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Identification of induction curves

Levente Lócsi

Abstract. Induction curves (induction surfaces, induction sets in general) were
recently introduced to provide a visual aid to examine the fractions defining the
norm of a matrix, along with the discovery and description of p-eigenvectors.
In our current investigation we delve into an inverse problem, the identification
of induction curves. Namely: could the elements of the matrix and the used
power parameter p be reconstructed given the induction curve, i.e. the case of
2 × 2 matrices is examined. The analytic solution is not possible in most cases
already in this planar setting, therefore numerical approximation methods shall
be applied.
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1. Introduction

A common way to define a norm of a matrix is to take the supremum of the
fraction of the vector norms of the matrix-vector product and the non-zero vector,
with respect to a given vector norm, i.e. the least upper bound for the norm of the
vectors of the transformed unit sphere. Recently induction curves (induction surfaces,
induction sets in general) were introduced to provide a visual aid to examine these
fractions defining the norm of a matrix, along with the discovery and description
of p-eigenvectors [12, 13]. The study of different phenomena in relation to various
norms (most importantly with p = 1, 2 and ∞) is a traditional and still active topic
[2, 3, 6, 8, 16].
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In our current investigation we delve into the inverse problem, the identification
of induction curves, posed in [12]. Namely: could the elements of the matrix and the
used parameter p be reconstructed given the induction curve/surface/manifold, or a
sampled subset of such an object. For now we restrict ourselves to induction curves,
i.e. the case of 2× 2 matrices.

The analytic solution is not possible in most cases already in this planar setting,
therefore numerical approximation methods shall be applied. In this work our expe-
riences using the well-known Nelder–Mead algorithm [14] are summarized. We have
already successfully applied this method earlier to identification problems related to
ECG curves and also examined a hyperbolic variant of it [7, 9, 11]. Of course several
further optimization methods exist the application of which shall be also investigated
for our problem at hand in the future. We have recently seen advances in related
topics concerning e.g. Newton-type solvers, conjugate gradient (BFGS) and gradient
projection methods [1, 5, 15, 17].

The software package of Matlab/Octave programs available at

http://locsi.web.elte.hu/indsets/

will be extended with new components for the task of identification.

2. Formulating the problem

Let us now consider a matrix A ∈ Rn×n. The p-norm of A is defined as

‖.‖p : Rn×n → R, ‖A‖p = sup
x6=0

‖Ax‖p
‖x‖p

(p ∈ [1,∞]) ,

with the usual power norms for vectors x ∈ Rn

‖.‖p : Rn → R, ‖x‖p =

(
n∑

k=1

|xk|p
)1/p

(p ∈ [1,∞))

and

‖x‖∞ =
n

max
k=1
|xk| .

It is well known that limp→∞ ‖x‖p = ‖x‖∞ (x ∈ Rn). Notable examples for the above
matrix norms include the column norm for p = 1, the spectral norm for p = 2 and
the row norm for p =∞.

Definition 2.1. (c.f. [12], Def. 1.) Given a matrix A ∈ Rn×n with 2 ≤ n ∈ N and
p ∈ [1,∞], the set of points

Ip(A) :=

{
‖Ax‖p
‖x‖p

· x

‖x‖2
∈ Rn : 0 6= x ∈ Rn

}
⊂ Rn

is called the induction set of A with parameter p. The induction set may be called
induction curve for n = 2, induction surface for n = 3, induction manifold in general.
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Remark 2.2. An induction set basically describes the effect of the multiplication with
the matrix on the norm of the vectors in each direction (independent of the length
of the vector). The properties of induction sets are discussed in detail in [12]. Here
we recall the following. For each direction the set contains exactly one point and its
distance from the origin depends continuously on the direction, so in case of 2 × 2
matrices the set is a closed curve around the origin. These sets are always symmetric
with respect to the origin. The values p ∈ (0, 1) may be also allowed. These sets
are not to be confused with the transformed unit sphere by multiplication with the
matrix.

Figure 1. Some examples of induction curves.

Example 2.3. Fig. 1 shows examples of induction curves. On the left-hand side the
diagonal matrix diag(2, 1) is used, on the right-hand side the rotation matrix (with

scaling) A =

(
1 1
−1 1

)
. Shades of gray represent different p values, namely 1, 4/3, 2, 4

and ∞. Circles denote radial units 1 and 2.

Remark 2.4. Note the intersection points of the induction curves for different p values
in case of a fixed matrix. These are common intersection points for all values p ∈ [1,∞].
Since eigenvectors provide such directions, these are called p-eigenvectors. In some
cases these can be expressed explicitly with the matrix elements, and in general they
can be found by computing eigenvectors of the matrix with permuted rows as detailed
in [12] and [13]. The case of p-eigenvectors should be considered also in our current
task of identification, see Section 4.3.

2.1. The identification problem

Now our task is to identify an induction curve, i.e. given some points on the
curve, can we find the elements of the matrix and the used parameter value p? As a
motivation we provide one more example plot on Fig. 2 and will aim to identify it
during this research.1

1 This problem was posed by the Author on the presentation about [12] on the conference Harmonic

Analysis and Related Fields in Visegrd, Hungary, June 11–13, 2019.
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Figure 2. The originally posed problem to identify an induction
curve. What could be the used matrix and p value?

Consider input data given in polar form, i.e. we are handed pairs (ϕi, ri) (i = 1, . . . , k)
for a fixed value k ∈ N. Let us first formalize the problem in the simple case of diagonal
2× 2 matrices with positive diagonal elements. Denote by

A =

(
a 0
0 b

)
and x =

(
x1
x2

)
, thus Ax =

(
ax1
bx2

)
,

with 0 < a, b ∈ R. Introduce f : R→ R as

fa,b,p(ϕ) := n(v(ϕ)) :=
‖A · v(ϕ)‖p
‖v(ϕ)‖p

where v(ϕ) =

(
cosϕ
sinϕ

)
. (2.1)

Thus

f(ϕ) = fa,b,p(ϕ) =

(
|a cosϕ|p + |b sinϕ|p

)1/p(
|cosϕ|p + |sinϕ|p

)1/p (2.2)

and we are to find parameters a, b and p such that f(ϕi) = ri (i = 1, . . . , k) holds
with respect to the input data. Contemplating the formula for f we conclude that the
problem is strongly non-linear (mostly with respect to p), but to find 3 parameters
k = 3 should be minimally prescribed for a unique solution. Solving the problem
analytically does not seem to be a promising path, therefore numerical methods shall
be applied.

For numerical optimization consider the least squares problem

F (a, b, p) :=

k∑
i=1

(fa,b,p(ϕi)− ri)2 −→ min
a,b,p

.

Without noise at the exact solution the minimum F (a, b, p) = 0 could be achieved
and is desirable. Add penalty terms to ensure non-negativity of parameters a and b,
and tame also p ∈ [1,+∞] using p = w(q) and in(q):

Φ(a, b, q) := F (a, b, w(q)) + nn(a) + nn(b) + in(q) (2.3)
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with

w(q) =


1, q < 1

(q − 1)2 + 1, 1 ≤ q ≤ 2

2/(3− q), 2 < q < 3

+∞ q ≥ 3

, in(q) =


(q − 1)2, q < 1

0, 1 ≤ q ≤ 3

(q − 3)2, q > 3

and

nn(x) =

{
x2, x < 0

0, x ≥ 0
.

The functions w and in used for p serve the purpose to transform the optimization of
this variable from the domain [1,∞] to [1, 3] which would be easier to handle for any
numerical method considering constraints. Note that this way the extreme parameter
values p = 1 (corresponding to q = 1) and p = ∞ (q = 3) can both be reached and
will not be exceeded, furthermore w(2) = 2. The choice of [1, 3] may be modified to a
different compact interval. Observe that with this choice of w we don’t have to put a
constraint on q, and that the function w provides a spline-like smooth (continuously
differentiable) map q 7→ p at least on q ∈ (−∞, 3). Fig. 3 illustrates functions w and
in, the latter being basically a square penalty function, similarly to nn.

Therefore the task of identification is reduced to an unconstrained optimization
problem with the objective function Φ of (2.3):

Φ(a, b, q) = F (a, b, w(q)) + nn(a) + nn(b) + in(q) −→ min
a,b,q

. (2.4)
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Figure 3. The functions w and in plotted on the interval [−1, 5].
These maps are used to reduce the optimization of parameter p ∈
[1,+∞] to q ∈ [1, 3] in an unconstrained manner.

This formalization of the problem treats the number of input data points k ≥ 3
generally. Furthermore the method also generalizes straightforward to arbitrary 2× 2
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matrices with the main difference in the notation of the matrix A and the function
f , namely (c.f. (2.1))

A =

(
a b
c d

)
and fA,p(ϕ) = fa,b,c,d,p := n(v(ϕ)) =

‖A · v(ϕ)‖p
‖v(ϕ)‖p

.

In an actual implementation using a high-level programming language we don’t need
to expand the form of f such as in (2.2). This is left as an exercise to the Reader.
Several further terms arise, the formula is much more complicated, but the non-linear
nature of the problem still persists. However in case of non-diagonal matrices, the signs
of the elements results in different induction curves (unlike for diagonal matrices),
therefore the constraints to keep the parameters positive should be dropped.

2.2. Conditions for non-uniqueness

In the case of diagonal matrices it is trivial to observe that varying the signs of
the diagonal elements would result in the same induction curve, i.e. with the notation
of Def. 2.1. (parentheses simplified)

Ip
(
a 0
0 b

)
= Ip

(
−a 0
0 b

)
= Ip

(
a 0
0 −b

)
= Ip

(
−a 0
0 −b

)
.

Therefore we only consider diagonal matrices with positive diagonal elements in the
identification task.

But in the case of arbitrary 2×2 matrices we can not neglect the variations with
signs since different induction curves arise which need to be identified. However we
still experienced that a seemingly perfectly fitting approximation arises from a “com-
pletely” different matrix, which led to the following observation about the possible
ill-posedness of the problem.

Proposition 2.5. Let A ∈ R2×2. The matrix A and the new matrix that we get by
switching the two rows of A or multiplying a row (or both rows) of A by −1 (or
performing both operations) have the same induction curve.

Proof. Consider the matrices with switched rows

A =

(
a b
c d

)
and B =

(
c d
a b

)
.

Then following the definition of the induction sets, for all x =

(
x1
x2

)
∈ R2 and

p ∈ [1,∞]:

Ax =

(
ax1 + bx2
cx1 + dx2

)
, Bx =

(
cx1 + dx2
ax1 + bx2

)
therefore

‖Ax‖p =
(
|ax1 + bx2|p + |cx1 + dx2|p

)1/p
= ‖Bx‖p

and hence indeed Ip(A) = Ip(B). Clearly multiplying a row with −1 does not effect
the p-norm values either. �
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The above proposition can be generalized to arbitrary dimensions. Following the
notation in [13] let P ∈ Sn be an element of the symmetric group over n elements
represented by a permutation matrix of Rn×n and I± = diag(±1,±1, . . . ,±1) ∈ Rn×n.

Theorem 2.6. Let A ∈ Rn×n, then with the above notations

Ip(A) = Ip(I±PA) (p ∈ [1,∞]).

Proof. The vital observation for this proof is the same as for Proposition 2.5, that
the p-norm of the matrix-vector product present in the definition of induction sets is
unaffected by the operations of permuting the rows, or multiplying them with −1, i.e.

‖Ax‖p = ‖PAx‖p =
∥∥I±Ax∥∥

p
=
∥∥I±PAx∥∥

p
(x ∈ Rn)

Therefore the statement of the theorem holds. �

Example 2.7. The below matrices all have the same induction curve.(
1 −2
−3 4

)
,

(
−1 2
−3 4

)
,

(
1 −2
3 −4

)
,

(
−3 4
−1 2

)
,

(
3 −4
−1 2

)
.

There would be 8 possibilities in this case.

Remark 2.8. The transformations of the matrix of the type I±PA were used in [13]
to deduce the relation of p-eigenvectors the regular eigenvectors of the transformed
matrices. It is left to examine the reason behind having the same transform behind
two seemingly different but clearly closely related phenomena.

Remark 2.9. Obviously matrices with the same induction curve cannot be told apart
using any identification technique.

Remark 2.10. A related fact in linear algebra is that the only matrices that preserve
the p-norm of a real vector (for any p) are also the signed permutation matrices I±P
as in the above theorem [4, 10].

3. Optimization method

For the numerical optimization now we have used the Nelder–Mead simplex
method [14]. This is a general unconstrained, derivative-free method for the opti-
mization of an arbitrary objective function. Unfortunately it has very few proven
convergence properties, but is widely used in practice which is highlighted by the fact
that it is method behind the fminsearch command of the Matlab software package
for mathematical modeling, programming and numerical computation.

We already have significant experience using this algorithm [7, 9, 11] and we
have our own implementation which allows us e.g. to create animations to examine
the progress of the optimization. Fig. 4. illustrates how this method works in two
dimensions, basically relying on the function values at the vertices of a simplex and
applying the steps of reflection, expansion, (inner and outer) shrink and contraction.

In the problem of induction curve identification we have used the starting param-
eters (a, b, q) = (1, 1, 2) in case of diagonal matrices and (a, b, c, d, q) = (1, 1, 1, 1, 2)
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Figure 4. The progress of the Nelder–Mead method in case of the
optimization of a quadratic function of two variables.

with slight variation in the parameters for further vertices of the simplex. The opti-
mization process was terminated if the mean objective function value at the vertices
comes below a prescribed ε = 10−6 or 10−8 threshold (or a step count limit has been
reached).

A direction of future research can be the investigation of further optimization
methods applied to our problem at hand.

4. Results and experiences

In this section we will summarize the results of the identification process carried
out according to the formalization and optimization method discussed in Sections 2
and 3. Furthermore we discuss some findings with respect to the case of p-eigenvectors.

4.1. Diagonal matrices

We have many options to analyze the efficiency of the identification already in
the case of diagonal matrices. We have the parameters a and b as positive numbers,
the parameters q (or equivalently p) and also the effect of the number of input points
can be considered. Furthermore the angles of the points can be chosen randomly
or uniformly distributed. Many experiments were carried out for various parameter
settings.

To present an overall impression of the identification results we have chosen the
following method. First we have selected a number of random points from induction
curves generated with parameters a and b randomly chosen from a uniform distribu-
tion on [1, 8] (these already provide a wide range of possible induction curves) and q
also similarly chosen from [1, 3]. Since a = b would result in a multiple of the iden-
tity matrix generating a circle as induction curve independent of q we required that
|a− b| > 0.1. We used the values k = 3, 5, 10, 20 for the number of points sampled
from the induction curves. Furthermore we ensured that the angle difference of the
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samples are at least 0.2π, 0.2π, 0.1π, 0.05π respectively to avoid points too close to
each other.

For each value of k we performed N = 1000 tests with random a, b and q val-
ues as detailed above. Denote by a′, b′ and q′ the approximated values given by the
optimization method, we collected the values ‖(a, b)− (a′, b′)‖2 and |q − q′|. Finally
we plotted the sorted approximation errors on a logarithmic scale as seen on Fig. 5.
On the left-hand side one can observe the errors of (a, b), on the right-hand side the
errors of q. (The results are very similar.) Shades of gray correspond to the values of
k, the number of input points, the lightest for k = 3, the darkest for k = 20.

0 200 400 600 800 1000
10-6

10-4

10-2

1

102

0 200 400 600 800 1000
10-6

10-4

10-2

1

102

Figure 5. Measurement results about the identification of induction
curves of diagonal matrices. The error is plotted on a logarithmic
scale versus the measurement number (results are sorted). Darker
lines correspond to higher number of input points.

On one hand we can conclude that in case of only k = 3 input points, in about
half of the test cases the identification errors are below 10−2. Such few points may not
prove sufficient to identify the matrix and the parameter for this algorithm, although
theoretically the solution is unique. It is known that the Nelder–Mead algorithm may
also get stuck in local minima, here this phenomena would correspond to very similar
induction curves considering only 3 given points.

On the other hand if at least k = 10 points are given, the approximation error
rises above 10−4 only in very few cases. So in practice (when we could observe many
points of the curve) already our current method performs very well.

4.2. General matrices

Since in case of arbitrary matrices the generating matrix may be significantly
different then the matrix resulting from the optimization process, a representative of
their equivalence classes (based on induction curves) must be chosen to measure the
approximation results. A representative is chosen based on the signs and ordering of
matrix elements.

With the above in sight we have carried out very similar measurements to those
in case of diagonal matrices described in Section 4.1, and the presentation of the
results is also analogous as seen on Fig. 6.

In this case the matrix elements were all randomly chosen from a uniform dis-
tribution on the interval [−10, 10], q again from [1, 3]. Now we did not rule out any
special matrices (such as possible multiples of the identity matrix). The values for
the number of sample points k were 5, 10, 20, 30 with the minimal angle differences
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0.2π, 0.1π, 0.05π, 0.01π respectively. We measured ‖A−A′‖2 (seen on the left-hand
side of the figure) and again |q − q′| (right-hand side).

0 200 400 600 800 1000
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1

102

0 200 400 600 800 1000
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10-4

10-2

1

102

Figure 6. Measurement results about the identification of induction
curves of general 2× 2 matrices.

In this case the approximation results are not as good as in case of diagonal
matrices, but still acceptable. Again the results in case of k = 5 are not good, in
many cases the difference is considerable. But in case of at least k = 20 points about
70% of the tests the difference in the matrix is less than 10−2, and the error in
identifying q is less than 10−3 in about 80% of the tests.

Possible directions of improvement include using different optimization methods,
maybe even creating a dictionary for better starting points based on some similarity
measure on induction curves. Also it would be interesting to examine the problematic
cases (matrices and parameters) in more detail.

Finally in this section on Fig. 7 we present some steps of the optimization
progress in case of the original example for the identification problem as on Fig. 2. The
sample points in the amount of k = 20 were selected randomly with a minimum angle
difference of 0.05π. The images also show the induction curves corresponding to the
vertices of the simplex, and the matrix and parameter by the centroid of the simplex
is written on the lower right parts rounded to 2 decimal digits. Steps 1, 20, 50, 100, 200
and 270 are shown. We have arrived at the result

A′ =

(
−1 2
4 3

)
and p′ = 7,

which is correct in light of Proposition 2.5 and Theorem 2.6. The original parameters
for generating Fig. 2 and the sample points for the optimization were

A =

(
4 3
−1 2

)
and p = 7.

4.3. On the case of p-eigenvectors

A corner case of induction curve identification is when we are given exactly the
common intersection points for the p values. In this case any value for p is good and
will fit. E.g. in case of the diagonal matrix diag(2, 1) of Fig. 1 we are handed polar

values (0, 2), (π/2, 1) and (atan
√

2,
√

2) (c.f. [12], Ex. 2.).
Plotting the objective function values Φ(a, b, q) as in (2.3) for fixed (a, b) = (2, 1),

q ∈ [1, 3], two input points fixed at (0, 2), (π/2, 1) but the third input point moving
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Figure 7. Some steps of the optimization progress in case of a sam-
pled version of the originally posed identification problem as seen on
Fig. 2.
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along a short curve segment passing through (atan
√

2,
√

2) with varying ϕ and r we
get a result as depicted on Fig. 8.
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2.4

2.6

2.8
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Figure 8. An illustration of the singularity near p-eigenvectors. If
only the common intersection points are given as input, then the
objective function does not have a unique minimizer, the parameter
value p cannot be decided.

This contour plot confirms our expectations: At the critical value of ϕ corre-
sponding to the p-eigenvector the q (and p) parameter values all give the same min-
imal objective function value 0 (as shown along the black dashed line). But already
slightly away from the critical point with ϕ — where the induction curves for different
p values start to spread — the optimal q parameter is unique, the farther from the
critical angle the easier to identify.

In practice we would usually have far more points to start the identification
process with. So this phenomena would not cause problems when considering an
actual induction curve plot. It is just of theoretical importance.

5. Conclusions and further research

In this paper we have shown that the automatic identification of induction curves
based on a sampled subset of them is possible using the Nelder–Mead simplex method
in an appropriate setting. The accuracy in case of diagonal matrices is very high, a
bit lower in case of general matrices. Some mathematical reasons behind non-unique
identification were uncovered in general: the signed permutations of the rows of a
matrix results in the same induction curve. Experiments were also made near and in
the extreme case of providing input values only in p-eigendirections.
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As possible directions of further research we list:

• Experiment with further optimization methods in hope to improve identification
accuracy and speed.

• Detailed analysis of the cases when this method does not give a proper approx-
imation.

• Identification of induction surfaces (or their 2D projections). Even higher di-
mensional identification problems.

• The effect of noise in the input data on the precision of identification.
• Describing induction curves with exactly 2 common points.
• A possible topic may be the development of an induction curve identification

application for mobile devices, such that a user can easily identify a curve of this
family using the camera of the device.
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[6] Fărcăşeanu, M., Grecu, A., Mihăilescu, M., Stancu-Dumitru, D., Perturbed eigenvalue
problems: An overview, Stud. Univ. Babeş-Bolyai Math., 66(2021), no. 1, 55-73.
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[12] Lócsi, L., Introducing p-eigenvectors, exact solutions for some simple matrices, Ann.
Univ. Sci. Budapest. Sect. Comput., 49(2019), 325-345.
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