(yn, f(yn−1)) +

l

1− 2l
d(f(yn−1), x∗)

≤ d(yn+1, f(yn)) +
l

1− 2l
d(yn, f(yn−1)) +

(
l

1− 2l

)2

d(yn−1, x
∗)

...

≤ d(yn+1, f(yn)) +
l

1− 2l
d(yn, f(yn−1))+

+ . . .+

(
l

1− 2l

)n
d(y1, f(y0)) +

(
l

1− 2l

)n
d(f(y0), x∗).

By letting n → ∞ and applying a Cauchy (or Toeplitz) lemma, we obtain
d(yn+1, x

∗)→ 0. The conclusion follows. �
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In the case when cardFf ≤ 1, Theorem 3.2 takes the following form:

Theorem 3.3. Let (X, d) be a complete dislocated metric space and f : X → X be a
graphic l-contraction. We assume that cardFf ≤ 1. Then we have that:

(i) {fn(x)}n∈N converges for all x ∈ X and
∑
n∈N

d(fn(x), fn+1(x)) < +∞, for all

x ∈ X.

If in addition, lim
n→∞

f(fn(x)) = f( lim
n→∞

fn(x)), for all x ∈ X, then:

(ii) Ff = Ffn = {x∗}, for all n ∈ N∗.
(iii) f is a PM .
(iv) d(x, x∗) ≤ 1

1−ld(x, f(x)), for all x ∈ X.

(v) The fixed point equation corresponding to f is Ulam-Hyers stable.
(vi) yn ∈ X, d(yn, f(yn))→ 0 as n→∞ ⇒ yn → x∗ as n→∞, i.e., the fixed point

problem for f is well-posed.
(vii) If in addition, l < 1

3 , then, yn ∈ X, d(yn+1, f(yn)) → 0 as n → ∞ ⇒ yn → x∗

as n→∞, i.e., f has the Ostrowski property.

Remark 3.4. Notice that the Theorem 2.3 for HR mappings and the Theorems 2.9 and
2.10 for IK mappings also hold in the context of a complete dislocated metric space.
Theorem 2.6 for KAC mappings also holds in the context of a complete bounded
dislocated metric space.

4. Conditions with respect to an Rm
+ -metric

In this section we follow the terminology and notations given in [5], concerning
vector-valued metric (Rm+ -metric) and matrices convergent to zero. Regarding the
properties of these matrices, we recall the following result (see [5]).

Theorem 4.1. Let S ∈Mm(R+). The following assertions are equivalent:

(1) S is convergent to zero;
(2) Sn → Om as n→∞;
(3) the spectral radius ρ(S) is strictly less than 1;
(4) the matrix (Im − S) is nonsingular and

(Im − S)−1 = Im + S + S2 + . . .+ Sn + . . . ;

(5) the matrix (Im − S) is nonsingular and (Im − S)−1 has nonnegative elements;
(6) Snx→ 0 ∈ Rm as n→∞, for all x ∈ Rm.

The main result of this section is the following one.

Theorem 4.2 (Saturated principle of graphic contraction). Let (X, d) be a complete
Rm+ -metric space and f : X → X be a graphic S-contraction, i.e., there exists a
matrix convergent to zero, S ∈Mm(R+), such that d(f2(x), f(x)) ≤ Sd(x, f(x)), for
all x ∈ X. Then we have that:

(i) {fn(x)}n∈N converges for all x ∈ X and
∑
n∈N

d(fn(x), fn+1(x)) < +∞, for all

x ∈ X.



Metric conditions, graphic contractions 171

If in addition, lim
n→∞

f(fn(x)) = f( lim
n→∞

fn(x)), for all x ∈ X, then:

(ii) Ff = Ffn 6= ∅, for all n ∈ N∗.
(iii) f is a WPM .
(iv) d(x, f∞(x)) ≤ (Im − S)−1d(x, f(x)), for all x ∈ X.
(v) The fixed point equation corresponding to f is Ulam-Hyers stable.

(vi) x∗ ∈ Ff , yn ∈ Xx∗ , d(yn, f(yn))→ 0 as n→∞ ⇒ yn → x∗ as n→∞, i.e., the
fixed point problem for f is well-posed.

(vii) If in addition, the matrix [2Im − (Im − S)−1]−1[(Im − S)−1 − Im] converges to
zero, then, x∗ ∈ Ff , yn ∈ Xx∗ , d(yn+1, f(yn)) → 0 as n → ∞ ⇒ yn → x∗ as
n→∞, i.e., f has the Ostrowski property.

Proof. (i)+(ii)+(iii)+(iv). We follow the proof given for Theorem 3.2, by replacing
the constant l with the matrix S. We also take into account the assertions (4) and
(5) of Theorem 4.1.

(v). We say that the fixed point equation x = f(x), x ∈ X is Ulam-Hyers stable
if there exists a matrix C ∈ Mm(R+) such that for any ε ∈ Rm+ and any ε-solution
z of the fixed point equation, i.e., d(z, f(z)) ≤ ε, there exists x∗ ∈ Ff such that
d(z, x∗) ≤ Cε.

Let ε ∈ Rm+ and let z be the ε-solution of the fixed point equation x = f(x), for
all x ∈ X. Since f∞(x) ∈ Ff , by using the inequality (iv), we have

d(z, f∞(x)) ≤ (Im − S)−1d(z, f(z)) ≤ (Im − S)−1ε

So, there exists C := (Im − S)−1 ∈Mm(R+) such that d(z, f∞(x)) ≤ Cε.
(vi). Let x∗ ∈ Ff and yn ∈ X∗x := {x ∈ X | fn(x)→ x∗, as n→∞}, such that

d(yn, f(yn))→ 0 as n→∞. We have the following estimations

d(yn, x
∗) ≤

n−1∑
k=0

d(fk(yn), fk+1(yn)) + d(fn(yn), x∗)

≤
n−1∑
k=0

Skd(yn, f(yn)) + d(fn(yn), x∗)

≤ (Im − S)−1d(yn, f(yn)) + d(fn(yn), x∗).

By letting n→∞, it follows that d(yn, x
∗)→ 0. So, (vi) holds.

(vii). First, we show that

d(f(x), f∞(x)) ≤ Λd(x, f∞(x)), for all x ∈ X, (4.1)

where Λ := [2Im − (Im − S)−1]−1[(Im − S)−1 − Im].
Indeed, for any x ∈ X, we have the following estimations

d(f(x),f∞(x)) ≤
∞∑
k=0

d(fk(x), fk+1(x))− d(x, f(x))

≤
∞∑
k=0

Skd(x, f(x))− d(x, f(x)) = [(Im − S)−1 − Im]d(x, f(x))

≤ [(Im − S)−1 − Im]d(x, f∞(x)) + [(Im − S)−1 − Im]d(f∞(x), f(x)).
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It follows that
[2Im − (Im − S)−1]d(f(x), f∞(x)) ≤ [(Im − S)−1 − Im]d(x, f∞(x)).

and hence, (4.1) holds.
Now, let x∗ ∈ Ff and yn ∈ X∗x := {x ∈ X | fn(x)→ x∗, as n→∞}, such that

d(yn+1, f(yn))→ 0 as n→∞. By using (4.1) we have

d(yn+1, x
∗) ≤ d(yn+1, f(yn)) + d(f(yn), x∗)

≤ d(yn+1, f(yn)) + Λd(yn, x
∗)

≤ d(yn+1, f(yn)) + Λd(yn, f(yn−1)) + Λd(f(yn−1), x∗)

≤ d(yn+1, f(yn)) + Λd(yn, f(yn−1)) + Λ2d(yn−1, x
∗)

...

≤ d(yn+1, f(yn)) + Λd(yn, f(yn−1))+

+ . . .+ Λnd(y1, f(y0)) + Λnd(f(y0), x∗).

By letting n → ∞ and applying a Cauchy (or Toeplitz) lemma, we get that
d(yn+1, x

∗)→ 0. The conclusion follows. �

In the case when cardFf ≤ 1, Theorem 4.2 takes the following form:

Theorem 4.3. Let (X, d) be a complete Rm+ -metric space and f : X → X be a graphic
S-contraction, i.e., there exists a matrix convergent to zero, S ∈Mm(R+), such that
d(f2(x), f(x)) ≤ Sd(x, f(x)), for all x ∈ X. We assume that cardFf ≤ 1. Then we
have that:

(i) {fn(x)}n∈N converges for all x ∈ X and
∑
n∈N

d(fn(x), fn+1(x)) < +∞, for all

x ∈ X.

If in addition, lim
n→∞

f(fn(x)) = f( lim
n→∞

fn(x)), for all x ∈ X, then:

(ii) Ff = Ffn = {x∗}, for all n ∈ N∗.
(iii) f is a PM .
(iv) d(x, x∗) ≤ (Im − S)−1d(x, f(x)), for all x ∈ X.
(v) The fixed point equation corresponding to f is Ulam-Hyers stable.

(vi) yn ∈ X, d(yn, f(yn))→ 0 as n→∞ ⇒ yn → x∗ as n→∞, i.e., the fixed point
problem for f is well-posed.

(vii) If in addition, the matrix [2Im − (Im − S)−1]−1[(Im − S)−1 − Im] converges to
zero, then, yn ∈ X, d(yn+1, f(yn)) → 0 as n → ∞ ⇒ yn → x∗ as n → ∞, i.e.,
f has the Ostrowski property.

We introduce next the notion of interpolative Kannan mapping defined on a
Rm+ -metric space.

Definition 4.4. Let (X, d) be a Rm+ -metric space. A mapping f : X → X is called
interpolative Kannan mapping (IK mapping) on X, if there exists a convergent to
zero matrix, Λ ∈Mm(R+), and a real constant α ∈ (0, 1) such that

d(f(x), f(y)) ≤ Λ[d(x, f(x))]α · [d(y, f(y))]1−α, for all x, y ∈ X \ Ff .
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Lemma 4.5. Let (X, d) be a Rm+ -metric space. Let f : X → X be an IK mapping.
Then f is a graphic LIK-contraction, i.e.,

d(f(x), f2(x)) ≤ LIK · d(x, f(x)), for all x ∈ X \ Ff ,

where LIK = Λ
1
α is a matrix that converges to zero, having positive real values.

Proof. Let x ∈ X \Ff . By replacing y with f(x) in the interpolative Kannan’s metric
condition, the conclusion follows. �

Lemma 4.6. Let (X, d) be a Rm+ -metric space. Let f : X → X be an IK mapping.
Then f(fn(x))→ f(f∞(x)) as n→∞, for all x ∈ X.

Proof. If f∞(x) 6∈ Ff then, by replacing x with fn(x) and y with f∞(x) in the
interpolative Kannan’s metric condition, we have

d(f(fn(x)), f(f∞(x))) ≤ Λ[d(fn(x), fn+1(x))]α[d(f∞(x), f(f∞(x)))]1−α,

for all x ∈ X. By letting n → ∞ and taking into account the Lemma 4.5,
d(fn(x), fn+1(x))→ 0 ∈ Rm as n→∞, for all x ∈ X. The conclusion follows. �

Theorem 4.7 (Saturated principle of IK mappings). Let (X, d) be a complete Rm+ -
metric space and f : X → X be an IK mapping. Then we have that:

(i) {fn(x)}n∈N converges for all x ∈ X and
∑
n∈N

d(fn(x), fn+1(x)) < +∞, for all

x ∈ X.
(ii) Ff = Ffn 6= ∅, for all n ∈ N∗.

(iii) f is a WPM .
(iv) d(x, f∞(x)) ≤ (Im − LIK)−1d(x, f(x)), for all x ∈ X.
(v) The fixed point equation corresponding to f is Ulam-Hyers stable.

(vi) x∗ ∈ Ff , yn ∈ Xx∗ , d(yn, f(yn))→ 0 as n→∞ ⇒ yn → x∗ as n→∞, i.e., the
fixed point problem for f is well-posed.

(vii) If in addition, the matrix [2Im− (Im−LIK)−1]−1[(Im−LIK)−1− Im] converges
to zero, then, x∗ ∈ Ff , yn ∈ Xx∗ , d(yn+1, f(yn))→ 0 as n→∞ ⇒ yn → x∗ as
n→∞, i.e., f has the Ostrowski property.

Proof. The conclusions follow from the Lemmas 4.5, 4.6 and Theorem 4.2. �
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[14] Rus, I.A., Generalized Contractions and Applications, Cluj Univ. Press, Cluj-Napoca,
2001.

[15] Rus, I.A., Relevant classes of weakly Picard operators, An. Univ. Vest Timişoara, Mat.-
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[19] Rus, I.A., Şerban, M.-A., Basic problems of the metric fixed point theory, Carpathian J.
Math., 29(2013), 239-258.

[20] Tongnoi, B., Saturated versions of some fixed point theorems for generalized contractions,
Fixed Point Theory, 21(2020), No. 2, 755-766.

Alexandru-Darius Filip
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