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PC-Asymptotically almost automorphic mild
solutions for impulsive integro-differential
equations with nonlocal conditions
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Abstract. In this article, we study the existence of PC-asymptotically almost au-
tomorphic mild solutions of integro-differential equations with nonlocal conditions
via resolvent operators in Banach space. Further, we give sufficient conditions for
the solutions to depend continuously on the initial condition. Finally, an example
is given to validate the theory part.
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1. Introduction

In one of his most influential papers in 1964, S. Bochner introduced almost
automorphic functions [14]. In comparison to almost periodic functions, almost au-
tomorphic functions are more general. Many authors had established the almost au-
tomorphic solution of differential equations in abstract spaces, totically almost auto-
morphic coefficients. For more on asymptotically almost automorphic functions and
related issues, we refer the reader to [25] and the references therein.

N’Guérékata [31] is credited with introducing the concept of asymptotically al-
most automorphy, which serves as the main topic of discussion in this paper. The
study of the existence of almost automorphic and asymptotically almost automorphic
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solutions to differential equations is a highly intriguing subject within mathemati-
cal analysis. This topic holds significant appeal due to its potential applications in
various fields, including physics, economics, mathematical biology, engineering, etc.
We recommend reading [16, 15, 22, 32, 33] and its references for more details on the
fundamental theory of almost automorphic functions and its applications.

Grimmer’s work on utilizing resolvent operators to demonstrate the existence
of integro-differential systems. If one is interested in learning more about resolvent
operators and integro-differential systems, one can refer to the following sources:
[12, 13, 20, 23, 26, 27]. By consulting these references, one can gain a deeper un-
derstanding of the subject and explore further studies cited within them for more
in-depth information.

Shocks, harvesting, and natural disasters are a few examples of abrupt changes
that frequently affect the dynamics of evolution processes. These brief perturbations
are frequently treated as having occurred instantly or as impulses. It is crucial to
investigate dynamical systems with impulsive effects. Impulsive differential equations
can be used to define a variety of mathematical models in the study of population
dynamics, biology, ecology, and epidemics, among other topics. For the theory of
impulsive differential equations, and impulsive delay differential equations we refer to
[5, 6, 28, 10, 11, 7], and the references therein.

On the other hand, evolution equations with nonlocal initial conditions general-
ize evolution equations with classical initial conditions. Because more information is
considered, this notion is more thorough in explaining natural occurrences than the
classical one. See [9, 17, 35, 1, 7], and the references therein for further information
on the significance of nonlocal conditions in several branches of applied sciences.

Benchohra et al. in [8] have established the existence of asymptotically almost
automorphic mild solution to some classes of second order semilinear evolution equa-
tion. Moreover, in [18] Cao et al. discussed the existence of asymptotically almost
automorphic mild solutions for a class of nonautonomous semilinear evolution equa-
tions.

Motivated by the last two recent works, we will investigate the existence of PC-
asymptotically almost automorphic mild solutions for the following impulsive integro-
differential equation with nonlocal conditions:

φ′(ϑ) = Zφ(ϑ) +
∫ ϑ

0
Λ(ϑ− υ)φ(υ)dυ + Ψ (ϑ, φ(ϑ)) ; if ϑ ∈ J̃ ,

φ(ϑ+
ı )− φ(ϑ−ı ) = Iı(φ(ϑ−ı )), ı ∈ N,

φ(0) = φ0 + Ξ(φ),

(1.1)

where J = [0; +∞), J̃ = J \ {ϑı, ı ∈ N}, 0 = ϑ0 < ϑ1 < ϑ2 < . . . < ϑı → +∞, and
Z : D(Z) ⊂ f → f is the infinitesimal generator of a strongly continuous semigroup
{T (ϑ)}ϑ≥0, Λ(ϑ) is a closed linear operator with domain D(Z) ⊂ D(Λ(ϑ)), φ0 ∈ f.
The nonlinear term Ψ, Ξ and Iı are a given functions. φ(ϑ+

ı ) and φ(ϑ−ı ) denote the
left and right limit of φ at ϑ = ϑı, respectively. (f, ‖ · ‖) is a Banach space.
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This paper is organized in five sections. Section 2 is reserved for some prelim-
inary results and definitions which will be utilized throughout this manuscript. In
Section 3 we study the existence of PC-asymptotically almost automorphic solutions
to the system (1.1). And in section 4 we study the continuous dependence of the mild
solutions. In section 5, An example is presented to illustrate the efficiency of the result
obtained.

2. Preliminaries

In this section, we will go over some of the notations, definitions, and theorems
that will be used throughout the work.

Let J0 = [0, ϑ1] , Jı = (ϑı, ϑı+1] , for ı ∈ N, ξ (ϑ+) = limϑ→ϑ+ ξ(ϑ), and define
the space of piecewise continuous functions:

PC(J,f) =

{
ξ : J → f : ξ|Jı is continuous for ı ∈ N , such that ξ (ϑ−ı ) and ξ (ϑ+

ı )

exist and satisfy ξ (ϑ−ı ) = ξ (ϑı) , for ı ∈ N
}

.

Let
BPC(J,f) = {ξ ∈ PC(J,f) : ξ is bounded on R+},

be a Banach space with
‖ξ‖BPC = sup

ϑ∈J
{‖ξ(ϑ)‖} .

Let L1(J,f) be the Banach space of measurable functions ℵ : J → f which are
Bochner integrable, with the norm

‖ℵ‖L1 =

∫ +∞

0

‖ℵ(ϑ)‖dϑ,

We consider the following Cauchy problem{
φ′(ϑ) = Zφ(ϑ) +

∫ ϑ
0

Λ(ϑ− υ)φ(υ)dυ; for ϑ ≥ 0,
φ(0) = φ0 ∈ f.

(2.1)

The existence and properties of a resolvent operator has been discussed in [26]. In
what follows, we suppose the following assumptions:

(R1) Z is the infinitesimal generator of a uniformly continuous semigroup {T (ϑ)}ϑ>0,
(R2) For all ϑ ≥ 0,Λ(ϑ) is closed linear operator from D(Z) to f and Λ(ϑ) ∈

Λ(D(Z),f). For any φ ∈ D(Z), the map ϑ → Λ(ϑ)φ is bounded, differentiable
and the derivative ϑ→ Λ′(ϑ)φ is bounded uniformly continuous on R+.

Theorem 2.1. [26] Assume that (R1)− (R2) hold, then there exists a unique resolvent
operator for the Cauchy problem (2.1).

The concept of ”PC-almost automorphic operator” was defined by G.M. N’Guérékata
and A. Pankov in [34]. So now, we recall some basic definitions and results on almost
automorphic functions and asymptotically almost automorphic functions.

Definition 2.2. A function ℵ ∈ PC(R,f) is said to be PC−almost automorphic if
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1. The sequence of impulsive moments {ϑı}ı∈N is a almost automorphic sequence
2. For every sequence of real numbers {τ ′n}, there exists a subsequence {τnı

} such
that

ℵ̂(ϑ) = lim
ı→∞

ℵ (ϑ+ τnı
) ,

is well defined for each ϑ ∈ R and

lim
ı→∞

ℵ̂ (ϑ− τnı
) = ℵ(ϑ) for each ϑ ∈ R.

Denote by AAPC(R,f) the set of all such functions.

Lemma 2.3. [32] AAPC(R,f) is a Banach space with

‖ℵ‖PC∗ = sup
ϑ∈R
‖ℵ(ϑ)‖.

Definition 2.4. A function ℵ ∈ PC(R× f,f) is said to be PC−almost automorphic
if

1. The sequence of impulsive moments {ϑı}ı∈N is a almost automorphic sequence.
2. For every sequence of real numbers {τ ′n}, there exists a subsequence {τnı

} such
that

lim
ı→∞

ℵ (ϑ+ τnı
, φ) = ℵ̂(ϑ, φ),

is well defined for each ϑ ∈ R and

lim
ı→∞

ℵ̂ (ϑ− τnı
, φ) = ℵ(ϑ, φ),

for each ϑ ∈ R and each φ ∈ f.

The collection of those functions is denoted by AAPC(R× f,f).

The space of all piecewise continuous functions ℵ̃ : R+ → f such that

limϑ→∞ ℵ̃(ϑ) = 0 is denoted by PC0 (R+,f). Moreover, we denote PC0 (R+ × f,f);
the space of all piecewise continuous functions from R+ × f to f satisfying

limϑ→∞ ℵ̃(ϑ, φ) = 0 in ϑ and uniformly in φ ∈ f.

Definition 2.5. A function ℵ : R+ → f is said to be PC−asymptotically almost
automorphic if it can be decomposed as

ℵ(ϑ) = ℵ̂(ϑ) + ℵ̃(ϑ),

where
ℵ̂ ∈ AAPC(R,f), ℵ̃ ∈ PC0

(
R+,f

)
.

Denote by G = AAAPC (R+,f) the set of all such functions with the norm

‖φ‖G = sup
ϑ∈J
{‖φ(ϑ)‖} .

Definition 2.6. A function ℵ : R+ × f → f is said to be PC−asymptotically almost
automorphic if it can be decomposed as

ℵ(ϑ, φ) = ℵ̂(ϑ, φ) + ℵ̃(ϑ, φ),

where
ℵ̂ ∈ AAPC(R× f,f), ℵ̃ ∈ PC0

(
R+ × f,f

)
.
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Denote by AAAPC (R+ × f,f) the set of all such functions.

Lemma 2.7. [21] Let ℵ ∈ AAPC (R+ × f,f) and write ℵ = ℵ̂+ℵ̃ where ℵ̂ ∈ AAPC(R×
f,f), ℵ̃ ∈ PC0(R+×f,f). Suppose that both ℵ̂ and ℵ̃ are Lipschitz in x ∈ f uniformly
in ϑ, i.e., there exists L1, L2 > 0 such that

‖ℵ̂(ϑ, φ)− ℵ̂(ϑ, φ̂)‖ ≤ L1‖φ− φ̂‖ for a.e ϑ ∈ Rand each φ, φ̂ ∈ f.
and

‖ℵ̃(ϑ, φ)− ℵ̃(ϑ, φ̂)‖ ≤ L2‖φ− φ̂‖ for a.e ϑ ∈ R+and each φ, φ̂ ∈ f.
Then φ ∈ AAAPC(R+,f) implies that ℵ(·, φ(·)) ∈ AAAPC(R+,f).

Lemma 2.8. [29] ℵ : R × f → f is PC-almost automorphic, and assume that ℵ(ϑ, ·)
is uniformly continuous on each bounded subset k ⊂ f uniformly for ϑ ∈ R, that is

for any ε > 0, there exists % > 0 such that φ, φ̂ ∈ k and ‖φ(ϑ)− φ̂(ϑ)‖ < % imply that

‖ℵ(ϑ, φ)−ℵ(ϑ, φ̂)‖ < ε for all ϑ ∈ R. Let ϕ : R→ f be PC-almost automorphic. Then

the function k̂ : R→ f defined by k̂(ϑ) = ℵ(ϑ, ϕ(ϑ)) is PC-almost automorphic.

Lemma 2.9. [29] Suppose that ℵ(ϑ, φ) = ℵ̂(ϑ, φ) + ℵ̃(ϑ, φ) is an asymptotically almost

automorphic function with ℵ̂ ∈ AAPC(R × f,f), ℵ̃ ∈ PC0(R+ × f,f), and ℵ̂ is
uniformly continuous on any bounded subset k ⊂ X uniformly for ϑ ∈ R. Then
φ ∈ AAAPC(R,f) implies ℵ ∈ AAAPC(R,f)

Now, for ϑ ∈ R+ we define the following functions:

Φ1(ϑ) =

∫ ϑ

−∞
<(ϑ− υ)Y (υ)dυ, and Φ2(ϑ) =

∫ ϑ

0

<(ϑ− υ)Z(υ)dυ.

Lemma 2.10. We assume that

(R3) The resolvent <(ϑ) is exponentially stable i.e, there exist X< ≥ 1 and b ≥ 0,
such that

‖<(ϑ)‖B(f) ≤ X<e
−bϑ, for all ϑ ∈ J.

Then

(i) If Y ∈ AAPC(R,f), then Φ1 ∈ AAPC(R,f).
(ii) If Z ∈ PC0(R+,f), then Φ2 ∈ PC0(R+,f).

Proof. For (i), choose a bounded subset k of f such that Y (ϑ) ∈ k for all ϑ ∈ R.
Since Y ∈ AAPC(R,f) and the resolvent <(ϑ) is exponentially stable it follows that
for every sequence of real numbers τ ′n, we can extract a subsequence τnı

such that

(i1) limı→+∞ Y (ϑ+ τnı) = Ỹ (ϑ),

(i2) limı→+∞ Ỹ (ϑ− τnı
) = Y (ϑ).

Write

Φ̃1(ϑ) :=

∫ ϑ

−∞
<(ϑ− υ)Ỹ (υ)dυ, ϑ ∈ R+.

Then

‖Φ1(ϑ+ τnı
)− Φ̃1(ϑ)‖ =

∥∥∥∥∥
∫ ϑ+τnı

−∞
<(ϑ+ τnı

− υ)Y (υ)dυ −
∫ ϑ

−∞
<(ϑ− υ)Ỹ (υ)

∥∥∥∥∥
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=

∥∥∥∥∥
∫ ϑ

−∞
<(ϑ− υ)Y (υ + τnı

)dυ −
∫ ϑ

−∞
<(ϑ− υ)Ỹ (υ)

∥∥∥∥∥
≤
∫ ϑ

−∞
‖<(ϑ− υ)‖

∥∥∥Y (υ + τnı
)− Ỹ (υ)

∥∥∥ dυ
≤ X<

b
sup
ϑ∈R

∥∥∥Y (ϑ+ τnı)− Ỹ (ϑ)
∥∥∥ .

Since the resolvent <(ϑ) is exponentially stable together with the Lebesgue dominated
convergence theorem and (i1) it follows that

lim
ı→+∞

Φ1(ϑ+ τnı
) = Φ̃1(ϑ), ϑ ∈ R.

Similarly by (i2) we can prove that

lim
ı→+∞

Φ̃1(ϑ− τnı) = Φ1(ϑ), ϑ ∈ R.

Hence, Φ1 ∈ AAPC(R,f).
Now for (ii), one can choose κ > 0 such that

‖Z(ϑ)‖ < ε, ∀ϑ > κ.

This enables us to conclude that for all ϑ > κ,

‖Φ2(ϑ)‖ =

∥∥∥∥∥
∫ ϑ

0

<(ϑ− υ)Z(υ)dυ

∥∥∥∥∥
=

∥∥∥∥∥
∫ κ

0

<(ϑ− υ)Z(υ)dυ +

∫ ϑ

κ
<(ϑ− υ)Z(υ)dυ

∥∥∥∥∥
≤
∥∥∥∥∫ κ

0

<(ϑ− υ)Z(υ)dυ

∥∥∥∥+

∥∥∥∥∥
∫ ϑ

κ
<(ϑ− υ)Z(υ)dυ

∥∥∥∥∥
≤ X<e

−b(ϑ−κ)

b
‖Z‖+

X<ε

b
.

Consequently limϑ→+∞ ‖Φ2(ϑ)‖ = 0.
Now, we define the Kuratowski measure of noncompactness.

Definition 2.11. [4] Let k be a Banach space and ∇k the bounded subsets of k. The
Kuratowski measure of noncompactness is the map α : ∇k → [0,∞) defined by

α(=) = inf{ε > 0 : = ⊆ ∪ni=1=i and diam(=i) ≤ ε}; here = ∈ ∇k,

where

diam(=i) = sup{‖ξ − ξ̂‖ : ξ, ξ̂ ∈ =i}.

Lemma 2.12. [24] If Y is a bounded subset of a Banach space k, then for each ε > 0,
there is a sequence {φı}∞ı=1 ⊂ Y such that

α(Y ) ≤ 2α ({φı}∞ı=1) + ε.
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Lemma 2.13. [30] If {φı}∞ı=0 ⊂ L1 is uniformly integrable, then the function ϑ →
α({φı(ϑ)}∞ı=0) is measurable and

α

({∫ ϑ

0

φı(υ)dυ

}∞
ı=0

)
≤ 2

∫ ϑ

0

α ({φı(υ)}∞ı=0) dυ.

Theorem 2.14. (Darbo’s fixed point theorem, [19]). Let = be a nonempty, bounded,
closed and convex subset of a Banach space k and let T : = → = be a continuous
mapping. Assume that there exists a constant ı ∈ [0, 1), such that

α(TM) ≤ ıα(M),

for any nonempty subset M of =. Then T has a fixed point in set =.

3. The main result

In this section we discuss existence of PC-asymptotically almost automorphic
mild solutions via resolvent operators for problem (1.1). In order to establish a measure
of noncompactness in the space G, let us first recall the specific measure of noncom-
pactness that results from [8]. This measure will be used in our main results. Let us fix

a nonempty bounded subset = in the space G, for ξ̂ ∈ =, κ > 0, ε > 0 and κ, τ ∈ [0,κ],

such that |κ− τ | ≤ ε. We denote ωκ(ξ̂, ε) the modulus of continuity of the function ξ̂
on the interval [0,κ], namely,

ωκ(ξ̂, ε) = sup{‖ξ̂(κ)− ξ̂(τ)‖ ; κ, τ ∈ [0,κ] ∩ J̃},
ω0(=) = limκ→+∞ limε→0 sup{ωκ(ξ̂, ε) ; ξ̂ ∈ =}.

Finally, consider the function χ∗ defined on the family of subset of G by the formula

χ∗(=) = ω0 (=) + sup
ϑ∈J

α(=(ϑ)),

and notice that if the set = is equicontinuous and equiconvergent, then ω0 (=) = 0.

Definition 3.1. A function φ ∈ G is called a PC-asymptotically almost automorphic
mild solution of problem (1.1), if it satisfies the following integral equation

φ(ϑ) = <(ϑ)(φ0 + Ξ(φ)) +

∫ ϑ

0

<(ϑ− υ)Ψ(υ, φ(υ))dυ

+
∑

0<ϑı<ϑ

<(ϑ− ϑı)Iı(φ(ϑ−ı )), ϑ ∈ J.

The following hypotheses will be used in the sequel.

(A1) Assume that (R1)− (R3) hold.

(A2) i) The sequence of impulsive moments ϑı is asymptotically almost automor-
phic.

ii) Ψ : J ×f −→ f is a Carathéodory function and PC-asymptotically almost

automorphic ie., Ψ(ϑ, φ) = ℵ̂(ϑ, φ) + ℵ̃(ϑ, φ) with

ℵ̂ ∈ AAPC(R× f,f), ℵ̃ ∈ PC0(R+ × f,f).
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iii) There exists a function β ∈ L1(J,R+), such that :

‖Ψ(ϑ, x)−Ψ(ϑ, φ)‖ ≤ β(ϑ)‖x− φ‖, for all x, φ ∈ f.

Also we assume that Ψ(ϑ, 0) = 0.
(A3) Ξ : G→ f is continuous and there exists LΞ > 0, such that,

‖Ξ(ξ)− Ξ(ξ̂)‖ ≤ LΞ‖ξ − ξ̂‖G, for all ξ, ξ̂ ∈ G.

Also we assume that Ξ(0) = 0.
(A4) Iı : f→ f is Lipschitz continuous with Lipschitz constants mı, ı ∈ N, such that

‖Iı(κ3)− Iı(κ4)‖ ≤ mı‖κ3 − κ4‖, for all κ3, κ4 ∈ f, ı ∈ N.

And Iı(0) = 0.

Theorem 3.2. Assume that the conditions (A1)− (A4) are satisfied. If

X<

(
LΞ + 4‖β‖L1 +

∞∑
ı=0

mı

)
< 1,

then the problem (1.1) has a PC-asymptotically almost automorphic mild solution.

Proof. Consider the operator Θ : G −→ G defined by

(Θφ)(ϑ) = <(ϑ)(φ0 + Ξ(φ)) +

∫ ϑ

0

<(ϑ− υ)Ψ(υ, φ(υ))dυ

+
∑

0<ϑı<ϑ

<(ϑ− ϑı)Iı(φ(ϑ−ı )), ϑ ∈ J,

where φ ∈ G with φ = φ1 +φ2, φ1 is the principal term and φ2 the corrective term of
φ1.
Step 1 : Θ is well-defined, i.e Θ(G) ⊂ G.
We have Θ(G) ⊂ PC(J,f). Now, let

ζ(ϑ) = <(ϑ) (φ0 + Ξ(φ)) ,

then

‖ζ(ϑ)‖ ≤ X<e
−bt (‖φ0‖+ LΞ‖φ‖) .

Since b > 0 , we get limϑ−→+∞ |ζ(ϑ)| = 0. Thus ζ ∈ PC0(R+,f).
From assumption (A2), we can write

Ψ(ϑ, φ(ϑ)) = ℵ̂(ϑ, φ2(ϑ)) + Ψ(ϑ, φ(ϑ))−Ψ(ϑ, φ2(ϑ)) + ℵ̃(ϑ, φ2(ϑ))

= ℵ̂(ϑ, φ2(ϑ)) + U(ϑ, φ(ϑ)).

Then, we get∫ ϑ

0

<(ϑ− υ)Ψ(υ, φ(υ))dυ

=

∫ ϑ

0

<(ϑ− υ)ℵ̂(υ, φ2(υ))dυ +

∫ ϑ

0

<(ϑ− υ)U(υ, φ(υ))dυ
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=

∫ ϑ

−∞
<(ϑ− υ)ℵ̂(υ, φ2(υ))dυ +

∫ 0

−∞
<(ϑ− υ)ℵ̂(υ, φ(υ))dυ

+

∫ ϑ

0

<(ϑ− υ)U(υ, φ(υ))dυ

= Υ1φ(ϑ) + Υ2φ(ϑ),

where

(Υ1φ)(ϑ) =

∫ ϑ

−∞
<(ϑ− υ)ℵ̂(υ, φ2(υ))dυ,

(Υ2φ)(ϑ) =

∫ 0

−∞
<(ϑ− υ)ℵ̂(υ, φ(υ))dυ +

∫ ϑ

0

<(ϑ− υ)U(υ, φ(υ))dυ,

and

(∆1φ)(ϑ) =

∫ ϑ

0

<(ϑ− υ)U(υ, φ(υ))dυ,

(∆2φ)(ϑ) =

∫ 0

−∞
<(ϑ− υ)ℵ̂(υ, φ2(υ))dυ.

Using (A2) and Lemma 2.8, We deduce that υ −→ ℵ̂(υ, φ2(υ)) is in AAPC(R×f,f).
Thus, by Lemma 2.8, we obtain

Υ1φ ∈ AAPC(R+ × f,f).

Let us prove that ∆1φ ∈ PC0(R+ ×f,f), indeed by definition U ∈ PC0(R+ ×f,f),
that means given ε > 0, there exists κ > 0 such that for ϑ ≥ κ, we have ‖U(ϑ, φ)‖ ≤ ε.
Therefore if ϑ ≥ κ, we get∫ ϑ

κ
‖<(ϑ− υ)‖‖U(υ, φ(υ))‖dυ ≤ X<ε

∫ ϑ

κ
e−b(ϑ−υ)dυ

≤ X<
b
ε,

then

‖(∆1φ)(ϑ)‖ ≤ X<
b
ε.

Thus
∆1 ∈ PC0(R+ × f,f).

Next, let us show that ∆2φ ∈ PC0(R+ × f,f), we have

‖(∆2φ)(ϑ)‖ =
∥∥∥∫ 0

−∞<(ϑ− υ)ℵ̂(υ, φ2(υ))dυ
∥∥∥

≤ X< supϑ∈R ‖ℵ̂(ϑ, φ2(ϑ))‖
∫ κ

0
e−b(ϑ−υ)dυ

+X<‖ℵ̂‖PC∗ e
−b(ϑ−κ)

b −→ 0, as ϑ −→∞.
Therefore, ∆2φ ∈ PC0(R+ × f,f).
Also we have

‖
∑

0<ϑı<ϑ

<(ϑ− ϑı)Iı(φ(ϑı)‖ ≤ X<‖φ‖G
+∞∑
ı=0

e−b(ϑ−ϑı)mı −→ 0, as ϑ −→∞.
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Consequently, from the previous estimates we deduce that Θ(G) ⊂ G.
Next, we shall check that operator Θ satisfies all conditions of Darbo’s theorem.
Let =θ = {φ ∈ G ; ‖φ‖G ≤ θ}, the set =θ is bounded, closed and convex.
Step 2 : Θ(=θ) ⊂ =θ.
For each φ ∈ =θ and by (A1), (A2) and (A3), we have

‖Ξ(φ)‖ ≤ LΞ‖φ‖G.

Then,

‖Θφ(ϑ)‖ ≤ X<(‖φ0‖+ ‖Ξ(φ)‖) + X<

∫ ϑ

0

‖Ψ(υ, φ(υ))‖dυ

+ X<
∑

0<ϑı<ϑ

‖Iı(φ(ϑ−ı ))‖

≤ X<(‖φ0‖+ LΞθ) + X<θ‖β‖L1 + X<θ

∞∑
ı=0

mı.

Hence Θ(=θ) ⊂ =θ, provided that

θ >
X<‖φ0‖

1− X<(LΞ + ‖β‖L1 +
∑∞
ı=0mı)

.

Step 3: Θ is continuous.
Let xm be a sequence such that φm → φ∗ in G, then we have,

‖(Θφm)(ϑ)− (Θφ∗)(ϑ)‖

≤ X<‖Ξ(φm)− Ξ(φ∗)‖+ X<

∫ ϑ

0

‖Ψ(υ, φm(υ))−Ψ(υ, χ∗(υ))‖dυ

+X<
∑

0<ϑı<ϑ

mı‖φm(ϑ−ı )− φ∗(ϑı)‖.

Since the function Ψ is Carathédory and Ξ is continuous, the Lebesgue dominated
converge theorem implies that :

‖(Θφm)− (Θφ∗)‖G → 0, as m→ +∞.

Thus, Θ is continuous.
Step 4: Θ(=θ) is equicontinuous. Let ϑ1, ϑ2 ∈ J with ϑ2 > ϑ1. For all φ ∈ =θ, we
have

‖(Θφ)(ϑ2)− (Θφ)(ϑ1)‖

= ‖
∫ ϑ2

0

<(ϑ2 − υ)Ψ(υ, φ(υ))dυ −
∫ ϑ1

0

<(ϑ1 − υ)Ψ(υ, φ(υ))dυ

+
∑

0<ϑı<ϑ2

<(ϑ2 − ϑı)Iı(φ(ϑı))−
∑

0<ϑı<ϑ1

<(ϑ1 − ϑı)Iı(φ(ϑı))‖

≤
∫ ϑ1

0

‖<(ϑ2 − υ)−<(ϑ1 − υ)‖ ‖Ψ(υ, φ(υ))‖ dυ
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+

∫ ϑ2

ϑ1

‖<(ϑ2 − υ)‖ ‖Ψ(υ, φ(υ))dυ‖

+
∑

ϑ1<ϑı<ϑ2

‖<(ϑ2 − ϑı)‖‖Iı(φ(ϑı))‖

+
∑

0<ϑı<ϑ1

‖(<(ϑ2 − ϑı)−<(ϑ1 − ϑı)‖‖Iı(φ(ϑı))‖

≤ θ

∫ ϑ1

0

‖(<(ϑ2 − υ)−<(ϑ1 − υ))‖β(υ)dυ + X<θ

∫ ϑ2

ϑ1

β(υ)dυ

+θ
∑

0<ϑı<ϑ1

mı‖<(ϑ2 − ϑı)−<(ϑ1 − ϑı)‖+ X<θ
∑

ϑ1<ϑı<ϑ2

mıe
−b(ϑ2−ϑı).

Since <(ϑ) is strongly continuous and β ∈ L1, we get

‖(Θφ)(ϑ2)− (Θφ)(ϑ1)‖ −→ 0 as ϑ2 −→ ϑ1,

which implies that Θ(=θ) is equicontinuous.
Step 5: Θ(=θ) is equiconvergent.
For φ ∈ =θ and ϑ ∈ J , we have

‖(Θφ)(ϑ)‖ ≤ ‖<(ϑ)‖B(f)[‖φ0‖+ ‖Ξ(φ)‖] +

∫ ϑ

0

‖<(ϑ− υ)‖β(υ)‖φ(υ)‖dυ

+
∑

0<ϑı<ϑ

‖<(ϑ− ϑı)‖‖Iı(φ(ϑı))‖

≤ X<e
−bϑ (‖φ0‖+ LΞθ) + X<θ

∫ ϑ

0

e−b(ϑ−υ)β(υ)dυ

+X<θ

p∑
ı=0

e−b(ϑ−ϑı)mı

−→ X< (‖φ0‖+ LΞθ) + X<θ‖β‖L1 as ϑ −→ +∞.
Then

‖(Θφ)(ϑ)− (Θφ)(+∞)‖ −→ 0 as ϑ −→ +∞.
Step 6: Let ∇ be a bounded equicontinuous subset of =θ, we have {Θ(∇)} is
equicontinuous and in addition to the estimate given in step 1 and step 5 we have,
ω0 (Θ(∇)) = 0.
From Lemma 2.12 and 2.13 it follow that for any % > 0, there exists a sequence
{φm}∞ı=0 ⊂ ∇ such that

α

(∫ ϑ

0

<(ϑ− υ)Ψ(υ, φ(υ))dυ ;φ ∈ ∇

)

≤ 2α

(∫ ϑ

0

<(ϑ− υ)Ψ(υ, φm(υ))dυ ;φ ∈ ∇

)
+ %

≤ 4

∫ ϑ

0

α

(
<(ϑ− υ)Ψ(υ, φm(υ))dυ ;φ ∈ ∇

)
+ %.
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For any bounded set ∇ ⊂ f and ϑ ∈ J , and by [2] the Lipschitz conditions on the
functions Ψ, Ξ and Iı, we get

α(Ψ(ϑ,∇(ϑ))) ≤ β(ϑ)α(∇(ϑ)),

α(Iı(ϑ,∇(ϑ))) ≤ mıα(∇(ϑ)),

α(Ξ(∇(ϑ))) ≤ LΞχ∗(∇).

Then

α(Θ∇(ϑ)) ≤ X<LΞχ∗(∇) + 4

∫ ϑ

0

X<β(υ)α(∇(υ))dυ

+X<
∑

0<ϑı<ϑ

mıα(∇(ϑı)) + %

≤ X<LΞχ∗(∇) + 4X<‖β‖L1 sup
ϑ∈J

α(∇(ϑ))

+X<
∑

0<ϑı<ϑ

mıα(∇(ϑı)) + %.

Since % is arbitrary, we obtain

α(Θ∇(ϑ)) ≤ X<LΞχ∗(∇) + X<

(
4‖β‖L1 +

∑
0<ϑı<ϑ

mı

)
sup
ϑ∈J

α(∇(ϑ)).

Therefore

χ∗(Θ∇) ≤ X<

(
LΞ + 4‖β‖L1 +

∑
0<ϑı<ϑ

mı

)
χ∗(∇).

Thus Θ is χ∗-contraction. By Theorem 2.13 we conclude that Θ has at least one
fixed point φ ∈ =θ, which is a PC-asymptotically almost automorphic mild solution
of problem (1.1) .

4. Continuous dependence on the initial condition

In this section we need the following lemma:

Lemma 4.1. [3] Let the following inequality holds:

ξ(ϑ) ≤ a(ϑ) +

∫ ϑ

0

b(υ)dυ +
∑

0≤ϑı<ϑ

ςıξ
(
ϑ−ı
)
, ϑ ≥ 0,

where ξ, a, b ∈ PC (R+,R+) , and a is nondecreasing, b(ϑ) > 0, ςı > 0, ı ∈ N. Then,
for ϑ ∈ R+, the following inequality is valid:

ξ(ϑ) ≤ a(ϑ)(1 + ς)ı exp

(∫ ϑ

0

b(υ)dυ

)
ϑ ∈ [ϑı, ϑı+1] , ı ∈ N,

where ς = max {ςı : ı ∈ N}.
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Theorem 4.2. If the assumption of Theorems 3.2 are fulfilled, then the solution of the
problem (1.1) depends continuously on the initial condition.

Proof. Let φ0, φ
∗
0 ∈ f. From Theorem 3.2, there exist φ (·, φ0), φ∗ (·, φ∗0) ∈ G such that

φ(ϑ) = <(ϑ)(φ0+Ξ(φ))+

∫ ϑ

0

<(ϑ−υ)Ψ(υ, φ(υ))dυ+
∑

0<ϑı<ϑ

<(ϑ−ϑı)Iı(φ(ϑ−ı )), ϑ ∈ J,

and

φ∗(ϑ) = <(ϑ)[φ∗0+Ξ(φ)]+

∫ ϑ

0

<(ϑ−υ)Ψ(υ, φ∗(υ))dυ+
∑

0<ϑı<ϑ

<(ϑ−ϑı)Iı((ϑ−ı )), ϑ ∈ J.

Then for $(ϑ) = ‖φ(ϑ)− φ∗(ϑ)‖, we have

sup
ϑ∈J

$(ϑ) ≤ X<‖φ0 − φ∗0‖+ X<‖Ξ(φ)− Ξ(φ∗)‖+ X<

∫ ϑ

0

β(υ)$(υ)dυ

+X<
∑

0<ϑı<ϑ

mı$(ϑ−ı )

≤ X∗‖φ0 − φ∗‖+ X∗
∫ ϑ

0

β(υ)$(υ)dυ +
∑

0<ϑı<ϑ

X∗mı$(ϑ−ı ),

where X∗ = X<
1−X<LΞ

.
Now, applying Lemma 4.1, we get

‖φ− φ∗‖G ≤ X∗δ(1 +m∗)ı exp(X∗‖β‖L1),

where m∗ = X∗maxı∈N mı.
Therefore if δ is small enough, we obtain

‖φ− φ∗‖G ≤ ε.

It follows that the PC-Asymptotically almost automorphic mild solutions of the prob-
lem (1.1) depends continuously on the initial condition.

5. An example

Consider the following partial differential equation :

∂
∂ϑ (φ(ϑ, x)) = ∂2φ(ϑ,x)

∂x2 +
∫ ϑ

0
Γ(ϑ− υ)∂

2φ(υ,x)
∂x2 dυ + cos2(ϑ) sin(πφ(ϑ,x))

30
√

1+ϑ2(1+|φ(ϑ,x)|)eϑ

+ e−ϑcos2(ϑ)

6
√

1+ϑ2
sin
(

1
cos(ϑ)+cos

√
2ϑ+2

)
|(φ(ϑ, x))|, ϑ ∈ Ĵ , x ∈ [0, π],

Iıφ(ϑı, x) =
7−ıφ(ϑ−ı ,x)

9
√

1+|φ(ϑ−ı ,x)|
, for ı ∈ N, and x ∈ (0, π).

φ(ϑ, 0) = φ(ϑ, π) = 0, ϑ ∈ R+,

φ(0, x) + 9
28

∑2
i=1

1
3iφ

(
1
i , x
)

= ex, x ∈ [0, π],

(5.1)
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where Ĵ = R+−{ϑı}ı∈N, and {ϑı} is an almost automorphic sequence of positive real
numbers.
Let f = L2(0, π) be the space of 2-integrable functions from [0, π] into R+.
Define

φ(ϑ)(x) = φ(ϑ, x), Ξ(φ) =
9

28

2∑
i=1

1

3i
φ

(
1

i
, x

)
,

and

Ψ(ϑ, φ(ϑ)) =
e−ϑcos2(ϑ)

6
√

1 + ϑ2
sin

(
1

cosϑ+ cos
√

2ϑ+ 2

)
‖φ(ϑ)‖+

e−ϑ cos2(ϑ) sinπφ(ϑ)

30
√

1 + ϑ2(1 + |φ(ϑ)|)
,

Iı(φ(ϑ−ı )) =
7−ıφ(ϑ−ı )

9
√

1 + |φ(ϑ−ı )|
.

Consider the operator Λ(ϑ) : f 7→ f as follows:

Λ(ϑ)z = Γ(ϑ)Zz, for ϑ ≥ 0, z ∈ D(Z),

where Z is defined by
D(Z) = {ϕ ∈ f / ϕ, ϕ′ are AC, ϕ′′ ∈ L2(0, π) , ϕ(0) = ϕ(π) = 0},

(Zϕ)(x) = ∂2ϕ(ϑ,x)
∂x2 .

It is well known that Z generates a strongly continuous semigroup (T (ϑ))ϑ≥0, which

is dissipative and compact with ‖T (ϑ)‖ ≤ e−φ
2ϑ, and for some σ > 1

φ2 . We assume

that

‖Γ(ϑ)‖ ≤ e−φ
2ϑ

σ
, and ‖Γ′(ϑ)‖ ≤ e−φ

2ϑ

σ2
.

It follows from [26], that ‖<(ϑ)‖ ≤ e−ϑ, where  = 1− σ−1.
Then (A1) hold with X< = 1 and b = 1− σ−1.
Consequently, the problem can be written in the abstract form (1.1) with Z, Λ, Ξ
and Ψ as defined above.
Now, let

Ψ(ϑ, φ(ϑ)) = ℵ̂(ϑ, φ(ϑ)) + ℵ̃(ϑ, φ(ϑ)),

where

ℵ̂(ϑ, φ(ϑ)) =
e−ϑcos2(ϑ)

6
√

1 + ϑ2
sin

(
1

cosϑ+ cos
√

2ϑ+ 2

)
|φ(ϑ)|,

ℵ̃(ϑ, φ(ϑ)) =
e−ϑ cos2(ϑ) sinπφ(ϑ)

30
√

1 + ϑ2(1 + |φ(ϑ)|)
.

Then it is easy to verify that the function ℵ̂, ℵ̃ : R+ × f −→ f are continuous and

ℵ̂ ∈ AA(R+ × f;f), with

‖ℵ̂(ϑ, z1(ϑ))− ℵ̂(ϑ, z2(ϑ))‖ ≤ 1

6
‖z1(ϑ)− z2(ϑ)‖, for all ϑ ∈ J, z1, z2 ∈ f,

‖ℵ̃(ϑ, z(ϑ))‖ ≤ 1

30
√

1 + ϑ2
, for all ϑ ∈ J, z ∈ f,
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which implies that ℵ̃ ∈ PC0(R+ × f,f).
For the function Ψ, we can make the following estimates:

‖Ψ(ϑ, φ1(ϑ))−Ψ(ϑ, φ2(ϑ))‖ ≤ e−ϑ cos2 ϑ

6
√

1 + ϑ2
‖φ1(ϑ)− φ2(ϑ)‖.

For every ϑ ∈ J and = ⊂ f, we have

α(Ψ(ϑ,=(ϑ))) ≤ e−ϑ cos2 ϑ

6
√

1 + ϑ2
α(=(ϑ)),

Then, β(ϑ) = e−ϑ cos2 ϑ
6
√

1+ϑ2
, which belongs to L1(J,R+). We have also the following

estimates,

‖Ξ(φ1)− Ξ(φ1)‖ ≤ 1

7
‖φ1 − φ2‖G,

‖Iıφ1(ϑı)− Iıφ2(ϑı)‖ ≤
7−ı

9
‖φ1(ϑı)− φ2(ϑı)‖,

and

X<

(
LΞ + 4‖β‖L1 +

∞∑
ı=0

mı

)
' 0, 6 < 1.

Thus, Theorem 3.2 yields, then the problem (5.1) has a PC-asymptotically almost
automorphic mild solution.
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[33] N’Guérékata, G.M., Topics in Almost Automorphy, Springer, New York, Boston, Dor-
drecht, London, Moscow, 2005.
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