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1. Introduction and preliminaries

Many coupled fixed point results were given in the context of complete gener-
alized metric spaces, for generalized contraction mappings. If we carefully examine
their proofs by the iteration method, we can see that in some cases, not all of the
metric properties are essentials. We give here some coupled fixed point theorems and
applications in a more general setting, the so called generalized Kasahara space.

We recall first the notion of L-space, given by M. Fréchet in [4].

Definition 1.1. Let X be a nonempty set. Let

s(X) :=
{

(xn)n∈N | xn ∈ X, n ∈ N
}
.

Let c(X) be a subset of s(x) and Lim : c(X) → X be an operator. By definition
the triple (X, c(X), Lim) is called an L-space (denoted by (X,→)) if the following
conditions are satisfied:

(i) if xn = x, for all n ∈ N, then (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x.
(ii) if (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x, then for all subsequences (xni

)i∈N of
(xn)n∈N we have that (xni

)i∈N ∈ c(X) and

Lim(xni
)i∈N = x.



454 Alexandru-Darius Filip

Remark 1.2. For examples and more considerations on L-spaces, see I.A. Rus, A.
Petruşel and G. Petruşel [10, pp.77-80].

The notion of generalized Kasahara space was introduced by I.A. Rus in [9] as follows:

Definition 1.3. Let (X,→) be an L-space, (G,+,≤, G→) be an L-space ordered semi-
group with unity, 0 be the least element in (G,≤) and dG : X×X → G be an operator.
The triple (X,→, dG) is called a generalized Kasahara space if and only if the following
compatibility condition between → and dG holds:

for all (xn)n∈N ⊂ X with
∑
n∈N

dG(xn, xn+1) < +∞

⇒ (xn)n∈N is convergent in (X,→). (1.1)

Remark 1.4. Notice that by the inequality with the symbol +∞ in the compatibility

condition (1.1), we understand that the series
∑
n∈N

dG(xn, xn+1) is bounded in (G,≤).

Remark 1.5. In the context of generalized Kasahara spaces, fixed point results for self
generalized contractions were already given by S. Kasahara in [5], for the case when
G = R+ ∪ {+∞} and by I.A. Rus in [9], for the case when G = Rm+ .

An example of generalized Kasahara space is the following one:

Example 1.6 (I.A. Rus, [9]). Let ρ : X ×X → Rm+ be a generalized complete metric
on a set X. Let x0 ∈ X and λ ∈ Rm+ with λ 6= 0. Let dλ : X ×X → Rm+ be defined by

dλ(x, y) =

{
ρ(x, y) , if x 6= x0 and y 6= x0,

λ , if x = x0 or y = x0.

Then (X,
ρ→, dλ) is a generalized Kasahara space.

We recall also a very useful tool which helps us to prove the uniqueness of the fixed
point for operators defined on generalized Kasahara spaces.

Lemma 1.7 (Kasahara’s lemma [5]). Let (X,→, dG) be a generalized Kasahara space.
Then dG(x, y) = dG(y, x) = 0 implies x = y, for all x, y ∈ X.

Remark 1.8. For more considerations on Kasahara spaces, see [3] and [9].

We introduce now the notion of ordered generalized Kasahara space.

Definition 1.9. Let (X,→, dG) be a generalized Kasahara space. Then (X,→, dG,≤)
is an ordered generalized Kasahara space if and only if (X,≤) is a partially ordered
set.

Example 1.10. Let X := C([a, b],Rm) = {x : [a, b] → Rm | x is continuous on [a, b]}
be endowed with the partial order relation

x ≤C y ⇔ x(t) ≤ y(t)⇔ xi(t) ≤ yi(t), for all t ∈ [a, b], i = 1,m.

We consider
ρ→, the convergence structure induced by the Ceb̂ışev norm

ρ : C([a, b],Rm)× C([a, b],Rm)→ Rm+ ,
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defined by

ρ(x, y) = ‖x− y‖C = max
t∈[a,b]

|x(t)− y(t)| =


max
t∈[a,b]

|x1(t)− y1(t)|
...

max
t∈[a,b]

|xm(t)− ym(t)|

 .

Let d : C([a, b],Rm)× C([a, b],Rm)→ Rm+ , defined by

d(x, y) = ‖x− y‖C + ‖(x− y)p‖C = max
t∈[a,b]

|x(t)− y(t)|+ max
t∈[a,b]

|x(t)− y(t)|p

=


max
t∈[a,b]

|x1(t)− y1(t)|+ max
t∈[a,b]

|x1(t)− y1(t)|p

...
max
t∈[a,b]

|xm(t)− ym(t)|+ max
t∈[a,b]

|xm(t)− ym(t)|p

 ,

where p ∈ N, p ≥ 2.

Since ρ(x, y) ≤ d(x, y), for all x, y ∈ C([a, b],Rm) we get that (C([a, b],Rm),
ρ→, d,≤C)

is an ordered generalized Kasahara space. (See also I.A. Rus, [9]).

Let (X,→, dG,≤) be an ordered generalized Kasahara space. Then we define

X≤ := {(x1, x2) ∈ X ×X | x1 ≤ x2 or x2 ≤ x1}.

In the above setting, if f : X → X is an operator, then the Cartesian product of f
with itself is

f × f : X ×X → X ×X, given by (f × f)(x1, x2) := (f(x1), f(x2)).

In this paper, we consider the ordered generalized Kasahara space (X,→, d,≤), where
d : X × X → Rm+ is a premetric, i.e., d(x, x) = 0, for all x ∈ X and d(x, y) ≤
d(x, z) + d(z, y), for all x, y, z ∈ X.

We mention that if α, β ∈ Rm, α = (α1, α2, . . . , αm), β = (β1, β2, . . . , βm) and
c ∈ R , then by α ≤ β (respectively α < β), we mean that αi ≤ βi (respectively
αi < βi), for all i = 1,m and by α ≤ c we mean that αi ≤ c, for all i = 1,m.

We denote byMm,m(R+) the set of all m×m matrices with positive elements, by
Om the zero m×m matrix and by Im the identity m×m matrix. If A = (aij)i,j=1,m,

B = (bij)i,j=1,m ∈ Mm,m(R+), then by A ≤ B we understand aij ≤ bij , for all

i, j = 1,m. The symbol Aτ stands for the transpose of the matrix A. Notice also that,
for the sake of simplicity, we will make an identification between row and column
vectors in Rm.

A matrix A ∈Mm,m(R+) is said to be convergent to zero if and only if An → Om
as n → ∞ (see [10]). Regarding this class of matrices we have the following classical
result in matrix analysis (see [1, Lemma 3.3.1, page 55], [11], [8, page 37], [13, page
12].

Theorem 1.11. Let A ∈Mm,m(R+). The following statements are equivalent:

(i) A is convergent to zero;
(ii) An → Om as n→∞;
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(iii) the eigenvalues of A lies in the open unit disc, i.e., |λ| < 1, for all λ ∈ C with
det(A− λIm) = 0;

(iv) the matrix Im −A is non-singular and

(Im −A)−1 = Im +A+A2 + . . .+An + . . . ;

(v) the matrix (Im −A) is non-singular and (Im −A)−1 has nonnegative elements;
(vi) Anq → 0 ∈ Rm and qτAn → 0 ∈ Rm as n→∞, for all q ∈ Rm.

Remark 1.12. Some examples of matrices which converge to zero are:

a) any matrix A :=

(
a a
b b

)
, where a, b ∈ R+ and a+ b < 1;

b) any matrix A :=

(
a b
a b

)
, where a, b ∈ R+ and a+ b < 1;

c) any matrix A :=

(
a b
0 c

)
, where a, b, c ∈ R+ and max{a, c} < 1.

We consider now the following particular matrix set:

M∆
m,m(R+) :=

{

a11 a12 a13 . . . a1m

0 a22 a23 . . . a2m

0 0 a33 . . . a3m

...
...

...
...

0 0 0 . . . amm

 ∈Mm,m(R+)

∣∣∣∣ max
i=1,m

aii <
1

2

}
.

Lemma 1.13. Let A ∈ M∆
m,m(R+). Then the matrices A and (Im − A)−1A are con-

vergent to zero.

Proof. Since the eigenvalues of A and (Im − A)−1A are in the open unit disk, the
conclusion follows from Theorem 1.11. �

Remark 1.14. For more considerations on matrices which converge to zero, see [6], [8]
and [12].

Let (X,→) be an L-space and f : X → X be an operator. The following nota-
tions and notions will be needed in the sequel of this paper:

• Fix(f) := {x ∈ X | x = f(x)} the set of all fixed points for f .
• I(f) := {Y ⊂ X | f(Y ) ⊂ Y } - the set of all invariant subsets of X with respect

to f .
• Graph(f) := {(x, y) ∈ X × X | y = f(x)} the graph of f . We say that f has

closed graph with respect to → or Graph(f) is closed in X ×X with respect to
→ if and only if for any sequences (xn)n∈N ⊂ X, (yn)n∈N ⊂ X with yn = f(xn)
for all n ∈ N and xn → x ∈ X, yn → y ∈ X, as n→∞, we have that y = f(x).

• A sequence (xn)n∈N ⊂ X is called sequence of successive approximations for f
starting from a given point x0 ∈ X if xn+1 = f(xn), for all n ∈ N. Notice that
xn = fn(x0), for all n ∈ N.
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2. Main results

Our first main result is the following one:

Theorem 2.1. Let (X,→, d,≤) be an ordered generalized Kasahara space, where d :
X ×X → Rm+ is a premetric, i.e., d(x, x) = 0 and d(x, y) ≤ d(x, z) + d(z, y) for all
x, y, z ∈ X. Let f : X → X be an operator. We assume that:

(i) for each (x, y) ∈ X≤, there exists z(x,y) := z ∈ X such that (x, z),(y, z) ∈ X≤;
(ii) for each (x, y) ∈ X≤, we have (x, f(x)), (y, f(y)) ∈ X≤;

(iii) X≤ ∈ I(f × f);
(iv) f : (X,→)→ (X,→) has closed graph;
(v) f is a Zamfirescu type operator, i.e., at least one of the following conditions

holds:
(v1) there exists A ∈Mm,m(R+) which converges to zero such that

d(f(x), f(y)) ≤ Ad(x, y), for all (x, y) ∈ X≤
(v2) there exists B ∈M∆

m,m(R+) such that

d(f(x), f(y)) ≤ B[d(x, f(x)) + d(y, f(y))], for all (x, y) ∈ X≤
(v3) there exists C ∈M∆

m,m(R+) such that

d(f(x), f(y)) ≤ C[d(x, f(y)) + d(y, f(x))], for all (x, y) ∈ X≤
(vi) there exists x0 ∈ X such that (x0, f(x0)) ∈ X≤.

Then f : (X,→)→ (X,→) is a Picard operator.

Proof. Let x ∈ X be arbitrary.
Since (x0, f(x0)) ∈ X≤, by (iii) we have (f(x0), f2(x0)) ∈ X≤.
If f satisfies (v1) then

d(f(x0), f2(x0)) ≤ Ad(x0, f(x0)).

If f satisfies (v2) then

d(f(x0), f2(x0)) ≤ B[d(x0, f(x0)) + d(f(x0), f2(x0))],

i.e., d(f(x0), f2(x0)) ≤ (Im −B)−1Bd(x0, f(x0)).

If f satisfies (v3) then

d(f(x0), f2(x0)) ≤ C[d(x0, f
2(x0)) + d(f(x0), f(x0))]

≤ C[d(x0, f(x0)) + d(f(x0), f2(x0))],

i.e., d(f(x0), f2(x0)) ≤ (Im − C)−1Cd(x0, f(x0)).

Let Ω := {A, (Im − B)−1B, (Im − C)−1C}. For any matrix M ∈ Ω, we have
M ∈ Mm,m(R+) and by Lemma 1.13, it follows that M is a matrix that converges
to zero. In addition, we have

d(f(x0), f2(x0)) ≤Md(x0, f(x0)), for all (x0, f(x0)) ∈ X≤ and all M ∈ Ω.

Now, since (f(x0), f2(x0)) ∈ X≤, by (iii) it follows that (f2(x0), f3(x0)) ∈ X≤.
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If f satisfies (v1) then

d(f2(x0), f3(x0)) ≤ Ad(f(x0), f2(x0)) ≤ A2d(x0, f(x0)).

If f satisfies (v2) then

d(f2(x0), f3(x0)) ≤ B[d(f(x0), f2(x0)) + d(f2(x0), f3(x0))],

i.e., d(f2(x0), f3(x0)) ≤ (Im −B)−1Bd(f(x0), f2(x0))

≤ [(Im −B)−1B]2d(x0, f(x0)).

If f satisfies (v3) then

d(f2(x0), f3(x0)) ≤ C[d(f(x0), f3(x0)) + d(f2(x0), f2(x0))]

≤ C[d(f(x0), f2(x0)) + d(f2(x0), f3(x0))],

i.e., d(f2(x0), f3(x0)) ≤ (Im − C)−1Cd(f(x0), f2(x0))

≤ [(Im − C)−1C]2d(x0, f(x0)).

In all three cases presented above, we conclude that

d(f2(x0), f3(x0)) ≤M2d(x0, f(x0))

for all (x0, f(x0)) ∈ X≤ and all M ∈ Ω.

By induction, for n ∈ N, we get

d(fn(x0), fn+1(x0)) ≤Mnd(x0, f(x0))

for all (x0, f(x0)) ∈ X≤ and all M ∈ Ω.

Next, we obtain∑
n∈N

d(fn(x0), fn+1(x0)) ≤
∑
n∈N

Mnd(x0, f(x0))

= (Im −M)−1d(x0, f(x0)) < +∞

for all (x0, f(x0)) ∈ X≤ and all M ∈ Ω.

Since (X,→, d) is a generalized Kasahara space, we get that the sequence of
successive approximations for f , starting from x0, is convergent in (X,→). So, there
exists x∗ ∈ X such that fn(x0)→ x∗ as n→∞. By (iv) we get that x∗ ∈ Fix(f).

Notice also that:

• If (x, x0) ∈ X≤ then by (iii) we have (fn(x), fn(x0)) ∈ X≤ and by (ii) that
(x, f(x)), (y, f(y)) ∈ X≤.

If f satisfies (v1) then

0 ≤ d(fn(x), fn(x0)) + d(fn(x0), fn(x))

≤ Ad(fn−1(x), fn−1(x0)) +Ad(fn−1(x0), fn−1(x))

≤ . . . ≤ And(x, x0) +And(x0, x)
Rm

+→ 0 as n→∞.
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If f satisfies (v2) then

0 ≤ d(fn(x), fn(x0)) + d(fn(x0), fn(x))

≤ 2B[d(fn−1(x), fn(x)) + d(fn−1(x0), fn(x0))]

≤ 2B[(Im −B)−1B]n−1[d(x, f(x)) + d(x0, f(x0))]

≤ 2(Im +B +B2 + . . .)B[(Im −B)−1B]n−1[d(x, f(x)) + d(x0, f(x0))]

= 2[(Im −B)−1B]n[d(x, f(x)) + d(x0, f(x0))]
Rm

+→ 0 as n→∞.

If f satisfies (v3) then

0 ≤ d(fn(x), fn(x0)) + d(fn(x0), fn(x))

≤ 2C[d(fn−1(x), fn(x0)) + d(fn−1(x0), fn(x))]

≤ 2C[d(fn−1(x), fn(x)) + d(fn(x), fn(x0))

+ d(fn−1(x0), fn(x0)) + d(fn(x0), fn(x))],

i.e., 0 ≤ d(fn(x), fn(x0)) + d(fn(x0), fn(x))

≤ (Im − 2C)−12C[d(fn−1(x), fn(x)) + d(fn−1(x0), fn(x0))]

≤ (Im − 2C)−12C[(Im − C)−1C]n−1[d(x, f(x)) + d(x0, f(x0))]

≤ (Im − 2C)−12[(Im − C)−1C]n[d(x, f(x)) + d(x0, f(x0))]
Rm

+→ 0

as n→∞.

In all three cases we get that d(fn(x), fn(x0)) = d(fn(x0), fn(x)) = 0. By
Kasahara’s lemma 1.7, it follows that fn(x) = fn(x0), for all n ∈ N.

• If (x, x0) 6∈ X≤, then by (i), there exists z(x,x0) := z ∈ X such that (x, z),
(x0, z) ∈ X≤. Since (x, z) ∈ X≤, by (iii) we have (fn(x), fn(z)) ∈ X≤ and by
(ii) that (x, f(x)), (z, f(z)) ∈ X≤. In a similar way as presented above, we obtain
fn(x) = fn(z), for all n ∈ N. On the other hand, since (x0, z) ∈ X≤ we get that
fn(x0) = fn(z), for all n ∈ N. Hence fn(x) = fn(x0)→ x∗ as n→∞.

We show next the uniqueness of the fixed point x∗.

Let y∗ ∈ Fix(f) such that y∗ 6= x∗.

If (x∗, y∗) ∈ X≤, then by (iii) we have (fn(x∗), fn(y∗)) ∈ X≤ and by (ii) that
(x∗, f(x∗)), (y∗, f(y∗)) ∈ X≤.

If f satisfies (v1) then we have:

0 ≤ d(f(x∗), f(y∗)) + d(f(y∗), f(x∗)) ≤ Ad(x∗, y∗) +Ad(y∗, x∗),

i.e., 0 ≤ d(x∗, y∗) + d(y∗, x∗) ≤ (Im −A)−10 = 0.

If f satisfies (v2) then we have:

0 ≤ d(f(x∗), f(y∗)) + d(f(y∗), f(x∗)) ≤ 2B[d(x∗, f(x∗)) + d(y∗, f(y∗))],

i.e., 0 ≤ d(x∗, y∗) + d(y∗, x∗) ≤ 2B[d(x∗, x∗) + d(y∗, y∗)] = 0.
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If f satisfies (v3) then we have:

0 ≤ d(f(x∗), f(y∗)) + d(f(y∗), f(x∗))

≤ 2C[d(x∗, f(y∗)) + d(y∗, f(x∗))] = 2C[d(x∗, y∗) + d(y∗, x∗)],

i.e., 0 ≤ d(x∗, y∗) + d(y∗, x∗) ≤ (Im − 2C)−10 = 0.

So, in all three cases, we conclude that d(x∗, y∗) = d(y∗, x∗) = 0. By Kasahara’s
lemma 1.7, it follows that x∗ = y∗.

If (x∗, y∗) 6∈ X≤, then by (i), there exists z(x∗,y∗) := z ∈ X such that (x∗, z),
(y∗, z) ∈ X≤. Since (x∗, z) ∈ X≤, by following the same way of proof as presented
above, replacing y∗ with z, we get that x∗ = z. On the other hand, since (y∗, z) ∈ X≤,
we get in a similar way that y∗ = z. Hence x∗ = y∗. �

In the sequel, we will apply the above result to the coupled fixed point problem
generated by an operator.

Let X be a nonempty set, endowed with a partial order relation denoted by ≤.
If we consider two arbitrary elements z := (x, y), w = (u, v) of X ×X, then, we can
introduce a partial ordering relation on X ×X, denoted by � and defined as follows:

z � w if and only if (x ≥ u and y ≤ v).

Theorem 2.2. Let (X,→, d,≤) be an ordered Kasahara space, where d : X ×X → R+

is a functional, satisfying the following conditions: d(x, x) = 0, for all x ∈ X and
d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈ X.

Let S : X ×X → X be an operator. We suppose that:

(i) for each z = (x, y), w = (u, v) ∈ X ×X, which are not comparable with respect
to the partial ordering � in X×X, there exists t := (t1, t2) ∈ X×X, which may
depend on (x, y) and (u, v), such that t is comparable with respect to the partial
ordering �, with both z and w;

(ii) for each x = (x1, x2), y = (y1, y2) ∈ X × X, with (x1 ≥ y1 and x2 ≤ y2) or
(y1 ≥ x1 and y2 ≤ x2) we have({

x1 ≥ S(x1, x2)

x2 ≤ S(x2, x1)
or

{
S(x1, x2) ≥ x1

S(x2, x1) ≤ x2

)
and ({

y1 ≥ S(y1, y2)

y2 ≤ S(y2, y1)
or

{
S(y1, y2) ≥ y1

S(y2, y1) ≤ y2

)
(iii) for all (x ≥ u and y ≤ v) or (u ≥ x and v ≤ y), we have{

S(x, y) ≥ S(u, v)

S(y, x) ≤ S(v, u)
or

{
S(u, v) ≥ S(x, y)

S(v, u) ≤ S(y, x)

i.e., S has the generalized mixed monotone property;
(iv) S : X ×X → X has closed graph with respect to →;
(v) at least one of the following conditions holds:
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(v1) there exists k1, k2 ∈ R+, k1 + k2 < 1 such that

d(S(x, y), S(u, v)) ≤ k1d(x, u) + k2d(y, v)

(v2) there exists k ∈ [0, 1
2 [ such that

d(S(x, y), S(u, v)) ≤ k[d(x, S(x, y)) + d(u, S(u, v))]

(v3) there exists k ∈ [0, 1
2 [ such that

d(S(x, y), S(u, v)) ≤ k[d(x, S(u, v)) + d(u, S(x, y))]

(vi) there exists z0 := (z1
0 , z

2
0) ∈ X ×X such that{

z1
0 ≥ S(z1

0 , z
2
0)

z2
0 ≤ S(z2

0 , z
1
0)

or

{
S(z1

0 , z
2
0) ≥ z1

0

S(z2
0 , z

1
0) ≤ z2

0

.

Then there exists a unique element (x∗, y∗) ∈ X×X such that x∗ = S(x∗, y∗) and y∗ =
S(y∗, x∗) and the sequence of successive approximations (Sn(w1

0, w
2
0), Sn(w2

0, w
1
0))

converges to (x∗, y∗) as n→∞, for all w0 = (w1
0, w

2
0) ∈ X ×X.

Proof. Let Z := X × X and consider �, the partial order relation on Z, defined as
follows: for all z := (x, y), w := (u, v) ∈ Z, z � w if and only if (x ≥ u and y ≤ v).

Let Z� := {(z, w) := ((x, y), (u, v)) ∈ Z × Z | z � w or w � z}.
Let F : Z → Z be an operator defined by

F (x, y) :=

(
S(x, y)
S(y, x)

)
= (S(x, y), S(y, x)).

We show that all of the assumptions of Theorem 2.1 are satisfied.
By (i) and (iv) it follows that the assumptions (i) and (iv) of Theorem 2.1 are

satisfied.
By (ii), since x = (x1, x2) ∈ X ×X with{

x1 ≥ S(x1, x2)

x2 ≤ S(x2, x1)
or

{
S(x1, x2) ≥ x1

S(x2, x1) ≤ x2

we have (x1, x2) � (S(x1, x2), S(x2, x1)) and so, x � F (x). By a similar approach
we get F (x) � x. So, (x, F (x)) ∈ Z�. By following the same way of proof, we get
(y, F (y)) ∈ Z�. Hence, the assumption (ii) of Theorem 2.1 holds.

By (iii), we have Z� ∈ I(F × F ).
Indeed, let z = (x, y), w = (u, v) ∈ Z� be two arbitrary elements, where (x ≥

u and y ≤ v) or (u ≥ x and v ≤ y) such that

(1)

{
S(x, y) ≥ S(u, v)

S(y, x) ≤ S(v, u)
or (2)

{
S(u, v) ≥ S(x, y)

S(v, u) ≤ S(y, x)

From (1) and (2) we have that (S(x, y), S(y, x)) � (S(u, v), S(v, u)), i.e.,
F (x, y) � F (u, v) or F (z) � F (w). Similarly, we get F (w) � F (z). Hence,
(F (z), F (w)) ∈ Z�, for all (z, w) ∈ Z�. So, (F × F )(Z�) ⊂ Z�, i.e., Z� ∈ I(F × F ).
Thus, the assumption (iii) holds.
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By (vi), since (z1
0 , z

2
0) ∈ X ×X such that{
z1

0 ≥ S(z1
0 , z

2
0)

z2
0 ≤ S(z2

0 , z
1
0)

or

{
S(z1

0 , z
2
0) ≥ z1

0

S(z2
0 , z

1
0) ≤ z2

0

we get that (z1
0 , z

2
0) � (S(z1

0 , z
2
0), S(z2

0 , z
1
0)) and thus, z0 � F (z0). By a similar ap-

proach we get F (z0) � z0. Hence, there exists z0 ∈ Z such that (z0, F (z0)) ∈ Z�, so,
the assumption (vi) of Theorem 2.1 holds.

Finally, we prove the assumption (v) of Theorem 2.1.

Let d̃ : Z × Z → R2
+, defined by d̃((x, y), (u, v)) :=

(
d(x, u)
d(y, v)

)
.

Since (X,→, d,≤) is an ordered Kasahara space, it follows that (X,→, d̃,≤) is
an ordered generalized Kasahara space.
• If (v1) holds, then we have

d̃(F (x, y), F (u, v)) = d̃((S(x, y), S(y, x)), (S(u, v), S(v, u)))

=

(
d(S(x, y), S(u, v))
d(S(y, x), S(v, u))

)
≤
(
k1d(x, u) + k2d(y, v)
k1d(y, v) + k2d(x, u)

)
=

(
k1 k2

k2 k1

)(
d(x, u)
d(y, v)

)
= Ad̃((x, y), (u, v)).

Since k1 + k2 < 1, we get that the matrix A :=

(
k1 k2

k2 k1

)
is convergent to zero.

• If (v2) holds, then we have

d̃(F (x, y),F (u, v)) = d̃((S(x, y), S(y, x)), (S(u, v), S(v, u)))

=

(
d(S(x, y), S(u, v))
d(S(y, x), S(v, u))

)
≤
(
k[d(x, S(x, y)) + d(u, S(u, v))]
k[d(y, S(y, x)) + d(v, S(v, u))]

)
=

(
k 0
0 k

)(
d(x, S(x, y)) + d(u, S(u, v))
d(y, S(y, x)) + d(v, S(v, u))

)
= B[d̃((x, y), (S(x, y), S(y, x))) + d̃((u, v), (S(u, v), S(v, u)))]

= B[d̃((x, y), F (x, y)) + d̃((u, v), F (u, v))].

Since 0 ≤ k < 1
2 , we get that the matrix B :=

(
k 0
0 k

)
∈M∆

2,2(R+).

• If (v3) holds, then we have

d̃(F (x, y),F (u, v)) = d̃((S(x, y), S(y, x)), (S(u, v), S(v, u)))

=

(
d(S(x, y), S(u, v))
d(S(y, x), S(v, u))

)
≤
(
k[d(x, S(u, v)) + d(u, S(x, y))]
k[d(y, S(v, u)) + d(v, S(y, x))]

)
=

(
k 0
0 k

)(
d(x, S(u, v)) + d(u, S(x, y))
d(y, S(v, u)) + d(v, S(y, x))

)
= C[d̃((x, y), (S(u, v), S(v, u))) + d̃((u, v), (S(x, y), S(y, x)))]

= C[d̃((x, y), F (u, v)) + d̃((u, v), F (x, y))].
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Since 0 ≤ k < 1
2 , we get that the matrix C :=

(
k 0
0 k

)
∈M∆

2,2(R+).

We apply next Theorem 2.1 and the conclusion follows. �

3. Application

Let us consider the following system of functional-integral equations

(S)

{
x(t) = f(t, x(t),

∫ b
a

Φ(t, s, x(s), y(s))ds)

y(t) = f(t, y(t),
∫ b
a

Φ(t, s, y(s), x(s))ds)
, for all t ∈ [a, b] ⊂ R+.

By a solution of the system (S) we understand a couple (x, y) ∈ C[a, b]×C[a, b],
which satisfies the system for all t ∈ [a, b] ⊂ R+.

Let X = C[a, b] be endowed with the partial order relation

x ≤C y ⇔ x(t) ≤ y(t), for all t ∈ [a, b].

We consider
ρ→, the convergence structure induced by the Ceb̂ışev norm

ρ : C[a, b]× C[a, b]→ R+, ρ(x, y) = ‖x− y‖C = max
t∈[a,b]

|x(t)− y(t)|.

Let d : C[a, b]× C[a, b]→ R+, defined by

d(x, y) = ‖(x− y)‖C + ‖(x− y)2‖C = max
t∈[a,b]

|x(t)− y(t)|+ max
t∈[a,b]

(x(t)− y(t))2.

Since ρ(x, y) ≤ d(x, y), for all x, y ∈ C[a, b] we get that (C[a, b],
ρ→, d,≤C) is an

ordered Kasahara space.

Theorem 3.1. Let Φ : [a, b]× [a, b]×R2 → R and f : [a, b]×R2 → R be two continuous
mappings and consider the system (S). We suppose that:

(i) there exists z0 := (z1
0 , z

2
0) ∈ C[a, b]× C[a, b] such that{

z1
0(t) ≥ f(t, z1

0(t),
∫ b
a

Φ(t, s, z1
0(t), z2

0(t))ds)

z2
0(t) ≤ f(t, z2

0(t),
∫ b
a

Φ(t, s, z2
0(t), z1

0(t))ds)

or {
z1

0(t) ≤ f(t, z1
0(t),

∫ b
a

Φ(t, s, z1
0(t), z2

0(t))ds)

z2
0(t) ≥ f(t, z2

0(t),
∫ b
a

Φ(t, s, z2
0(t), z1

0(t))ds)
;

(ii) f(t, ·, z) is increasing for all t ∈ [a, b], z ∈ R and Φ(t, s, ·, z) is increasing,
Φ(t, s, w, ·) is decreasing and f(t, w, ·) is increasing for all t, s ∈ [a, b], w, z ∈ R,
or, f(t, ·, z) is decreasing for all t ∈ [a, b], z ∈ R and Φ(t, s, ·, z) is decreasing,
Φ(t, s, w, ·) is increasing and f(t, w, ·) is decreasing for all t, s ∈ [a, b], w, z ∈ R

(iii) there exists k1, k2 ∈ [0,
√

5−1
4 [ such that

|f(t, w1, z1)− f(t, w2, z2)| ≤ k1|w1 − f(t, w1, z1)|+ k2|w2 − f(t, w2, z2)|

for all t ∈ [a, b] and w1, w2, z1, z2 ∈ R.
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(iv) for all x = (x1, x2), y = (y1, y2) ∈ C[a, b] × C[a, b], with (x1(t) ≥ y1(t) and
x2(t) ≤ y2(t)) or (y1(t) ≥ x1(t) and y2(t) ≤ x2(t)) we have({

x1(t) ≥ f(t, x1(t),
∫ b
a

Φ(t, s, x1(t), x2(t))ds)

x2(t) ≤ f(t, x2(t),
∫ b
a

Φ(t, s, x2(t), x1(t))ds)
or

{
f(t, x1(t),

∫ b
a

Φ(t, s, x1(t), x2(t))ds) ≥ x1(t)

f(t, x2(t),
∫ b
a

Φ(t, s, x2(t), x1(t))ds) ≤ x2(t)

)

and ({
y1(t) ≥ f(t, y1(t),

∫ b
a

Φ(t, s, y1(t), y2(t))ds)

y2(t) ≤ f(t, y2(t),
∫ b
a

Φ(t, s, y2(t), y1(t))ds)
or

{
f(t, y1(t),

∫ b
a

Φ(t, s, y1(t), y2(t))ds) ≥ y1(t)

f(t, y2(t),
∫ b
a

Φ(t, s, y2(t), y1(t))ds) ≤ y2(t)

)

for all t ∈ [a, b].

Then there exists a unique solution (x∗, y∗) for the system (S).

Proof. Let us consider the operator S : C[a, b]× C[a, b]→ C[a, b], defined by

S(x, y)(t) := f(t, x(t),

∫ b

a

Φ(t, s, x(s), y(s))ds).

Then the system (S) is equivalent with

{
x = S(x, y)

y = S(y, x)
.

Since S(x, y) is a continuous operator on (C[a, b] × C[a, b],
ρ→), it follows that

Graph(S) is closed with respect to
ρ→.

For all (x ≥ u and y ≤ v) or (u ≥ x and v ≤ y) we have

|S(x, y)(t)− S(u, v)(t)|

= |f(t, x(t),

∫ b

a

Φ(t, s, x(s), y(s))ds)− f(t, u(t),

∫ b

a

Φ(t, s, u(s), v(s))ds)|

(iii)

≤ k1|x(t)− f(t, x(t),

∫ b

a

Φ(t, s, x(s), y(s))ds)|

+ k2|u(t)− f(t, u(t),

∫ b

a

Φ(t, s, u(s), v(s))ds)|

≤ k1

(
|x(t)− S(x, y)(t)|+ |x(t)− S(x, y)(t)|2

)
+ k2

(
|u(t)− S(u, v)(t)|+ |u(t)− S(u, v)(t)|2

)
.
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On the other hand, we have

|S(x, y)(t)− S(u, v)(t)|2

≤
(
k1|x(t)− f(t, x(t),

∫ b

a

Φ(t, s, x(s), y(s))ds)|

+ k2|u(t)− f(t, u(t),

∫ b

a

Φ(t, s, u(s), v(s))ds)|
)2

=
(
k1|x(t)− S(x, y)(t)|+ k2|u(t)− S(u, v)(t)|

)2
≤ 2
(
k2

1|x(t)− S(x, y)(t)|2 + k2
2|u(t)− S(u, v)(t)|2

)
≤ 2k2

1

(
|x(t)− S(x, y)(t)|+ |x(t)− S(x, y)(t)|2

)
+ 2k2

2

(
|u(t)− S(u, v)(t)|+ |u(t)− S(u, v)(t)|2

)
.

We get further that:

|S(x, y)(t)− S(u, v)(t)|+ |S(x, y)(t)− S(u, v)(t)|2

≤ (k1 + 2k2
1)
(
|x(t)− S(x, y)(t)|+ |x(t)− S(x, y)(t)|2

)
+ (k2 + 2k2

2)
(
|u(t)− S(u, v)(t)|+ |u(t)− S(u, v)(t)|2

)
.

Hence, by taking the maximum over t ∈ [a, b] we get

d(S(x, y), S(u, v)) ≤ K
[
d(x, S(x, y)) + d(u, S(u, v))

]
,

for all (x ≥ u and y ≤ v) or (u ≥ x and v ≤ y), where

K := max{k1 + 2k2
1, k2 + 2k2

2}.

Since k1, k2 ∈ [0,
√

5−1
4 [, we get that 0 ≤ K < 1

2 .
We see that all the assumptions of Theorem 2.2 are satisfied and the conclusion

follows. �

Remark 3.2. Similar applications were given in [2] and [7].
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