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Around metric coincidence point theory
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Abstract. Let (X, d) be a complete metric space, (Y, ρ) be a metric space and
f, g : X → Y be two mappings. The problem is to give metric conditions which
imply that, C(f, g) := {x ∈ X | f(x) = g(x)} 6= ∅. In this paper we give
an abstract coincidence point result with respect to which some results such
as of Peetre-Rus (I.A. Rus, Teoria punctului fix ı̂n analiza funcţională, Babeş-
Bolyai Univ., Cluj-Napoca, 1973), A. Buică (A. Buică, Principii de coincidenţă
şi aplicaţii, Presa Univ. Clujeană, Cluj-Napoca, 2001) and A.V. Arutyunov (A.V.
Arutyunov, Covering mappings in metric spaces and fixed points, Dokl. Math.,
76(2007), no.2, 665-668) appear as corollaries. In the case of multivalued mappings
our result generalizes some results given by A.V. Arutyunov and by A. Petruşel
(A. Petruşel, A generalization of Peetre-Rus theorem, Studia Univ. Babeş-Bolyai
Math., 35(1990), 81-85). The impact on metric fixed point theory is also studied.
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1. Introduction

Let (X, d) be a complete metric space, (Y, ρ) be a metric space and f, g : X → Y
be continuous mappings. The following results are well known:
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Peetre-Rus’ Theorem ([42]). We suppose that there exist two mappings ϕ,ψ : R+ →
R+ and M > 0 such that:

(1) there exists x ∈ X such that, ρ(f(x), g(x)) ≤M ;
(2) for each x ∈ X with ρ(f(x), g(x)) ≤M , there exists x1 ∈ X such that,

ρ(f(x1), g(x1)) ≤ ϕ(ρ(f(x), g(x)))

and

d(x, x1) ≤ ψ(ρ(f(x), g(x)));

(3) ϕ and ψ are increasing, ϕ(M) ≤M , ϕn(M)→ 0 as n→∞ and
∞∑
i=0

ψ(ϕi(M)) < +∞.

In these conditions, C(f, g) := {x ∈ X | f(x) = g(x)} 6= ∅.
Buică’s Theorem ([15]; see also [2]). We suppose that there exists, 0 < l < 1, k > 0
and h : X → X such that:

ρ(f(h(x)), g(h(x))) ≤ lρ(f(x), g(x)), ∀ x ∈ X,
and

d(x, h(x)) ≤ kρ(f(x), g(x)), ∀ x ∈ X.
Then we have that:

(i) C(f, g) 6= ∅;
(ii) for each x0 ∈ X, hn(x0)→ x∗(x0) as n→∞ and x∗(x0) ∈ C(f, g);

(iii) d(x0, x
∗(x0)) ≤ k

1−lρ(f(x0), g(x0)), ∀ x0 ∈ X.

Arutyunov’s Theorem ([5]). We suppose that:

(1) f is α-covering with α > 0, i.e., BY (f(x), αr) ⊂ f(BX(x, r)), ∀ x ∈ X, ∀ r > 0;
(2) g is L-Lipschitz with L < α.

Then for any x0 ∈ X, there exists x∗(x0) ∈ X such that:

(i) f(x∗(x0)) = g(x∗(x0));
(ii) d(x0, x

∗(x0)) ≤ (α− L)−1ρ(f(x0), g(x0)), ∀ x0 ∈ X.

In this paper we give an abstract result with respect to which the above results
appear as corollaries. In the last section we present a similar result in the case of
multivalued mappings, result which generalizes some results given by A.V. Arutyunov
([5]) and by A. Petruşel ([35]).

The impact of our results on metric fixed point theory is also analyzed.
The paper has the following structure:
2. Preliminaries

2.1. Comparison functions
2.2. Pre-weakly Picard mappings
2.3. Covering mappings
2.4. Conditions, on a functional on metric space, weaker then continuity

3. Basic coincidence point results in metric spaces
4. Ulam-Hyers stability of a coincidence point equation
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5. Well-posedness of the coincidence point problem
6. The case of multivalued mappings

2. Preliminaries

2.1. Comparison functions

For M ∈]0,+∞], a function ϕ : [0,M [→ [0,M [ is called:

(a) a comparison function on [0,M [ if ϕ is increasing and ϕn(t) → 0 as n → ∞,
∀ t ∈ [0,M [;

(b) a strong comparison function on [0,M [ if ϕ is a comparison function on [0,M [
and

∞∑
i=0

ϕi(t) < +∞, ∀ t ∈ [0,M [.

We remark that if ϕ is a comparison function on [0,M [ then, ϕ(t) < t, ∀ t ∈]0,M [
and ϕ(0) = 0, i.e., ϕ is a Picard function.

Now, let ϕ : [0,M [→ [0,M [ and ψ : [0,M [→ R+ be two functions. By definition,
the pair (ϕ,ψ) is a comparison pair on [0,M [ if:

(1) ϕ is a comparison function on [0,M [;
(2) ψ is increasing, ψ(0) = 0 and ψ is continuous in 0;

(3)

∞∑
i=0

ψ(ϕi(t)) < +∞, ∀ t ∈ [0,M [.

Example 2.1. For each M ∈]0,+∞], if ϕ(t) := lt, where 0 < l < 1 and ψ(t) := kt,
where k > 0 and t ∈ [0,M [, then the pair (ϕ,ψ) is a comparison pair on [0,M [. In

this case,

∞∑
i=0

ψ(ϕi(t)) =
kt

1− l
, ∀ t ∈ [0,M [.

Example 2.2. If ϕ : [0,M [→ [0,M [ is a strong comparison function on [0,M [ and
ψ(t) := kt, ∀ t ∈ [0,M [, with k > 0, then the pair (ϕ,ψ) is a comparison pair on
[0,M [.

2.2. Pre-weakly Picard mappings

Let (X, d) be a metric space. By definition, a mapping f : X → X is a pre-weakly
Picard mapping (pre-WPM ) if the sequence (fn(x))n∈N is a convergent sequence for
all x ∈ X.

If f : X → X is pre-WPM, then we consider the mapping f∞ : X → X, defined
by f∞(x) := lim

n→∞
fn(x).

By definition, if f : X → X is pre-WPM with

f∞(x) ∈ Ff := {x ∈ X | f(x) = x}, ∀ x ∈ X,
then f is a weakly Picard mapping (WPM ).

Example 2.3. If (X, d) is a complete metric space and f : X → X is a graphic
contraction (i.e., d(f2(x), f(x)) ≤ ld(x, f(x)), ∀ x ∈ X with 0 < l < 1) then f is a
pre-WPM (see [13] and [47]).
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Example 2.4. If (X, d) is a complete metric space and f : X → X is a Caristi mapping
(i.e., d(x, f(x)) ≤ θ(x) − θ(f(x)), ∀ x ∈ X, with the functional θ : X → R+) then f
is a pre-WPM (see [13] and [47]).

Example 2.5. Let f : R→ R be a function defined by

f(x) :=

{
1
2x, for x ∈ R \Q
1
2 (x+ 1), for x ∈ Q

.

In this case:

(a) f is pre-WPM;

(b) f∞(x) =

{
0, for x ∈ R \Q
1, for x ∈ Q

;

(c) Ff = {1};
(d) f∞(0) = 1 and f∞(1) = 1.

In the sequel of our paper we need the following result.

Invariant partition lemma. Let (X, d) be a metric space. If f : X → X is pre-WPM,
then there exists a partition of X,

X =
⋃

u∈f∞(X)

Xu

such that f(Xu) ⊂ Xu.

Proof. For u ∈ f∞(X), we take Xu := {x ∈ X | fn(x)→ u as n→∞}. �

2.3. Covering mappings

If (X, d) is a metric space, then we denote by
BX(x, r) := {u ∈ X | d(x, u) < r} - the open ball of radius r ∈ R∗+, centered at

x ∈ X;
B̃X(x, r) := {u ∈ X | d(x, u) ≤ r} - the closed ball of radius r ∈ R+, centered

at x ∈ X.

Let (X, d) and (Y, ρ) be two metric spaces, f : X → Y be a mapping and α ∈ R∗+.
By definition, f is an α-covering mapping if,

B̃Y (f(x), αr) ⊂ f(B̃X(x, r)), ∀ x ∈ X, ∀ r ∈ R+. (CV)

The condition (CV) is equivalent with each of the following ones:

(CV1) For all r ∈ R+ the following implication holds,
x ∈ X, y ∈ Y and ρ(f(x), y) ≤ αr ⇒ there exists x1 ∈ X such that,

f(x1) = y and d(x, x1) ≤ r;
(CV2) For all r ∈ R+, the following implication holds,

x ∈ X, y ∈ Y and ρ(f(x), y) ≤ r ⇒ there exists x1 ∈ X such that,
f(x1) = y and d(x, x1) ≤ r

α .

It is clear that each covering mapping is surjective.
For more considerations on covering mappings (also named open with linear rate)

and its relations with metric regularity see [2]-[8], [17], [54], [55], [14], [25], [18], [16].
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2.4. Conditions, on a functional on metric space, weaker than continuity

Let (X, d) be a metric space and F : X → R be a functional. By definition
(Angrisani [3], Kirk-Saliga [26], Aamri-Chaira [1]), the functional F is called a regular-
global-inf (r.g.i.) if for each x ∈ X, F (x) > inf

X
F := inf{F (u) | u ∈ X} implies that

there exist ε > 0 such that, ε < F (x) − inf
X
F , and a neighborhood V (x) of x, such

that, F (y) > F (x)− ε, for each y ∈ V (x).
From this definition it follows that:

(1) ([26]) The functional F is an r.g.i. on X if and only if for any sequence (xn)n∈N ⊂
X, we have the following implication:

xn → x∗ and F (xn)→ inf
X
F ⇒ F (x∗) = inf

X
F ;

(2) If F : X → R+ is an r.g.i. on X, (xn)n∈N ⊂ X with xn → x∗ and F (xn) → 0,
then F (x∗) = 0.

We also have:

(3) If F : X → R+ is a lower semicontinuous (l.s.c.) functional and (xn)n∈N ⊂ X,
then the following implication holds:

xn → x∗ and F (xn)→ 0⇒ F (x∗) = 0.

3. Basic coincidence point results in metric spaces

Let (X, d) and (Y, ρ) be two metric spaces and f, g : X → Y be two mappings.
For M ∈]0,+∞] we denote by XM := {x ∈ X | ρ(f(x), g(x)) < M}. We remark that:

X∞ = X and C(f, g) ⊂ XM , ∀ M ∈]0,∞].

More general, if λ : Y × Y → R+ is a functional, we denote by

XM := {x ∈ X | λ(f(x), g(x)) < M}.
For some M , XM may be ∅. For example, for f, g : R→ R,

f(x) = x, g(x) = x+ 1, XM = ∅,
for M ≤ 1 and XM = R, for M ∈]1,+∞].

Our basic result, in the case of singlevalued mappings, is the following one:

Theorem 3.1. Let (X, d) be a complete metric space, (Y, ρ) be a metric space, f, g :
X → Y be two mappings, M ∈]0,+∞] and λ : Y × Y → R+ be a functional. We
suppose that:

(1) XM := {x ∈ X | λ(f(x), g(x)) < M} 6= ∅;
(2) The coincidence point λ-displacement, λf,g : XM → R+, λf,g(x) := λ(f(x), g(x))

is l.s.c.;
(3) There exists a comparison pair, (ϕ,ψ), on [0,M [ with respect to which, for each,

x ∈ XM there exists x1 ∈ XM such that:
(a) λ(f(x1), g(x1)) ≤ ϕ(λ(f(x), g(x)));
(b) d(x, x1) ≤ ψ(λ(f(x), g(x))).

Then there exists a pre-WPM, h : XM → XM such that:
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(i) λ(f(h∞(x)), g(h∞(x))) = 0, ∀ x ∈ XM ;

(ii) d(x, h∞(x)) ≤
∞∑
i=0

ψ(ϕi(λ(f(x), g(x)))), ∀ x ∈ XM ;

(iii) If in addition,
u, v ∈ Y, λ(u, v) = 0 ⇒ u = v,

then, h∞(x) ∈ C(f, g), ∀ x ∈ XM , i.e., C(f, g) 6= ∅.

Proof. From (a) and (b) there exists h : XM → XM such that,

λ(f(h(x)), g(h(x))) ≤ ϕ(λ(f(x), g(x))), ∀ x ∈ XM ,

and
d(x, h(x)) ≤ ψ(λ(f(x), g(x))), ∀ x ∈ XM .

These imply that,

λ(f(hn(x)), hn+1(x)) ≤ ϕn(λ(f(x), g(x)))→ 0 as n→∞, ∀ x ∈ XM

and
d(hn(x), hn+1(x)) ≤ ψ(ϕn(λ(f(x), g(x)))), ∀ x ∈ XM .

Since (X, d) is a complete metric space and (ϕ,ψ) is a comparison pair on [0,M [,
it follows that h is pre-WPM.

On the other hand, from (2) we have,

0 ≤ λ(f(h∞(x)), g(h∞(x))) ≤ lim
n→∞

λ(f(hn(x)), g(hn(x))) = 0.

It is clear that, from the above considerations, we have (i), (ii) and (iii). �

Remark 3.2. If f and g are continuous, M < +∞, λ := ρ, then from Theorem 3.1 we
have Peetre-Rus’ theorem.

Remark 3.3. If f and g are continuous, M = +∞, λ := ρ, ϕ(t) := lt, where 0 < l < 1
and ψ(t) := kt, with k > 0, ∀ t ∈ [0,M [, then from Theorem 3.1 we have Buică’s
theorem.

Remark 3.4. Let f and g be as in Arutyunov’s theorem. Since f is α-covering, for
r := t

α we have that, if x ∈ X, y ∈ Y with ρ(f(x), y) ≤ t, there exists x1 ∈ X such

that, f(x1) = y and d(x1, x) ≤ t
α . So, ρ(f(x), f(x1)) ≤ t.

If we take, t := ρ(f(x), g(x)) and y := g(x) = f(x1), we have

ρ(f(x1), g(x1)) ≤ L

α
ρ(f(x), g(x)) and d(x, x1) ≤ 1

α
ρ(f(x), g(x)).

If we take in Theorem 3.1, f continuous and α-covering, g L-Lipschitz with
L < α, M := +∞, λ := ρ, ϕ(t) := L

α t and ψ(t) := t
α , we have Arutyunov’s theorem.

Moreover, from the above proof, we have:

Theorem 3.5. Let (X, d) be a complete metric space, (Y, ρ) be a metric space, f : X →
Y be continuous, g : X → Y be L-Lipschitz and α > 0 with L < α. We suppose that
the following implication holds:

x ∈ X, y ∈ Y , ρ(f(x), y) ≤ ρ(f(x), g(x)) ⇒ there exists x1 ∈ X such that,
f(x1) = y and d(x, x1) ≤ 1

αρ(f(x), g(x)).
Then there exists a pre-WPM, h : X → X such that:



Around metric coincidence point theory 455

(i) h∞(x) ∈ C(f, g), ∀ x ∈ X;
(ii) d(x, h∞(x)) ≤ (α− L)−1ρ(f(x), g(x)).

Remark 3.6. Let us consider in Theorem 3.1, M := +∞, λ := ρ, ϕ(t) := lt, where
0 < l < 1, ψ(t) := kt, with k > 0, ∀ t ∈ [0,M [. In this case Theorem 3.1 takes the
following form:

Theorem 3.7. Let (X, d) be a complete metric space, (Y, ρ) be a metric space, f, g :
X → Y be two mappings. We suppose that:

(2′) The coincidence point displacement, ρf,g : X → R+, x 7→ ρ(f(x), g(x)) is l.s.c.;
(3′) There exist 0 < l < 1 and k > 0 w.r.t. which for each x ∈ X there exists x1 ∈ X

such that:
(a′) ρ(f(x1), g(x1)) ≤ lρ(f(x), g(x));
(b′) d(x, x1) ≤ kρ(f(x), g(x)).

Then there exists a pre-WPM, h : X → X, such that:

(i′) h∞(x) ∈ C(f, g), ∀ x ∈ X, i.e., C(f, g) 6= ∅;
(ii′) d(x, h∞(x)) ≤ k

1−lρ(f(x), g(x)), ∀ x ∈ X.

Remark 3.8. If in Theorem 3.7 we take, Y := X and g := 1X we have the following
result:

Theorem 3.9. Let (X, d) be a complete metric space, ρ be a metric on X and f : X →
X be a mapping. We suppose that:

(2′′) The fixed point displacement, ρf : (X, d)→ R+, ρf (x) := ρ(x, f(x)), is l.s.c.;
(3′′) There exist 0 < l < 1 and k > 0 w.r.t. which for each x ∈ X there exists x1 ∈ X

such that:
(a′′) ρ(x1, f(x1)) ≤ lρ(x, f(x));
(b′′) d(x, x1) ≤ kρ(x, f(x)).

Then there exists a pre-WPM, h : (X, d)→ (X, d) such that:

(i′′) h∞(x) ∈ Ff , ∀ x ∈ X, i.e., Ff 6= ∅;
(ii′′) d(x, h∞(x)) ≤ k

1−lρ(x, f(x)), ∀ x ∈ X.

Remark 3.10. If in Theorem 3.9 we take, ρ := d and f and l-graphic contraction, then
we have:

Theorem 3.11. Let (X, d) be a complete metric space and f : X → X be an l-graphic
contraction. If the fixed point displacement df : X → R+, x 7→ d(x, f(x)) is l.s.c.,
then f is a WPM and

d(x, f∞(x)) ≤ 1

1− l
d(x, f(x)), ∀ x ∈ X.

Proof. We take, h(x) := f(x). �

Remark 3.12. If in Theorem 3.9 we take, ρ := d and f an l-contraction, then we have
the following variant of contraction principle:

Theorem 3.13. Let (X, d) be a complete metric space and f : X → X be an l-
contraction. Then we have that:
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(i) Ff = Ffn = {x∗}, ∀ n ∈ N∗;
(ii) fn(x)→ x∗ as n→∞, ∀ x ∈ X;

(iii) d(x, x∗) ≤ 1
1−ld(x, f(x)), ∀ x ∈ X.

The above consideration give rise to the following questions:

Problem 3.14. To translate Arutyunov’s theorem in terms of metric regularity.

References: [17], [14], [25], [18], [16].

Problem 3.15. Which metric conditions on f : X → X imply that:

(i) f is a graphic contraction ?
(ii) df : X → R+, df (x) := d(x, f(x)) is l.s.c. ?

References: [47], [49], [27], [32], [28], [1], [21], [26], [12], [44].

Problem 3.16. Let (X, d) be a metric space and f : X → X be a mapping. The
problem is to compare the following conditions on f :

(1) the graphic of f is closed;
(2) f is orbitally continuous;
(3) the fixed point displacement of f , df : X → X, df (x) := d(x, f(x)) is l.s.c.

References: [1], [47], [27], [32], [21], [26], [3].

4. Ulam-Hyers stability of coincidence point equations

Let (X, d) and (Y, ρ) be two metric spaces, f, g : X → Y be two mappings and
λ : Y × Y → R+ be such that the following implications hold,

u, v ∈ Y, λ(u, v) = 0 ⇔ u = v.

Let us consider the coincidence point equation,

f(x) = g(x) (0)

and for each ε > 0, the ε-coincidence point inequation, with respect to λ,

λ(f(x), g(x)) ≤ ε (ε)

We denote by, Cε,λ(f, g) := {x ∈ X | λ(f(x), g(x)) ≤ ε}, the solution set of (ε).
By definition, the equation (0) is Ulam-Hyers stable, with respect to the func-

tional λ, if there exists c > 0 such that for each ε > 0 we have that: for each
u∗ ∈ Cε,λ(f, g) there exists x∗ ∈ C(f, g) with, d(u∗, x∗) ≤ cε.

Our result is the following.

Theorem 4.1. Let f, g : X → Y be as in Theorem 3.1. If in addition, M := +∞ and

the comparison pair, (ϕ,ψ) is such that there exists c > 0 for which,

∞∑
i=0

ψ(ϕi(t)) ≤ ct,

for all t ≥ 0, then the equation (0) is Ulam-Hyers stable with respect to the functional
λ.

Proof. For u∗ ∈ Cε,λ(f, g) we take x∗ := h∞(u∗). �
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Remark 4.2. If we take λ := ρ then we have the Ulam-Hyers stability with respect to
ρ, in the conditions of Buică’s theorem and in the conditions of Arutyunov’s theorem.

Remark 4.3. For more considerations on Ulam-Hyers stability of fixed point equations
and of coincidence point equations see: [45], [30] and the references therein.

5. Well-posedness of the coincidence point problem

Let (X, d) and (Y, ρ) be two metric spaces and f, g : X → Y with C(f, g) 6= ∅
and r : X → C(f, g) be a set retraction. By definition, the coincidence point problem
for the pair (f, g) is well-posed with respect to r and to the functional λ : Y ×Y → R+

if for each x∗ ∈ C(f, g) and each (xn)n∈N ⊂ r−1(x∗) the following implication holds:

λ(f(xn), g(xn))→ 0 as n→∞ ⇒ xn → x∗ as n→∞.
We have the following result:

Theorem 5.1. Let f, g : (X, d) → (Y, ρ), λ : Y × Y → R+ and h : X → X as in
Theorem 3.1. If in addition, M := +∞ and λ(u, v) = 0⇔ u = v, then the coincidence
point problem for the pair (f, g) is well-posed with respect to h∞ and to λ, if the pair

(ϕ,ψ) is such that

∞∑
i=0

ψ(ϕi(t))→ 0 as t→ 0.

Proof. First, we remark that h∞ : X → C(f, g) is a set retraction. Let (xn)n∈N ⊂
(h∞)−1(x∗) with x∗ ∈ C(f, g). Then,

d(xn, x
∗) = d(xn, h

∞(xn)) ≤
∞∑
i=0

ψ(ϕi(λ(f(xn), g(xn))))→ 0 as n→∞. �

For more consideration on well-posedness of fixed point problem and of coinci-
dence point problem, see: [47], [22], [46], [32].

6. The case of multivalued mappings

Throughout this section we follow the notations and terminology in [39]. See
also: [37], [38], [49], [9], [29], [11], [16].

The basic result of this section is the following:

Theorem 6.1. Let (X, d) be a complete metric space, (Y, ρ) be a metric space, T, S :
X → Pcl(Y ) be two multivalued mappings, M ∈]0,+∞], (ϕ,ψ) be a comparison pair
on [0,M [ and Λ : Pcl(Y )× Pcl(Y )→ R+ ∪ {+∞} be a functional. We suppose that:

(1) XM := {x ∈ X | Λ(T (x), S(x)) < M} 6= ∅;
(2) The Λ-coincidence point displacement functional, ΛT,S : XM → R+,

ΛT,S(x) := Λ(T (x), S(x))

is l.s.c.;
(3) For each x ∈ XM there exists x1 ∈ XM such that:

(a) Λ(T (x1), S(x1)) ≤ ϕ(Λ(T (x), S(x)));
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(b) d(x, x1) ≤ ψ(Λ(T (x), S(x))).

Then there exists a pre-WPM, h : XM → XM such that:

(i) Λ(T (h∞(x)), S(h∞(x))) = 0, ∀ x ∈ XM ;

(ii) d(x, h∞(x)) ≤
∞∑
i=0

ψ(ϕi(Λ(T (x), S(x)))), ∀ x ∈ XM ;

(iii) If in addition, for A,B ∈ Pcl(Y ), Λ(A,B) = 0 implies that:
(iii1) A ∩B 6= ∅,
then, C(T, S) := {x ∈ X | T (x) ∩ S(x) 6= ∅} 6= ∅;

(iii2) A = B,
then, C(T, S) 6= ∅ and T (h∞(x)) = S(h∞(x)), ∀ x ∈ XM ;

(iii3) A = B = {y∗},
then C(T, S) 6= ∅ and T (h∞(x)) = S(h∞(x)) = {y∗x}.

Proof. If we take, h(x) := x1, then we have that:

Λ(T (h(x)), S(h(x))) ≤ ϕ(Λ(T (x), S(x))), ∀ x ∈ XM ,

and
d(x, h(x)) ≤ ψ(Λ(T (x), S(x))), ∀ x ∈ XM .

These imply that,
Λ(T (hn(x)), S(hn(x)))→ 0 as n→∞,

and h is a pre-WPM, and

d(x, h∞(x)) ≤
∞∑
i=0

ψ(ϕi(Λ(T (x), S(x)))), ∀ x ∈ XM .

Since, ΛT,S is l.s.c., it follows that,

0 ≤ Λ(T (h∞(x)), S(h∞(x))) ≤ lim
n→∞

Λ(T (hn(x)), S(hn(x)))

= lim
n→∞

Λ(T (hn(x)), S(hn(x))) = 0.

So, we have the conclusions (i), (ii) and (iii). �

Remark 6.2. If we take in Theorem 6.1, Λ := Hρ, the Pompeiu-Hausdorff metric on
Pcl(Y ), then we have:

Theorem 6.3. Let Λ := Hρ in Theorem 6.1. Then we have the following conclusions:
There exists a pre-WPM, h : XM → XM such that:

(i′) T (h∞(x)) = S(h∞(x)), ∀ x ∈ XM ;

(ii′) d(x, h∞(x)) ≤
∞∑
i=0

ψ(ϕi(Hρ(T (x), S(x)))), ∀ x ∈ XM .

Remark 6.4. Let Λ := e, in Theorem 6.1., the excess functional. In this case, A,B ∈
Pcl(Y ), e(A,B) := sup{ρ(a,B) | a ∈ A} = 0 ⇒ A ⊂ B. So, we have the following
result:

Theorem 6.5. If in Theorem 6.1., we take Λ := e, then the conclusions of this theorem
take the following form:

There exists a pre-WPM, h : XM → XM such that:
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(i′′) T (h∞(x)) ⊂ S(h∞(x)), i.e., C(T, S) 6= ∅;

(ii′′) d(x, h∞(x)) ≤
∞∑
i=0

ψ(ϕi(e(T (x), S(x)))), ∀ x ∈ XM .

Remark 6.6. If we take Λ := D, where for A,B ∈ Pcl(Y ),

D(A,B) := inf{ρ(a, b) | a ∈ A, b ∈ B},

then we have a theorem given by A. Petruşel in [35] and A.V. Arutyunov in [5].

Remark 6.7. If we take in Theorem 6.1, Y := X, S := d, S(x) := {x}, ∀ x ∈ X, then
Theorem 6.1 takes the following form:

Theorem 6.8. Let (X, d) be a complete metric space, T : X → Pcl(X), M ∈]0,+∞],
and (ϕ,ψ) be a comparison pair on [0,M [, Λ : X × Pcl(X) → R+ ∪ {+∞} be a
functional. We suppose that:

(1) XM := {x ∈ X | Λ(x, T (x)) < M} 6= ∅;
(2) ΛT : XM → R+, ΛT (x) = Λ(x, T (x)), the Λ-fixed point displacement is l.s.c.;
(3) For each x ∈ XM , there exists x1 ∈ XM such that:

(a) Λ(x1, T (x1)) ≤ ϕ(Λ(x, T (x)));
(b) d(x, x1) ≤ ψ(Λ(x, T (x))).

Then there exists a pre-WPM, h : XM → XM such that:

(i) Λ(h∞(x), T (h∞(x))) = 0, ∀ x ∈ XM ;

(ii) d(x, h∞(x)) ≤
∞∑
i=0

ψ(ϕi(Λ(x, T (x)))), ∀ x ∈ XM .

Remark 6.9. It is clear that, if in Theorem 6.8 we take:

• Λ := Hd, then T (h∞(x)) = {h∞(x)}, i.e., h∞(x) is a strict fixed point of T ,
∀ x ∈ XM ;
• Λ := D, then h∞(x) ∈ T (h∞(x)), ∀ x ∈ XM , i.e., h∞(x) is a fixed point of T ,
∀ x ∈ XM .

Remark 6.10. In [19] Y. Feng and S. Liu, have given the following fixed point result:

Let (X, d) be a complete metric space, T : X → Pcl(X) be a multivalued map-
ping. For a positive constant b ∈]0, 1[, set

Ixb := {y ∈ T (x) | bd(x, y) ≤ d(x, T (x))}.

If there exists a constant c ∈]0, 1[ such that for any x ∈ X, there is y ∈ Ixb
satisfying

d(y, T (y)) ≤ cd(x, y),

then T has a fixed point in X provided c < b and the fixed point displacement, dT
is l.s.c. We remark that we are in the conditions of Theorem 6.8, with, M := +∞,
ϕ(t) := c

b t, ψ(t) := t
b and Λ := D.

From the considerations presented in this section, the following questions follow:
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Problem 6.11. Let (X, d) and (Y, ρ) be two metric spaces and T, S : X → Pcl(Y )
be two multivalued mapping. Let P : Pcl(Y ) × Pcl(Y ) → R+ ∪ {+∞} be a metric
(Hρ, H

+
ρ , . . .). In which conditions the PT,S-coincidence displacement, PT,S : X → R+,

PT,S(x) := P (T (x), S(x)), is l.s.c. ?

References: [37], [39], [27], [9], [29], [4].

Problem 6.12. To use Theorem 6.1 in studying the Ulam-Hyers stability of a coinci-
dence equation.

References: [45], [49], [30], [50].

Problem 6.13. To use Theorem 6.1 to study the well-posedness of coincidence point
problem.

References: [39], [40], [49], [9], [29], [11], [53], [50].

Problem 6.14. Which metric fixed point theorems appear as consequences of Theorem
6.8 ?

References: [17], [22], [37], [48], [49], [10], [41], [51], [11], [52], [36], [12], [44].

References

[1] Aamri, M., Chaira, K., Approximation du point fixe et applications faiblement contrac-
tantes, Extracta Mathematicae, 17(2002), no. 1, 97-110.
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Univ. Babeş-Bolyai Math., 61(2016), no. 3, 343-358.

[47] Rus, I.A., Relevant classes of weakly Picard operators, An. Univ. Vest Timişoara, Mat.-
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