DOI: 10.24193/subbmath.2025.1.04

Strongly nonlinear periodic parabolic equation in Orlicz spaces

Erriahi Elidrissi Ghita (D), Azroul Elhoussine (D) and Lamrani Alaoui Abdelilah (D)

Abstract. In this paper, we prove the existence of a weak solution to the following nonlinear periodic parabolic equations in Orlicz-spaces:

$$\frac{\partial u}{\partial t} - div(a(x, t, \nabla u)) = f(x, t)$$

where $-div(a(x,t,\nabla u))$ is a Leray-Lions operator defined on a subset of $W_0^{1,x}L_M(Q)$. The Δ_2 -condition is not assumed and the data f belongs to $W^{-1,x}E_{\overline{M}}(Q)$.

The Galerkin method and the fixed point argument are employed in the proof.

Mathematics Subject Classification (2010): 35B10, 35A01, 35D30.

Keywords: The periodic solution, nonlinear parabolic equation, Galerkin method, Orlicz spaces, weak solutions.

1. Introduction

Let Ω be a bounded subset of \mathbb{R}^N , and let Q be the cylinder $\Omega \times (0,T)$ with some given T>0. In this paper we deal with the following periodic parabolic boundary value problem:

$$\begin{cases} \frac{\partial u}{\partial t} - div(a(x, t, \nabla u)) = f(x, t) & \text{in } Q, \\ u(x, t) = 0 & \text{on } \partial\Omega \times (0, T), \\ u(x, 0) = u(x, T) & \text{in } \Omega, \end{cases}$$

$$(1.1)$$

Received 26 August 2023; Accepted 05 February 2024.

[©] Studia UBB MATHEMATICA. Published by Babes-Bolyai University

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

where A is a second-order operator in divergence form

$$A(u) = -div(a(x, t, \nabla u)),$$

with the coefficient a satisfying Leray-Lions conditions related to some N-function. The study of nonlinear partial differential equations in Orlicz-spaces is motivated by numerous phenomena of physics, namely the problems related to non-Newtonian fluids of strongly inhomogeneous behavior with a high ability of increasing their viscosity under a different stimulus, like the shear rate, magnetic or electric field (see for examples [1], [10], [14], [15], [16] and [21]).

Consider first the case where a have polynomial growth with respect to u and ∇u . Therefore A is a bounded operator from $L^p(0,T,W^{1,p}(\Omega))$, 1 , into its dual. In this setting, Brézis and Browder in cite16 proved the existence of problem (1) when <math>p > 2 and the periodic condition is replaced by the initial one, and by Landes and Mustonen when 1 [19].

Specifically, when we have the periodicity condition Boldrini and Crema in [4] studied the following problem:

$$\begin{cases} \frac{\partial u}{\partial t} - \Delta_p u = m(t)g(u) + h(x,t) \text{ in } Q_T; \\ u(x,t) = 0 \text{ on } \partial\Omega \times (0,T); \\ u(x,T) = u(x,0) \text{ in } \Omega; \end{cases}$$
(1.2)

g is a continuous function such that $|g(v)| \leq a(|v|s+1)$, where s and a are positive constants. The existence of a solution to this problem is established under the condition $0 \leq s < p-1$, and for s=p-1 by using Schauder's fixed point theorem. Related topics can be found in [7], [8], [9]. However, when attempting to relax the restriction on a, we replace the space $L^p(0,T,W_0^{1,p})$ with an inhomogeneous Orlicz-Sobolev space $W_0^{1,x}L_M(Q)$, constructed from an Orlicz space L_M instead of L^p , where the N-function M is related to the actual growth of a. Several studies have explored this setting, considering $u(x,0)=u_0$ and a depending on u and ∇u , see for instance, the works of Donaldson in [6] and Robert in [20], who proved the existence of a solution for a nonlinear parabolic problem under the Δ_2 condition, $u^2 \leq cM(ku)$, with c and k are positive constants, and A is monotone. Additionally, in cases where the Δ_2 condition is not assumed and under various assumptions, other authors have demonstrated the existence of solutions to diverse parabolic problems (see [2], [14], [17], [19]).

The objective of this paper is to establish the existence of a solution to problem (1.1) when f belongs to $W^{-1,x}E_{\overline{M}}(Q)$, without assuming the Δ_2 condition. Moreover, we consider the periodicity condition instead of the initial one, which necessitates demonstrating the existence of the approximate problem once more. To achieve this, we assume that $u^2 \leq cM(ku)$ with c and k are positive constants.

We employ the Galerkin method due to Landes and Mustonen, along with the fixed point argument due to Schauder.

The paper is structured as follows: In Section 2, we provide a review of some preliminary concepts concerning Orlicz-Sobolev spaces, along with various inequalities and compactness results. Section 3 is dedicated to stating the assumptions and presenting the main result. In the fourth section, we prove the existence theorem. In the appendix we prove the existence of a solution to the approximate problem.

2. Preliminaries

2.1. Orlicz-Sobolev Spaces-Notations and Properties

• let $M: \mathbb{R}^+ \to \mathbb{R}^+$ be an N-function, i.e continuous, convex, with M(t) > 0 for $t > 0, M(t)/t \to 0$ as $t \to 0$ and $M(t)/t \to \infty$ as $t \to \infty$.

Equivalently, M admits the representation: $M(t) = \int_0^t m(\tau)d\tau$ where $m : \mathbb{R}^+ \to \mathbb{R}^+$ is non-decreasing, right continuous, with m(0) = 0, m(t) > 0 for t > 0 and $m(t) \to \infty$ as $t \to \infty$.

The N-function \overline{M} conjugate to M is defined by $\overline{M}(t) = \int_0^t \overline{m}(\tau) d\tau$ where $\overline{m}: \mathbb{R}^+ \to \mathbb{R}^+$ is given by $m(t) = \sup\{s: m(s) \leq t\}$.

The N-function M is said to satisfy a Δ_2 condition if, for some k > 0:

$$M(2t) \le kM(t) \quad \forall t \ge 0$$

When this inequality holds only for $t \geq t_0 > 0$, M is said to satisfy the Δ_2 -condition near infinity.

• Let Ω be an open subset of \mathbb{R}^N . The Orlicz class $\mathcal{L}_M(\Omega)$ (resp. the Orlicz space $L_M(\Omega)$) is defined as the set of (equivalence classes of) real-valued measurable functions u on Ω such that $\int_{\Omega} M(u(x))dx < +\infty$ (resp. $\int_{\Omega} M(u(x)/\lambda)dx < +\infty$ for some $\lambda > 0$).

 $L_M(\Omega)$ is a Banach space under the norm:

$$||u||_{M,\Omega} = \inf \left\{ \lambda > 0 : \int_{\Omega} M\left(\frac{u(x)}{\lambda}\right) dx \le 1 \right\}$$

and $\mathcal{L}_M(\Omega)$ is a convex subset of $L_M(\Omega)$. The closure in $L_M(\Omega)$ of the set of bounded measurable functions with compact support in $\overline{\Omega}$ is denoted by $E_M(\Omega)$.

The equality $E_M(\Omega) = L_M(\Omega)$ holds if and only if M satisfies the Δ_2 condition, for all t or for t large according to whether Ω has infinite measure or not.

The dual of $E_M(\Omega)$ can be identified with $L_M(\Omega)$ by means of the pairing $\int_{\Omega} u(x)v(x)dx$, and the dual norm on $L_{\overline{M}}(\Omega)$ is equivalent to $\|\cdot\|_{\overline{M},\Omega}$.

The space $L_M(\Omega)$ is reflexive if and only if M and \overline{M} satisfy the Δ_2 condition (near infinity only if Ω has finite measure).

• We now turn to the Orlicz-Sobolev spaces. $W^1L_M(\Omega)$ (resp. $W^1E_M(\Omega)$) is the space of all functions u such that u and its distributional derivatives up to order 1 lie in $L_M(\Omega)$ (resp. $E_M(\Omega)$). It is a Banach space under the norm:

$$||u||_{1,M,\Omega} = \sum_{|\alpha| \le 1} ||D^{\alpha}u||_{M,\Omega}.$$

Thus $W^1L_M(\Omega)$ and $W^1E_M(\Omega)$ can be identified with subspace of the product of (N+1) copies of $L_M(\Omega)$. Denoting this product by ΠL_M , we will use the weak topologies $\sigma\left(\Pi L_M, \Pi E_{\overline{M}}\right)$ and $\sigma\left(\Pi L_M, \Pi L_{\overline{M}}\right)$.

The space $W_0^1 E_M(\Omega)$ is defined as the (norm) closure of the Schwartz space $\mathcal{D}(\Omega)$ in $W^1 E_M(\Omega)$ and the space $W_0^1 L_M(\Omega)$ as the $\sigma(\Pi L_M, \Pi E_{\overline{M}})$ closure of $\mathcal{D}(\Omega)$ in $W^1 L_M(\Omega)$.

• We say that u_n converges to u for the modular convergence in $W^1L_M(\Omega)$ if for some $\lambda > 0$

$$\int_{\Omega} M\left(\left(D^{\alpha} u_{n} - D^{\alpha} u\right)/\lambda\right) dx \to 0 \text{ for all } |\alpha| \le 1$$

This implies convergence for $\sigma(\Pi L_M, \Pi L_{\overline{M}})$. Note that, if $u_n \to u$ in $L_M(\Omega)$ for the modular convergence and $v_n \to v$ in $L_M(\Omega)$ for the modular convergence, we have

$$\int_{\Omega} u_n v_n dx \to \int_{\Omega} uv dx \quad \text{as } n \to \infty$$

If M satisfies the Δ_2 -condition on \mathbb{R}^+ , then modular convergence coincides with norm convergence.

- Let $W^{-1}L_{\overline{M}}(\Omega)$ [resp. $W^{-1}E_{\overline{M}}(\Omega)$ denote the space of distributions on Ω which can be written as sums of derivatives of order at most 1 of functions in $L_{\overline{M}}(\Omega)$ [resp. $W^{-1}E_{\overline{M}}(\Omega)$]. It is a Banach space under the usual quotient norm.
- If the open set Ω has the segment property then the space $\mathcal{D}(\Omega)$ is dense in $W_0^1 L_M(\Omega)$ for the modular convergence and thus for the topology $\sigma(\Pi L_M, \Pi L_{\overline{M}})$ (cf. [13], [19]). Consequently, the action of a distribution S in $W^{-1} L_{\overline{M}}(\Omega)$ on an element of $W_0^1 L_M(\Omega)$ is well defined, it will be noted by $\langle S, u \rangle$.

2.2. The Inhomogeneous Orlicz-Sobolev

Let Ω be a bounded open subset of \mathbb{R}^N , T>0 and set $Q=\Omega\times]\,0,T[$. Let M be an N-function. For each $\alpha\in\mathbb{N}^N$, denote by D^α_x the distributional derivative on Q of order α with respect to the variable $x\in\mathbb{R}^N$. The inhomogeneous Orlicz-Sobolev spaces of order 1 are defined as follows

$$W^{1,x}L_M(Q) = \{ u \in L_M(Q) : D_r^{\alpha}u \in L_M(Q), \forall |\alpha| \le 1 \}$$

and

$$W^{1,x}E_M(Q) = \{ u \in E_M(Q) : D_x^{\alpha}u \in E_M(Q), \forall |\alpha| \le 1 \}$$

The last space is a subspace of the former. Both are Banach spaces under the norm

$$||u|| = \sum_{|\alpha| \le 1} ||D_x^{\alpha} u||_{M,Q}.$$

The space $W_0^{1,x}L_M(Q)$ is defined as the (norm) closure in $W^{1,x}L_M(Q)$ of $\mathcal{D}(Q)$ and we have.

$$W_0^{1,x}L_M(Q) = \overline{\mathcal{D}(Q)}^{\sigma(\Pi L_M, \Pi L_{\overline{M}})}.$$

We can easily show that they form a complementary system when Ω satisfies the segment property. These spaces are considered as subspaces of the product space $\Pi L_M(Q)$ which has (N+1) copies. We shall also consider the weak topologies $\sigma(\Pi L_M \Pi E_M)$ and $\sigma(\Pi L_M, \Pi L_M)$. If $u \in W^{1,x}L_M(Q)$, then the function: $t \mapsto u(t) = u(.,t)$ is defined on (0,T) with values in $W^1L_M(\Omega)$. If, further, $u \in W^{1,x}E_M(Q)$, then u(.,t) is $W^1E_M(\Omega)$ -valued and is strongly measurable.

Furthermore, the following continuous imbedding holds: $W^{1,x}E_M(Q)\subset L^1(0,T),$

 $W^1E_M(\Omega)$. The space $W^{1,x}L_M(Q)$ is not in general separable; if $u \in W^{1,x}L_M(Q)$, we cannot conclude that the function u(t) is measurable from (0,T) into $W^{1,x}L_M(\Omega)$. However the scalar function $t \mapsto \|D_x^n u(t)\|_{M,\Omega}$ is in $L^1(0,T)$ for all $|\alpha| \leq 1$.

Furthermore, $W_0^{1,x}E_M(Q) = W_0^{1,x}L_M(Q) \cap \Pi E_M$. Poincare's inequality also holds in $W_0^{1,x}L_M(Q)$ and then there is a constant C > 0 such that for all $u \in W_0^{1,x}L_M(Q)$ one has

$$\sum_{|\alpha| < 1} \|D_x^{\alpha} u\|_{M,Q} \le C \sum_{|\alpha| = 1} \|D_x^{\alpha} u\|_{M,Q}$$

thus both sides of the last inequality are equivalent norms on $W_0^{1,x}L_M(Q)$. We have then the following complementary system

$$\left(\begin{array}{cc} W_0^{1,x} L_M(Q) & F \\ W_0^{1,x} E_M(Q) & F_0 \end{array}\right)$$

F being the dual space of $W_0^{1,x}E_M(Q)$. It is also, up to an isomorphism, the quotient of $\Pi L_{\overline{M}}$ by the polar set $W_0^{1,x}E_M(Q)^{\perp}$, and will be denoted by $F=W^{-1,x}L_{\overline{M}}(Q)$ and it is shown that

$$W^{-1,x}L_M(Q) = \left\{ f = \sum_{|\alpha| \le 1} D_x^{\alpha} f_{\alpha} : f_{\alpha} \in L_{\overline{M}}(Q) \right\}$$

This space will be equipped with the usual quotient norm:

$$||f|| = \inf \sum_{|\alpha| \le 1} ||f_{\alpha}||_{\overline{M}, Q}$$

where the infinum is taken on all possible decompositions

$$f = \sum_{|\alpha| \le 1} D_x^{\alpha} f_{\alpha}, f_{\alpha} \in L_{\overline{M}}(Q)$$

The space F_0 is then given by

$$F_0 = \left\{ f = \sum_{|\alpha| \le 1} D_x^{\alpha} f_{\alpha} : f_{\alpha} \in E_{\overline{M}}(Q) \right\}$$

and is denoted by $F_0 = W^{-1,x} E_{\overline{M}}(Q)$.

2.3. Some inequalities

Lemma 2.1. [17] Let M be an N-function, we have the following inequality:

$$st \le M(s) + \overline{M}(t)$$

called Young inequality.

Lemma 2.2. [17] The generalized Holder inequality

$$\left| \int_{\Omega} u(x)v(x)|dx \right| \le 2\|u\|_M \|v\|_{\overline{M}}$$

hold for any pair function $u \in L_M(\Omega)$ and $v \in L_{\overline{M}}(\Omega)$.

Proof. The proof of this inequalities is detailed in [17] (see pages 18 for the first one 111 for the second).

2.4. Approximation theorem and trace result

Let Ω is an open subset of \mathbb{R}^N with the segment property and I is a sub-interval of \mathbb{R} (both possibly unbounded) and $Q = \Omega \times I$. It is easy to see that Q also satisfies the segment property.

Definition 2.3. [12] We say that $u_n \to u$ in $W^{-1,x}L_{\overline{M}}(Q) + L^2(Q)$ for the modular convergence if we can write

$$u_n = \sum_{|\alpha| \le 1} D_x^{\alpha} u_n^{\alpha} + u_n^0$$

$$u = \sum_{|\alpha| \le 1} D_x^{\alpha} u^{\alpha} + u^0$$

with $u_n^{\alpha} \to u^{\alpha}$ in $L_{\overline{M}}(Q)$ for the modular convergence for all $|\alpha| \leq 1$ and $u_n^0 \to u^0$ strongly in $L^2(Q)$.

This implies, in particular, that $u_n \to u$ in $W^{-1,x}L_{\overline{M}}(Q) + L^2(Q)$ for the weak topology $\sigma(\Pi L_M + L^2, \Pi L_M \cap L^2)$ in the sense that $\langle u_n, v \rangle \to \langle u, v \rangle$ for all $v \in W_0^{1,x}L_M(Q) \cap L^2(Q)$, where here and throughout the paper, $\langle .,. \rangle$ means either the pairing between $W_0^{1,x}L_M(Q)$ and $W^{-1,x}L_{\overline{M}}(Q)$, or the pairing between $W_0^{1,x}L_M(Q) \cap L^2(Q)$ and $W^{-1,x}L_{\overline{M}}(Q) + L^2(Q)$. Indeed,

$$\langle u_n, v \rangle = \sum_{|\alpha| < 1} (-1)^{|\alpha|} \int_Q u_n^{\alpha} D_x^{\alpha} v \, dx \, dt + \int_Q u_n^0 v \, dx \, dt$$

and since for all $|\alpha| \leq 1, u_n^{\alpha} \to u^{\alpha}$ in $L_{\overline{M}}(Q)$ for the modular convergence, and so for $\sigma(L_{\overline{M}}, L_M)$, we have

$$\begin{split} & \sum_{|\alpha| \leqslant 1} (-1)^{|\alpha|} \int_Q u_n^\alpha D_x^\alpha v \, \, \mathrm{d}x \, \, \mathrm{d}t + \int_Q u_n^0 v \, \, \mathrm{d}x \, \, \mathrm{d}t \\ & \to \sum_{|\alpha| \leqslant 1} (-1)^{|\alpha|} \int_Q u^\alpha D_x^\alpha v \, \, \mathrm{d}x \, \, \mathrm{d}t + \int_Q u^0 v \, \, \mathrm{d}x \, \, \mathrm{d}t = \langle u, v \rangle. \end{split}$$

Moreover, if $v_n \to v$ in $W_0^{1,x}L_M(Q) \cap L^2(Q)$ for the modular convergence (i.e. $v_n \to v$ in $W_0^{1,x}L_M(Q)$ for the modular convergence and in $L^2(Q)$ strong), we have $\langle u_n, v_n \rangle \to \langle u, v \rangle$ as $n \to \infty$.

Theorem 2.4. [12] If $u \in W^{1,x}L_M(\Omega) \cap L^2(\Omega)$ (respectively $W_0^{1,x}L_M(\Omega) \cap L^2(\Omega)$) and $\frac{\partial u}{\partial t} \in W^{-1,x}L_{\overline{M}}(Q) + L^2(Q)$, then there exists a sequence (v_j) in $\mathcal{D}(\overline{Q})$ (respectively $\mathcal{D}(I,\mathcal{D}(\Omega))$) such that

$$\begin{aligned} v_j &\to u \ in \ W^{1,x} L_M(\Omega) \cap L^2(\Omega) \\ \frac{\partial v_j}{\partial t} &\to \frac{\partial u}{\partial t} \ in \ W^{-1,x} L_{\overline{M}}(Q) + L^2(Q) \end{aligned}$$

for the modular convergence.

Remark 2.5. If in the statement of theorem (2.4), one considers $\Omega \times \mathbb{R}$ instead of Q we have $\mathcal{D}(\Omega \times \mathbb{R})$ is dense in

$$\{u \in W_0^{1,x}(\Omega \times \mathbb{R}) \cap L^2(\Omega \times \mathbb{R}) : \frac{\partial u}{\partial t} \in W^{-1,x}L_{\overline{M}}(\Omega \times \mathbb{R}) + L^2(\Omega \times \mathbb{R})\}$$

for the modular convergence.

A first application of Theorem (2.4) is the following trace result generalizing a classical result which states that if u belongs to $L^2(a, b; H_0^1(\Omega))$ and $\frac{\partial u}{\partial t}$ belongs to $L^2(a, b; H^{-1}(\Omega))$, then u is in $C(a, b; L^2(\Omega))$.

Lemma 2.6. [12] Let $a < b \in \mathbb{R}$ and let Ω be a bounded subset of \mathbb{R}^N with the segment property, then

$$\{u \in W_0^{1,x}L_M(\Omega \times (a,b)) \cap L^2(\Omega \times (a,b)); \frac{\partial u}{\partial t} \in W^{-1,x}L_{\overline{M}}(\Omega \times (a,b)) + L^2(\Omega \times (a,b))\}$$
 is a subset of $C([a,b],L^2(\Omega))$.

3. Existence result

3.1. Assumption and statement of main result

Let Ω be a bounded open subset of \mathbb{R}^N $(N \geq 2)$ with the segment property, and Q be the cylinder $\Omega \times (0,T)$ with some given T>0. Let M be an N-function. Consider the second order operator $A:D(A)\subset W_0^{1,x}L_M(Q)\to W^{-1,x}L_{\overline{M}}(Q)$ of the form:

$$A(u) = -div(a(x, t, \nabla u))$$

where $a:\Omega\times(0,T)\times\mathbb{R}^N\to\mathbb{R}^N$ are a Carateodory function satisfying for almost every $(x,t)\in\Omega\times(0,T)$ and all $\xi\neq\xi^*\in\mathbb{R}^N$ we have the following assumptions:

$$|a(x,t,\xi)| \le \beta(h_1(x,t) + \overline{M}^{-1}M(\delta|\xi|)); \tag{3.1}$$

$$[a(x,t,\xi) - a(x,t,\xi^*)][\xi - \xi^*] > 0; (3.2)$$

$$a(x,t,\xi)\xi \ge \alpha M(\frac{|\xi|}{\lambda});$$
 (3.3)

$$f \in W^{-1,x} E_{\overline{M}}(Q) ; (3.4)$$

where $h_1 \in L^1(Q)$, and $\beta, \delta, \alpha, \lambda > 0$.

and suppose that there exist $s^{'} > 0$ and c, k two positive constant such that for all $s \geq s^{'}$:

$$s^2 \le cM(ks) \tag{3.5}$$

We shall prove the following existence theorem

Theorem 3.1. Assume that (3.1)-(3.5) hold true then there exist a unique solution $u \in D(A) \cap W_0^{1,x}L_M(Q) \cap C(0,T,L^2(\Omega))$ of (1.1) in the following sense:

$$<\frac{\partial u}{\partial t}, \varphi>_{Q} + \int_{Q} a(x, t, \nabla u) \nabla \varphi dx dt = < f, \varphi>_{Q};$$
 (3.6)

for every $\varphi \in W_0^{1,x}L_M(Q) \cap L^2(Q)$ with $\frac{\partial \varphi}{\partial t} \in W^{-1,x}L_{\overline{M}}(Q) + L^2(Q)$. where here $\langle ... \rangle$ means for either the pairing between $W_0^{1,x}L_M(Q)$ and $W^{-1,x}L_{\overline{M}}(Q)$, or between $W_0^{1,x}L_M(Q) \cap L^2(Q)$ and $W^{-1,x}L_{\overline{M}}(Q) + L^2(Q)$.

Integrating by part and using the periodicity condition equation (3.6) can be written as:

$$-\int_{Q} \frac{\partial \varphi}{\partial t} u dx dt + \int_{Q} a(x, t, \nabla u) \nabla \varphi dx dt = \langle f, \varphi \rangle_{Q}$$
 (3.7)

Remark 3.2. Note that all term in (3.7) are well defined, and by the trace result of lemma (2.6) we have that $u \in C([0,T),L^2(\Omega))$ wish make sense of the periodicity condition.

4. The proof of the main result

The proof of theorem (3.1) is divided into five steps:

Proof. Step 1: Firstly we have to prove that the solution u is unique. For that we suppose that there exist another solution v of problem (1.1) then v satisfy also (3.6), then by taking $\varphi = u(t) - v(t)$ we can easily see that

$$\frac{1}{2}\frac{d}{dt}\int_{Q}(u(t)-v(t))^{2}dx+\int_{Q}(a(x,t,\nabla u)-a(x,t,\nabla v))(\nabla u-\nabla v)dxdt=0 \qquad (4.1)$$

Using periodicity condition and (3.2) we get $\nabla u = \nabla v$, then we have by (4.1) that u(t) = v(t) for almost every $t \in (0,T)$, finally we deduce that u = v.

Step 2: Approximate problem: As in [12] we will use Galerkin method due to Landes and Mustonen [19]. For that we choose a sequence $\{w_1, w_2, w_3, \dots\}$ in $\mathcal{D}(\Omega)$ such that $\bigcup_{n=1}^{\infty} V_n$ with

$$V_n = span\{w_1, w_2, w_3, \cdots\}$$

is dense in $H_0^m(\Omega)$ with m large enough such that $H_0^m(\Omega)$ is continuously embedded in $C^1(\Omega)$. For any $v \in H_0^m(\Omega)$, there exists a sequence $(v_k) \subset \bigcup_{n=1}^{\infty} V_n$ such that $v_k \to v$ in $H_0^m(\Omega)$ and in $C^1(\overline{\Omega})$ too.

We denote further $\mathcal{V}_n = C([0,T], V_n)$. We have that the closure of $\bigcup_{n=1}^{\infty} \mathcal{V}_n$ with respect to the norm:

$$||v||_{C^{1,0}(Q)} = \sup_{|\alpha| \le 1} \{ |D_x^{|\alpha|} v(x,t)| : (x,t) \in Q \}$$

contains $\mathcal{D}(Q)$, for more detail see [11] and [18]).

This implies that, for any $f \in W^{-1,x}E_{\overline{M}}(Q)$, there exists a sequence $(f_k) \subset \bigcup_{n=1}^{\infty} \mathcal{V}_n$ such that $f_k \to f$ strongly in $W^{-1,x}E_{\overline{M}}(Q)$. Indeed, let $\varepsilon > 0$ be given. Writing

$$f = \sum_{|\alpha| \le 1} D_x^{\alpha} f^{\alpha}$$

for all $|\alpha| \leq 1$, there exists $g^{\alpha} \in \mathcal{D}(Q)$ such that, $||f^{\alpha} - g^{\alpha}||_{\overline{M},Q} \leq \frac{\varepsilon}{2N+2}$. Moreover, by setting $g = \sum_{|\alpha| \leq 1} D_x^{\alpha} g^{\alpha}$, we see that for any $g \in \mathcal{D}(Q)$, and so there exists $\varphi \in \bigcup_{n=1}^{\infty} \mathcal{V}_n$ such that $||g - \varphi||_{\infty,Q} \leq \frac{\varepsilon}{2meas(Q)}$. We deduce then

$$||f^{\alpha} - g^{\alpha}||_{W^{-1,x}E_{\overline{M}}(Q)} \le \sum_{|\alpha| \le 1} ||f^{\alpha} - g^{\alpha}||_{\overline{M},Q} + ||g - \varphi||_{\infty,Q}$$

Now, let us consider the following approximate problem:

$$\begin{cases} u_n \in \mathcal{V}_n; \frac{\partial u_n}{\partial t} \in L^1(0, T, V_n); \\ u_n(x, 0) = u_n(x, T); \\ \text{and for all } \varphi \in \mathcal{V}_n \\ \int_Q \frac{\partial u_n}{\partial t} \varphi dx dt + \int_Q a(x, t, \nabla u_n) \nabla \varphi dx dt = \int_Q f_n \varphi dx dt \end{cases}$$

$$(4.2)$$

See the appendix for the prove of the existence of $u_n \in \mathcal{V}_n$.

Step 3: a priori estimates

Let as prove that:

$$\|u_n\|_{W_0^{1,x}L_M(Q)} \le C \quad ; \int_Q a(x,t,\nabla u_n) \nabla u_n \, dx \le C'$$
 (4.3)

and

$$a(x, t, \nabla u_n)$$
 is bounded in $(L_{\overline{M}}(Q))^N$ (4.4)

where here $C, C^{'}$ are a positives constants not depending on n.

Proof. Taking u_n as a test function in (4.2), then using periodicity condition and young inequality we have

$$\int_{Q} a(x, t, \nabla u_n) \nabla u_n dx dt \le \frac{1}{\epsilon} \|f_n\|_{\overline{M}, Q} + \epsilon \|u_n\|_{M, Q}.$$

By using (3.2) and applying Poinccare inequality there exist $C_1 > 0$ such that

$$\alpha \int_{Q} M\left(\frac{|\nabla u_n|}{\lambda}\right) dx dt \leq \|f_n\|_{\overline{M}, Q} + \epsilon C_1 \int_{Q} M\left(\frac{|\nabla u_n|}{\lambda}\right) dx dt.$$

By a choice of ϵ and the fact that $||f_n||_{\overline{M},Q} \leq C$ we obtain

$$\int_{Q} M\left(\frac{|\nabla u_n|}{\lambda}\right) dx dt \le C. \tag{4.5}$$

This implies that (u_n) is bounded in $W_0^{1,x}L_M(Q)$ and so in $L^2(Q)$. By using (3.1) and (4.5) we can conclude that there exist a constant C'>0 such that

$$\int_{O} a(x, t, \nabla u_n) \nabla u_n dx dt \le C'; \tag{4.6}$$

To prove that $a(x,t,\nabla u_n)$ is bounded in $(L_{\overline{M}}(Q))^N$, let $\varphi\in (E_{\overline{M}}(Q))^N$ with $\|\varphi\|_{M,Q}=1$. By (3.2) we have

$$\int_{O} (a(x, t, \nabla u_n) - a(x, t, \varphi))(\nabla u_n, \varphi) dx dt > 0$$

which gives

$$\int_{Q} a(x, t, \nabla u_n) \varphi < \int_{Q} a(x, t, \nabla u_n) \nabla u_n dx dt - \int_{Q} a(x, t, \varphi) (\nabla u_n - \varphi) dx dt$$

Using (3.1) and (4.3) we can easily see that

$$\int_{Q} a(x, t, \nabla u_n) \varphi < C$$

and so $a(x, t, \nabla u_n)$ is bounded in $(L_{\overline{M}}(Q))^N$.

Thus for a subsequence still denote u_n and for some $h \in (L_{\overline{M}}(Q))^N$:

$$u_n \rightharpoonup u$$
 weakly in $W_0^{1,x} L_M(Q)$ for $\sigma(\Pi L_M, \Pi E_{\overline{M}})$, (4.7)

and weakly in $L^2(Q)$.

$$a(x,t,\nabla u_n) \rightharpoonup h$$
 weakly in $(L_{\overline{M}}(Q))^N$ for $\sigma(\Pi L_{\overline{M}}, \Pi E_{\overline{M}})$ (4.8)

Step 4: Almost everywhere convergence of the gradient.

For all $\varphi \in C^1(0, T, \mathcal{D}(\Omega))$, we get by (4.2) and (4.8) that

$$-\int_{Q} u \frac{\partial \varphi}{\partial t} + \int_{Q} h \nabla \varphi dx dt = \int_{Q} f \nabla \varphi dx dt. \tag{4.9}$$

We can see by taking φ arbitrary in $\mathcal{D}(Q)$ that $\frac{\partial u}{\partial t} \in W^{-1,x}L_{\overline{M}}(Q)$, then by theorem (2.4) there exist a subsequence denote $v_k \in \mathcal{D}(Q)$ such that:

$$v_k \to u \text{ in } W_0^{1,x} L_M(Q) \cap L^2(Q) \text{ and } \frac{\partial v_k}{\partial t} \to \frac{\partial u}{\partial t} \text{ in } W^{-1,x} L_{\overline{M}}(Q) + L^2(Q)$$

for the modular convergence, then by lemma (2.6), we have $v_k \to u$ in $C([0,T],L^2(\Omega))$ and so $u \in C([0,T],L^2(\Omega))$.

From (4.2), (3.7) we have

$$\begin{split} & \limsup_{n \to \infty} \int_Q a(x,t,\nabla u_n) \nabla u_n - h \nabla v_k dx dt \\ & \leq \limsup_{n \to \infty} \left(- \int_Q \frac{\partial u_n}{\partial t} u_n dx dt \right) + \int_Q \frac{\partial v_k}{\partial t} u dx dt \\ & + \limsup_{n \to \infty} \int_Q \left(f_n u_n dx dt - \int_Q f_n v_k \right) dx dt \\ & = \limsup_{n \to \infty} \left(\int_Q \frac{\partial u_n}{\partial t} (v_k - u_n) dx dt \right) + \int_Q f(u - v_k) dx dt \end{split}$$

where we have used the fact that

$$-\int_{Q} \frac{\partial v_{k}}{\partial t} u dx dt = \lim_{n \to \infty} -\int_{Q} \frac{\partial v_{k}}{\partial t} u_{n} dx dt$$
$$= \lim_{n \to \infty} -\int_{Q} \frac{\partial u_{n}}{\partial t} v_{k} dx dt + \int_{\Omega} \left[u_{n}(t) v_{k}(t) \right]_{0}^{T} dx$$

then the periodicity condition imply

$$-\int_{O} \frac{\partial v_{k}}{\partial t} u dx dt = \lim_{n \to \infty} -\int_{O} \frac{\partial u_{n}}{\partial t} v_{k} dx dt.$$

For the first term in the right hand sand we have

$$\begin{split} \lim\sup_{n\to\infty} \int_Q \frac{\partial u_n}{\partial t} (v_k - u_n) dx dt &= \lim\sup_{n\to\infty} \Big(-\frac{1}{2} \frac{d}{dt} \int_Q (u_n(t) - v_k(t))^2 dx dt \Big) \\ &+ \lim\sup_{n\to\infty} \int_Q \frac{\partial v_k}{\partial t} (v_k - u_n) dx dt \\ &= \lim\sup_{n\to\infty} \Big(-\frac{1}{2} \int_\Omega \Big[u_n(t) - v_k(t))^2 \Big]_0^T dx \Big) \\ &+ \lim\sup_{n\to\infty} \int_Q \frac{\partial v_k}{\partial t} (v_k - u_n) dx dt \end{split}$$

the fact that $\frac{\partial v_k}{\partial t} \in E_{\overline{M}}(Q)$ and $v_k \to u$ gives

$$\limsup_{k \to \infty} \limsup_{n \to \infty} \int_{Q} \frac{\partial v_k}{\partial t} (v_k - u_n) dx dt = 0.$$

By periodicity condition we have

$$\limsup_{k \to \infty} \limsup_{n \to \infty} \int_{O} \frac{\partial u_n}{\partial t} (v_k - u_n) dx dt = 0.$$

Then we obtain

$$\lim_{n \to \infty} \sup_{Q} \int_{Q} a(x, t, \nabla u_n) \nabla u_n dx dt = \int_{Q} h \nabla v_k dx dt + \int_{Q} f(u - v_k) dx dt$$

Having in mind that v_k converge strongly to u in $W_0^{1,x}L_M(Q)$ for the modular convergence, we can pass to the limit sup in k, to deduce

$$\lim_{k \to \infty} \sup_{n \to \infty} \int_{Q} a(x, t, \nabla u_n) \nabla u_n = \int_{Q} h \nabla v dx dt. \tag{4.10}$$

Fix a real number r>0 and any $k\in\mathbb{N}$, we denote by χ_k^r and χ^r the characteristic functions of $Q_k^r=\{(x,t)\in Q: |\nabla v_k|\leqslant r\}$ and $Q^r=\{(x,t)\in Q: |\nabla u|\leqslant r\}$, respectively. We also denote by $\varepsilon(n,k,s)$ all quantities (possibly different) such that

$$\lim_{s \to \infty} \lim_{k \to \infty} \lim_{n \to \infty} \varepsilon(n, k, s) = 0,$$

and this will be the order in which the parameters we use will tend to infinity, that is, first n, then k, and finally s. Similarly, we will write only $\varepsilon(n)$, or $\varepsilon(n,k)$,... to mean that the limits are only on the specified parameters.

Taking $s \ge r$ one has

$$0 \leq \int_{Q^{r}} \left(a(x, t, \nabla u_{n}) - a(x, t, \nabla u) \left(\nabla u_{n} - \nabla u \right) dx dt \right)$$

$$\leq \int_{Q^{s}} \left(a(x, t, \nabla u_{n}) - a(x, t, \nabla u) \left(\nabla u_{n} - \nabla u \right) dx dt \right)$$

$$= \int_{Q^{s}} \left(a(x, t, \nabla u_{n}) - a(x, t, \nabla u \chi^{s}) \left(\nabla u_{n} - \nabla u \chi^{s} \right) dx dt \right)$$

$$\leq \int_{Q} \left(a(x, t, \nabla u_{n}) - a(x, t, \nabla u \chi^{s}) \left(\nabla u_{n} - \nabla u \chi^{s} \right) dx dt \right)$$

On the other hand

$$\int_{Q} \left[a\left(x, t, \nabla u_{n}\right) - a\left(x, t, \nabla u \chi^{s}\right) \right] \left[\nabla u_{n} - \nabla u \chi^{s} \right] dxdt
= \int_{Q} \left[a\left(x, t, \nabla u_{n}\right) - a\left(x, t, \nabla v_{k} \chi_{k}^{s}\right) \right]
\times \left[\nabla u_{n} - \nabla v_{k} \chi_{k}^{s} \right] dxdt
+ \int_{Q} a\left(x, t, \nabla v_{k} \chi_{k}^{s}\right) \left[\nabla u_{n} - \nabla v_{k} \chi_{k}^{s} \right] dxdt
+ \int_{Q} a\left(x, t, \nabla u_{n}\right) \left[\nabla v_{k} \chi_{k}^{s} - \nabla u \chi^{s} \right] dxdt
+ \int_{Q} a\left(x, t, \nabla u \chi^{s}\right) \left[\nabla u \chi^{s} - \nabla u_{n} \right] dxdt
= I_{1} + I_{2} + I_{3} + I_{4}.$$

We shall go to the limit in all integrals I_i (for i=1, 2, 3, 4) as first n, then k, and finally s tend to infinity.

Starting with I_2 and letting $n \to \infty$, since $\nabla u_n \rightharpoonup \nabla u$ in $L_{\overline{M}}(Q)^N$ by Lebesgue theorem we get that

$$I_{2} = \int_{Q} a\left(x, t, \nabla v_{k} \chi_{k}^{s}\right) \left[\nabla u - \nabla v_{k} \chi_{k}^{s}\right] dx dt + \varepsilon(n).$$

Letting then $k \to \infty$ this imply

$$I_{2} = \int_{\{|\nabla u| > s\}} a(x, t, 0) \nabla u dx dt + \varepsilon(n, k).$$

Finally we deduce when s tends to infinity that

$$I_2 = \varepsilon(n, k, s). \tag{4.11}$$

For I_3 we have by letting $n \to \infty$ and using (4.8) that

$$I_3 = \int_Q h(\nabla v_k \chi_k^s - \nabla u \chi^s) dx dt$$

and so, by letting $k \to \infty$ in the integral of the last side and using the fact that $\nabla v_k \chi_k^s \to \nabla u \chi^s$ strongly in $(E_M(Q))^N$, we deduce that $I_2 = \varepsilon(n,k)$. For the fourth term I_4 , we have, by letting $n \to \infty$,

$$I_4 = -\int_{\{|\nabla u| > s\}} a(x, t, 0) \nabla u dx dt + \varepsilon(n),$$

and since the first term of the last side tends to zero as $s \to \infty$, we obtain $I_4 = \varepsilon(n, k, s)$. We have then proved that

$$\int_{Q} \left[a\left(x, t, \nabla u_{n}\right) - a\left(x, t, \nabla u \chi^{s}\right) \right] \left[\nabla u_{n} - \nabla u \chi^{s} \right] dxdt$$

$$= \int_{Q} \left[a\left(x, t, \nabla u_{n}\right) - a\left(x, t, \nabla v_{k} \chi_{k}^{s}\right) \right] \left[\nabla u_{n} - \nabla v_{k} \chi_{k}^{s} \right] dxdt$$

$$+ \varepsilon(n, k, s).$$

Finally we can deduce that

$$0 \le \int_{Q^r} \left(a(x, t, \nabla u_n) - a(x, t, \nabla u) \left(\nabla u_n - \nabla u \right) dx dt \right)$$
 (4.12)

$$\leq \int_{Q} \left[a\left(x,t,\nabla u_{n}\right) - a\left(x,t,\nabla v_{k}\chi_{k}^{s}\right) \right] \left[\nabla u_{n} - \nabla v_{k}\chi_{k}^{s} \right] dxdt + \varepsilon(n,k,s)$$

we can write

$$\int_{Q} \left[a\left(x,t,\nabla u_{n}\right) - a\left(x,t,\nabla v_{k}\chi_{k}^{s}\right) \right] \left[\nabla u_{n} - \nabla v_{k}\chi_{k}^{s} \right] dxdt = \int_{Q} a(x,t,\nabla u_{n}) \nabla u_{n} dxdt$$

$$-\int_{Q} (a(x,t,\nabla u_n) - a(x,t,\nabla v_k \chi_k^s) \nabla v_k \chi_k^s dx dt$$

$$= J_1 + J_2 + J_3. \tag{4.13}$$

First all we have by using (4.10) that

$$\limsup_{k \to \infty} \limsup_{n \to \infty} J_1 = \int_Q h \nabla u dx dt. \tag{4.14}$$

For J_2 , letting first $n \to \infty$ then k, and using Lebesgue theorem hence $\nabla v_k \chi_k^s \to \nabla u \chi^s$ strongly in $(E_M(Q))^N$ we get

$$J_2 = -\int_{Q} (h - a(x, t, \nabla u \chi^s)) \nabla u \chi^s dx dt + \varepsilon(n, k).$$

We can easily see that

$$J_2 = -\int_{Q^s} (h - a(x, t, \nabla u)) \nabla u dx dt + \varepsilon(n, k). \tag{4.15}$$

Letting $n \to \infty$ on J_3 we have

$$J_3 = -\int_{Q^s} a(x, t, \nabla u) \nabla u dx dt - \int_{\{|\nabla u| > s\}} a(x, t, 0) \nabla u dx dt. \tag{4.16}$$

Finally by combining (4.13), (4.14), (4.15), (4.16) we conclude that

$$\int_{O} \left[a\left(x, t, \nabla u_{n}\right) - a\left(x, t, \nabla v_{k} \chi_{k}^{s}\right) \right] \left[\nabla u_{n} - \nabla v_{k} \chi_{k}^{s} \right] dxdt = \tag{4.17}$$

$$= - \int_{\{|\nabla u| > s\}} a(x,t,0) \nabla u dx dt + \varepsilon(n,k)$$

So, when s tend to infinity (4.12) and (4.17) gives

$$\lim_{n \to \infty} \int_{Q^r} \left(a(x, t, \nabla u_n) - a(x, t, \nabla u) \left(\nabla u_n - \nabla u \right) dx dt = 0 \right)$$

and thus, as in the elliptic case see [3], we deduce that, for a subsequence still denoted by u_n ,

$$\nabla u_n \to \nabla u$$
 a.e. in Q (4.18)

Since a(x,t,.) is continuous then

$$a(x, t, \nabla u_n) \to a(x, t, \nabla u)$$
 a.e in Q

If we take in consideration that $a(x, t, \nabla u_n)$ is bounded in $(L_{\overline{M}}(Q))^N$ we have by lemma (4.4) of [19] that

$$a(x, t, \nabla u_n) \rightharpoonup a(x, t, \nabla u)$$
 weakly in $(L_{\overline{M}}(Q))^N$.

Therefore, we get for all $\varphi \in C^1([0,T], \mathcal{D}(\Omega))$,

$$-\int_{Q} u \frac{\partial \varphi}{\partial t} dx dt + \int_{Q} a(x, t, \nabla u) \nabla \varphi dx dt = \langle f, \varphi \rangle_{Q}$$
 (4.19)

Step 5: Passage to the limit

Going back to the approximating equations (4.2), then we obtain in the sense of distribution when n tend to infinity that

$$\frac{\partial u}{\partial t} - div(a(x, t, \nabla u)) = f(x, t)$$
 and $u(x, t) = 0$

Furthermore, by the fact that $\frac{\partial u_n}{\partial t} \to \frac{\partial u}{\partial t}$ in $W^{-1,x}L_{\overline{M}}(Q) + L^2(Q)$ for the modular convergence and we have already that $u_n \to u$ in $W_0^{1,x}L_M(Q) \cap L^2(Q)$ for the modular convergence, then by lemma (2.6) we get $u_n \to u$ in $C([0,T],L^2(\Omega))$, so using the periodicity condition, since

$$<\frac{\partial u}{\partial t}, u>=\lim_{n\to\infty}<\frac{\partial u_n}{\partial t}, u_n>=\frac{1}{2}[u_n(T)^2-u_n(0)^2]=0$$

we deduce finally

$$u(x,0) = u(x,T)$$
 in Ω .

Then the proof of theorem (3.1) is completed.

5. Appendix

let us consider the following approximate problem:

$$\begin{cases} u_n \in \mathcal{V}_n; \frac{\partial u_n}{\partial t} \in L^1(0, T, V_n); \\ u_n(x, 0) = u_n(x, T); \\ \text{and for all } \varphi \in \mathcal{V}_n \\ \int_Q \frac{\partial u_n}{\partial t} \varphi dx dt + \int_Q a(x, t, \nabla u_n) \nabla \varphi dx dt = \int_Q f_n \varphi dx dt \end{cases}$$

$$(5.1)$$

we will use the point fixed theorem due to Leray-Schauder to prove the existence of solution, for that let us consider the following initial boundary value problem

$$\begin{cases} \frac{\partial u_n}{\partial t} + A(u_n) = f_n \\ u_n(x,t) = 0 \\ u_n(0) = u_{0n} \end{cases}$$

$$(5.2)$$

where u_{0n} in V_n . And let $\overline{B}_n(0,R)$ be a closed ball in the space V_n with the norm $\|.\|$. We define the Poincarré operator by

$$P: \overline{B}_n(0,R) \to \overline{B}_n(0,R)$$

 $u_{0n} \mapsto u_n(T)$

We have to prove that P is continuous and relatively compact (i.e find the existence of a constant R>0 such that $\|u_{0n}\|\leq R\to \|u_n(T)\|\leq R$. let consider $\varphi=u_n$ in (4.2) we have

$$\int_{\Omega}\frac{\partial u_n}{\partial t}u_ndx+\int_{\Omega}a(x,t,\nabla u_n)\nabla u_ndx=\int_{\Omega}f_nu_ndx.$$

Using Hölder inequality to the term in the left hide sand we get

$$\int_{\Omega} \frac{\partial u_n}{\partial t} u_n dx + \int_{\Omega} a(x, t, \nabla u_n) \nabla u_n dx \le 2 \|f_n\|_{\overline{M}, \Omega} \|u_n\|_{M, \Omega}.$$

Then we can easily see that for $\varepsilon > 0$ there exist a constant $c(\varepsilon)$ such that

$$\frac{1}{2}\frac{d}{dt}\int_{\Omega}(u_n(t))^2dx+\int_{\Omega}a(x,t,\nabla u_n)\nabla u_ndx\leq C(\varepsilon)\|f_n\|_{\overline{M},\Omega}^2+\varepsilon\|u_n\|_{M,\Omega}^2$$

Using (3.2) we obtain

$$\frac{1}{2}\frac{d}{dt}\int_{\Omega}(u_n(t))^2dx + \alpha\int_{\Omega}M(\frac{|\nabla u_n|}{\lambda})dx \leq C(\varepsilon)\|f_n\|_{\overline{M},\Omega}^2 + \varepsilon\|u_n\|_{M,\Omega}^2.$$

By lemma 5.7 of [19] there exist two positive constants δ , λ such that

$$\int_{O} M(v) dx dt \leq \delta \int_{O} M(\lambda |\nabla v|) dx dt \quad \text{ for all } v \in W_{0}^{1,x} L_{M}(Q).$$

Then for $c_1 > 0$ we obtain

$$\frac{1}{2}\frac{d}{dt}\int_{\Omega}(u_n(t))^2dx + \alpha c_1\int_{\Omega}M(|u_n|)dx \le C(\varepsilon)\|f_n\|_{\overline{M},\Omega}^2 + \varepsilon\|u_n\|_{M,\Omega}^2$$

Using now (3.5), and by the choice of ε we can easily see that there exist $c_2 > 0$ such that

$$\frac{1}{2}\frac{d}{dt}\int_{\Omega} (u_n(t))^2 dx + c_2 \|u_n\|^2 \le C(\varepsilon) \|f_n\|_{\overline{M},\Omega}$$

Multiplying by e^{c_2t} and integrating by part we obtain

$$e^{c_2T} \|u_n(T)\|^2 \le 2\|f_n\|_{\overline{M},Q} + R^2$$

we choice R such that $R^2 > \frac{2e^{-c_2T}}{1-e^{-c_2T}}$ we deduce the existence of R > 0.

Now we pass to prove the continuity of P, for that we consider u_{0n} and ν_{0n} two sequences in $\overline{B}_n(0,R)$, by taking $\varphi = u_n - \nu_n$ such that u_n and ν_n satisfy (4.2) we get

$$\frac{1}{2}\frac{d}{dt}\int_{Q}(u_{n}(t)-\nu_{n}(t))^{2}dxdt+\int_{Q}(a(x,t,\nabla u_{n})-a(x,t,\nabla \nu_{n})(\nabla u_{n}-\nabla \nu_{n})dx=0$$

then using (3.2), we can write

$$||u_n(T) - \nu_n(T)||^2 \le ||u_{0n} - \nu_{0n}||^2$$
.

Finally we deduce the continuity of P, hence by the point fixed argument there exist u_n solution of (4.2) satisfy $u_n(T) = u_n(0)$.

References

- [1] Agarwal, R.P., Alghamdi, A.M., Gala, S., Ragusa, M.A., On the regularity criterionon one velocity component for the micropolar fluid equations, Math. Model. Anal., 28(2)(2023), 271-284.
- [2] Azroul, E., Redwane, H., Rhoudaf, M., Existence of a renormalized solution for a class of nonlinear parabolic equations in Orlicz spaces, Port. Math., 66(1)(2009), 29-63.
- [3] Benkirane, A., Elmahi, A., Almost everywhere convergence of the gradients of solutions to elliptic equations in Orlicz spaces and application, Nonlinear Anal, Theory Methods Appl., 28(1997), 1769-1784.
- [4] Boldrini, J.L., Crema, J., On forced periodic solutions of superlinear quasiparabolic problems, Electron. J. Differential Equations, 14(1998), 1-18.
- [5] Brézis, H., Browder, F.E., Strongly nonlinear parabolic initial boundary value problems, Proc. Nat. Acad. Sci. U.S.A., 76(1979), 38-40.
- [6] Donaldson, T., Inhomogeneous Orlicz-Sobolev spaces and nonlinear parabolic initial boundary value problems, J. Differential Equations, 16(1974), 201-256.
- [7] El Hachimi, A., Lamrani Alaoui, A., Existence of stable periodic solutions for quasilinear parabolic problems in the presence of well-ordered lower and upper-solutions, Electron. J. Differential Equations, 9(2002), 117-126.
- [8] El Hachimi, A., Lamrani Alaoui, A., Time periodic solutions to a nonhomogeneous Dirichlet periodic problem, Appl. Math. E-Notes, 8)(2008), 1-8.
- [9] El Hachimi, A., Lamrani Alaoui, A., Periodic solutions of nonlinear parabolic equations with measure data and polynomial growth in $|\nabla u|$, Recent Developments in Nonlinear Analysis, (2010).
- [10] El-Houari, H., Chadli, L.S., Moussa, H., On a class of Schrodinger system Problem in Orlicz-Sobolev spaces, J. Funct. Spaces, 2022(2022).

- [11] Elmahi, A., Strongly nonlinear parabolic initial-boundary value problems in Orlicz spaces, Electron. J. Differ. Equ. Conf., 9(2002), 203-220.
- [12] Elmahi, A., Meskine, D., Parabolic initial-boundary value problems in Orlicz spaces, Ann. Polon. Math., 85(2005), 99-119.
- [13] Gossez, J.-P., Some approximation properties in Orlicz-Sobolev spaces, Studia Math., 74(1982), 17-24.
- [14] Gwiazda, Swierczewska-Gwiazda, P., Wóblewska-Kamińska, A., Generalized Stokes system in Orlicz space, Discrete Contin. Dyn. Syst., 32(6)(2012), 2125-2146.
- [15] Gwiazda, Wittbold, P., Wróblewska-Kamińska, P., Zimmermann, A., Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces, J. Differential Equations, 253(2012), 635-666.
- [16] Gwiazda, Wittbold, P., Wróblewska-Kamińska, P., Zimmermann, A., Renormalized solutions to nonlinear parabolic problems in generalized musielak orlicz spaces, Nonlinear Anal., 129(2015), 1-36.
- [17] Krasnosel'skii, M., Rutickii, Y., Convex Functions and Orlicz Spaces, P. Noordhoff Groningen, 1969.
- [18] Landes, R., On Galerkin's method in the existence theory of quasilinear elliptic equations, J. Funct., 39(1980), 123-148.
- [19] Landes, R., Mustonen, V., A strongly nonlinear parabolic initial boundary value problem, Ark. Mat., 25(1987) 29-40.
- [20] Robert, J., Équations d'évolution; paraboliques fortement non linéaires, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 1.3-4(1974), 247-259.
- [21] Yee, T.L., Cheung, K.L., Ho, K.P., Integral operators on local Orlicz-Morrey spaces, Filomat, 36(4)(2022), 1231-1243.

Erriahi Elidrissi Ghita Faculty of Sciences "Dhar El Mahraz", Sidi Mohamed Ben Abdellah University, Department of Mathematics and Computer Science, B.P. 1769-Atlas Fez, Morocco e-mail: ghita.idrissi.s6@gmail.com

Azroul Elhoussine Faculty of Sciences "Dhar El Mahraz", Sidi Mohamed Ben Abdellah University, Department of Mathematics and Computer Science, B.P. 1769-Atlas Fez, Morocco e-mail: elhoussine.azroul@gmail.com

Lamrani Alaoui Abdelilah (D)
Faculty of Sciences "Dhar El Mahraz",
Sidi Mohamed Ben Abdellah University,
Department of Mathematics and Computer Science,
B.P. 1769-Atlas Fez, Morocco
e-mail: lamranii@gmail.com