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Bounds of third and fourth Hankel determinants
for a generalized subclass of bounded turning
functions subordinated to sine function

Gagandeep Singh and Gurcharanjit Singh

Abstract. The objective of this paper is to investigate the bounds of third and
fourth Hankel determinants for a generalized subclass of bounded turning func-
tions associated with sine function, in the open unit disc E = {z ∈ C : |z| < 1}.
The results are also extended to two-fold and three-fold symmetric functions.
This investigation will generalize the resuls of some earlier works.
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1. Introduction

Let the complex plane is expressed by C. By A, let us denote the class of analytic
functions of the form f(z) = z +

∑∞
k=2 akz

k, defined in the open unit disc E = {z ∈
C : |z| < 1} and normalized by the conditions f(0) = f ′(0)− 1 = 0. By S, we denote
the subclass of A which consists of univalent functions in E.

Let f and g be two analytic functions in E. We say that f is subordinate to g
(denoted as f ≺ g) if there exists a function w with w(0) = 0 and |w(z)| < 1 for z ∈ E
such that f(z) = g(w(z)). Further, if g is univalent in E, then the subordination leads
to f(0) = g(0) and f(E) ⊂ g(E).

In the theory of univalent functions, Bieberbach [5] stated a result that, for f ∈ S,
|an| ≤ n, n = 2, 3, .... This result is known as Bieberbach’s conjecture and it remained
as a challenge for the mathematicians for a long time. Finally, L. De-Branges [8],

Received 08 November 2022; Accepted 01 March 2023.
© Studia UBB MATHEMATICA. Published by Babeş-Bolyai University
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proved this conjecture in 1985. During the course of proving this conjecture, various
results related to the coefficients were come into existence which gave rise to some
new subclasses of analytic functions.

For better understanding of the main content, let’s have a look on some funda-
mental subclasses of A:

S∗ =

{
f : f ∈ A, Re

(
zf ′(z)

f(z)

)
> 0 or

zf ′(z)

f(z)
≺ 1 + z

1− z
, z ∈ E

}
, the class of star-

like functions.

K =

{
f : f ∈ A, Re

(
(zf ′(z))′

f ′(z)

)
> 0 or

(zf ′(z))′

f ′(z)
≺ 1 + z

1− z
, z ∈ E

}
, the class of

convex functions.

Reade [24] introduced the class CS∗ of close-to-star functions which is defined

as CS∗ =

{
f : f ∈ A, Re

(
f(z)

g(z)

)
> 0 or

f(z)

g(z)
≺ 1 + z

1− z
, g ∈ S∗, z ∈ E

}
. Further for

g(z) = z, MacGregor [17] studied the following subclass of close-to-star functions:

R
′

=

{
f : f ∈ A, Re

(
f(z)

z

)
> 0 or

f(z)

z
≺ 1 + z

1− z
, z ∈ E

}
.

MacGregor [16] established a very useful class R of bounded turning functions
which is defined as

R =

{
f : f ∈ A, Re(f ′(z)) > 0 or f ′(z) ≺ 1 + z

1− z
, z ∈ E

}
.

Later on, Murugusundramurthi and Magesh [19] studied the following class:

R(α) =

{
f : f ∈ A, Re

(
(1− α)

f(z)

z
+ αf ′(z)

)
> 0, 0 ≤ α ≤ 1, z ∈ E

}
.

Particularly, R(1) ≡ R and R(0) ≡ R′
.

Various subclasses of S were investigated by associating to different functions.
Recently, Arif et al. [3], Cho et al. [7] and Khan et al. [11] studied the classes S∗sin, Ksin
andRsin, which are the subclasses of starlike functions, convex functions and bounded
turning functions associated with sine function, respectively. Getting motivated by
these works, now we define the following class of analytic functions by subordinating
to 1 + sinz.

Definition 1.1. A function f ∈ A is said to be in the class Rαsin (0 ≤ α ≤ 1) if it
satisfies the condition

(1− α)
f(z)

z
+ αf ′(z) ≺ 1 + sinz.

We have the following observations:
(i) R0

sin ≡ R
′

sin.
(ii) R1

sin ≡ Rsin.
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For q ≥ 1 and n ≥ 1, Pommerenke [21] introduced the qth Hankel determinant
as

Hq(n) =

∣∣∣∣∣∣∣∣
an an+1 ... an+q−1
an+1 ... ... ...
... ... ... ...

an+q−1 ... ... an+2q−2

∣∣∣∣∣∣∣∣ .
For specific values of q and n, the Hankel determinant Hq(n) reduces to the

following functionals:
(i) For q = 2 and n = 1, it redues to H2(1) = a3 − a22, which is the well known
Fekete-Szegö functional.
(ii) For q = 2 and n = 2, the Hankel determinant takes the form of H2(2) = a2a4−a23,
which is known as Hankel determinant of second order.
(iii) For q = 3 and n = 1, the Hankel determinant reduces to H3(1), which is the
Hankel determinant of third order.
(iv) For q = 4 and n = 1, Hq(n) reduces to H4(1), which is the Hankel determinant
of fourth order.

Ma [15] introduced the functional Jn,m(f) = anam − am+n−1, n,m ∈ N − {1},
which is known as generalized Zalcman functional. The functional J2,3(f) = a2a3−a4
is a specific case of the generalized Zalcman functional. The upper bound for the
functional J2,3(f) over different subclasses of analytic functions was computed by
various authors. It is very useful in establishing the bounds for the third Hankel
determinant.

On expanding, the third Hankel determinant can be expressed as

H3(1) = a3(a2a4 − a23)− a4(a4 − a2a3) + a5(a3 − a22),

and after applying the triangle inequality, it yields

|H3(1)| ≤ |a3||a2a4 − a23|+ |a4||a2a3 − a4|+ |a5||a3 − a22|. (1.1)

Also the expansion of fourth Hankel determinant can be expressed as

H4(1) = a7H3(1)− 2a4a6(a2a4 − a23)− 2a5a6(a2a3 − a4)− a26(a3 − a22)

+ a25(a2a4 − a23) + a25(a2a4 + 2a23)− a35 + a44 − 3a3a
2
4a5. (1.2)

A lot of work has been done on the estimation of second Hankel determinant by
various authors including Noor [20], Ehrenborg [9], Layman [12], Singh [26], Mehrok
and Singh [18] and Janteng et al. [10]. The estimation of third Hankel determinant is
little bit complicated. Babalola [4] was the first researcher who successfully obtained
the upper bound of third Hankel determinant for the classes of starlike functions,
convex functions and the class of functions with bounded boundary rotation. Further
a few researchers including Shanmugam et al. [25], Bucur et al. [6], Altinkaya and
Yalcin [1], Singh and Singh [27] have been actively engaged in the study of third
Hankel determinant for various subclasses of analytic functions. Now a days, the
study of fourth Hankel determinant for various subclasses of analytic functions, is an
active topic of research. A few authors including Arif et al. [2], Singh et al. [28, 29]
and Zhang and Tang [30] established the bounds of fourth Hankel determinant for
certain subclasses of A.
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In this paper, we establish the upper bounds of the third and fourth Hankel
determinants for the class Rαsin. Also various known results follow as particular cases.

Let P denote the class of analytic functions p of the form

p(z) = 1 +

∞∑
k=1

pkz
k,

whose real parts are positive in E.

In order to prove our main results, the following lemmas have been used:

Lemma 1.2. [3] If p ∈ P, then

|pk| ≤ 2, k ∈ N,

∣∣∣∣p2 − p21
2

∣∣∣∣ ≤ 2− |p1|
2

2
,

|pi+j − µpipj | ≤ 2, 0 ≤ µ ≤ 1,

|pn+2k − λpnp2k| ≤ 2(1 + 2λ), (λ ∈ R),

|pmpn − pkpl| ≤ 4, (m+ n = k + l;m,n ∈ N),

and for complex number ρ, we have

|p2 − ρp21| ≤ 2 max{1, |2ρ− 1|}.
Lemma 1.3. [3] Let p ∈ P, then

|Jp31 −Kp1p2 + Lp3| ≤ 2|J |+ 2|K − 2J |+ 2|J −K + L|.

In particular, it is proved in [22] that

|p31 − 2p1p2 + p3| ≤ 2.

Lemma 1.4. [13, 14] If p ∈ P, then

2p2 = p21 + (4− p21)x,

4p3 = p31 + 2p1(4− p21)x− p1(4− p21)x2 + 2(4− p21)(1− |x|2)z,

for |x| ≤ 1 and |z| ≤ 1.

Lemma 1.5. [23] Let m,n, l and r satisfy the inequalities 0 < m < 1, 0 < r < 1 and
8r(1−r)

[
(mn− 2l)2 + (m(r +m)− n)2

]
+m(1−m)(n−2rm)2 ≤ 4m2(1−m)2r(1−r).

If p ∈ P, then ∣∣∣∣lp41 + rp22 + 2mp1p3 −
3

2
np21p2 − p4

∣∣∣∣ ≤ 2.
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2. Coefficient bounds for the class Rα
sin

Theorem 2.1. If f ∈ Rαsin, then

|a2| ≤
1

1 + α
, (2.1)

|a3| ≤
1

1 + 2α
, (2.2)

|a4| ≤
1

1 + 3α
, (2.3)

and

|a5| ≤
1

1 + 4α
. (2.4)

Proof. Since f ∈ Rαsin, by the principle of subordination, we have

(1− α)
f(z)

z
+ αf ′(z) = 1 + sin(w(z)). (2.5)

Define p(z) =
1 + w(z)

1− w(z)
= 1 + p1z + p2z

2 + p3z
3 + ..., which implies w(z) =

p(z)− 1

p(z) + 1
.

On expanding, we have

(1−α)
f(z)

z
+αf ′(z) = 1+(1+α)a2z+(1+2α)a3z

2 +(1+3α)a4z
3 +(1+4α)a5z

4 + ...

(2.6)
Also

1 + sin(w(z)) = 1 +
1

2
p1z +

(
p2
2
− p21

4

)
z2

+

(
5p31
48
− p1p2

2
+
p3
2

)
z3 +

(
−p

4
1

32
+

5p21p2
16

− p3p1
2
− p22

4
+
p4
2

)
z4 + ... (2.7)

Using (2.6) and (2.7), (2.5) yields

1 + (1 + α)a2z + (1 + 2α)a3z
2 + (1 + 3α)a4z

3 + (1 + 4α)a5z
4 + ...

= 1 +
1

2
p1z +

(
p2
2
− p21

4

)
z2 +

(
5p31
48
− p1p2

2
+
p3
2

)
z3

+

(
−p

4
1

32
+

5p21p2
16

− p3p1
2
− p22

4
+
p4
2

)
z4 + ... (2.8)

Equating the coefficients of z, z2, z3 and z4 in (2.8) and on simplification, we obtain

a2 =
1

2(1 + α)
p1, (2.9)

a3 =
1

1 + 2α

[
p2
2
− p21

4

]
, (2.10)

a4 =
1

48(1 + 3α)

[
5p31 − 24p1p2 + 24p3

]
, (2.11)

and

a5 =
1

2(1 + 4α)

[
p41
16

+
p22
2

+ p3p1 −
5p21p2

8
− p4

]
. (2.12)
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Using first inequality of Lemma 1.2 in (2.9), the result (2.1) is obvious.
From (2.10), we have

|a3| =
1

2(1 + 2α)

∣∣∣∣p2 − 1

2
p21

∣∣∣∣ . (2.13)

Using sixth inequality of Lemma 1.2 in (2.13), the result (2.2) can be easily obtained.
(2.11) can be expressed as

|a4| =
1

48(1 + 3α)

∣∣5p31 − 24p1p2 + 24p3
∣∣ . (2.14)

On applying Lemma 1.3 in (2.14), the result (2.3) is obvious.
Further, on using Lemma 1.5 in (2.12), the result (2.4) is obvious. �

On putting α = 0, Theorem 2.1 yields the following result:

Remark 2.2. If f ∈ R′

sin, then

|a2| ≤ 1, |a3| ≤ 1, |a4| ≤ 1, |a5| ≤ 1.

For α = 1, Theorem 2.1 gives the following result due to Khan et al. [11]:

Remark 2.3. If f ∈ Rsin, then

|a2| ≤
1

2
, |a3| ≤

1

3
, |a4| ≤

1

4
, |a5| ≤

1

5
.

Conjecture. If f ∈ Rαsin, then

|an| ≤
1

1 + (n− 1)α
, n ≥ 2.

Theorem 2.4. If f ∈ Rαsin and µ is any complex number, then

|a3 − µa22| ≤
1

1 + 2α
max

{
1,

(1 + 2α)

(1 + α)2
|µ|
}
. (2.15)

Proof. From (2.9) and (2.10), we obtain

|a3 − µa22| =
1

2(1 + 2α)

∣∣∣∣p2 − (1 + α)2 + µ(1 + 2α)

2(1 + α)2
p21

∣∣∣∣ . (2.16)

Using sixth inequality of Lemma 1.2, (2.16) takes the form

|a3 − µa22| ≤
1

1 + 2α
max

{
1,

(1 + 2α)

(1 + α)2
|µ|
}
. (2.17)

�

Substituting for α = 0, Theorem 2.4 yields the following result:

Remark 2.5. If f ∈ R′

sin, then

|a3 − µa22| ≤ max {1, |µ|} .

Putting α = 1, Theorem 2.4 yields the following result due to Khan et al. [11]:
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Remark 2.6. If f ∈ Rsin, then

|a3 − µa22| ≤ max

{
1

3
,

1

4
|µ|
}
.

Putting µ = 1, Theorem 2.4 yields the following result:

Remark 2.7. If f ∈ Rαsin, then

|a3 − a22| ≤
1

1 + 2α
.

Theorem 2.8. If f ∈ Rαsin, then

|a2a3 − a4| ≤
1

1 + 3α
. (2.18)

Proof. Using (2.9), (2.10), (2.11) and after simplification, we have

|a2a3 − a4| =
1

48(1 + α)(1 + 2α)(1 + 3α)

.
∣∣(11 + 33α+ 10α2)p31 − (36 + 108α+ 48α2)p1p2 + 24(1 + α)(1 + 2α)p3

∣∣ . (2.19)

On applying Lemma 1.3 in (2.19), it yields (2.18). �

For α = 0, the following result is a consequence of Theorem 2.8:

Remark 2.9. If f ∈ R′

sin, then

|a2a3 − a4| ≤ 1.

On putting α = 1 in Theorem 2.8, we can obtain the following result due to
Khan et al. [11]:

Remark 2.10. If f ∈ Rsin, then

|a2a3 − a4| ≤
1

4
.

Theorem 2.11. If f ∈ Rαsin, then

|a2a4 − a23| ≤
1

(1 + 2α)2
. (2.20)

Proof. Using (2.9), (2.10) and (2.11), we have

|a2a4 − a23| =
1

96(1 + α)(1 + 2α)2(1 + 3α)

.
∣∣24(1 + 2α)2p1p3 − 24α2p21p2 + (−1− 4α+ 2α2)p41 − 24(1 + α)(1 + 3α)p22

∣∣ .
Substituting for p2 and p3 from Lemma 1.4 and letting p1 = p, we get

|a2a4 − a23| =
1

96(1 + α)(1 + 2α)2(1 + 3α)

∣∣∣∣− (4α2 + 4α+ 1)p4

−6(1+2α)2p2(4−p2)x2−6(1+α)(1+3α)(4−p2)2x2+12(1+2α)2p(4−p2)(1−|x|2)z

∣∣∣∣.
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Since |p| = |p1| ≤ 2, we may assume that p ∈ [0, 2]. By using triangle inequality and
|z| ≤ 1 with |x| = t ∈ [0, 1], we obtain

|a2a4 − a23| ≤
1

96(1 + α)(1 + 2α)2(1 + 3α)

[
(4α2 + 4α+ 1)p4 + 6(1 + 2α)2p2(4− p2)t2

+6(1+α)(1+3α)(4−p2)2t2+12(1+2α)2p(4−p2)−12(1+2α)2p(4−p2)t2
]

= F (p, t).

∂F

∂t
=

(4− p2)t

8(1 + α)(1 + 2α)2(1 + 3α)

[
α2p2 − 2(1 + 2α)2p+ 4(1 + α)(1 + 3α)

]
≥ 0,

and so F (p, t) is an increasing function of t for p ≤ 3
2 .

Therefore,

max{F (p, t)} = F (p, 1) =
1

192(1 + α)(1 + 2α)2(1 + 3α)

[
(α2 + 4α+ 1)p4

+12α2p2(4− p2) + 12(1 + 2α)2p2(4− p2) + 12(1 + α)(1 + 3α)(4− p2)2
]

= H(p).

H ′(p) = 0 gives p = 0. Also H ′′(p) < 0 for p = 0.

This implies max{H(p)} = H(0) =
1

(1 + 2α)2
, which proves (2.20). �

Putting α = 0, Theorem 2.11 gives the following result:

Remark 2.12. If f ∈ R′

sin, then

|a2a4 − a23| ≤ 1.

Substituting for α = 1 in Theorem 2.11, the following result due to Khan et
al. [11], is obvious:

Remark 2.13. If f ∈ Rsin, then

|a2a4 − a23| ≤
1

9
.

Theorem 2.14. If f ∈ Rαsin, then

|H3(1)| ≤ (2 + 8α+ 4α2)(1 + 3α)2 + (1 + 4α)(1 + 2α)3

(1 + 2α)3(1 + 3α)2(1 + 4α)
. (2.21)

Proof. By using (2.2), (2.3), (2.4), (2.18), (2.20) and Remark 2.7 in (1.1), the re-
sult (2.21) can be easily obtained. �

For α = 0, Theorem 2.14 yields the following result:

Remark 2.15. If f ∈ R′

sin, then
|H3(1)| ≤ 3.

For α = 1, Theorem 2.14 yields the following result due to Khan et al. [11]:

Remark 2.16. If f ∈ Rsin, then

|H3(1)| ≤ 359

2160
.
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Theorem 2.17. If f ∈ Rαsin, then

|H4(1)|≤ 2

(1 + 2α)2(1 + 4α)

[
1 + 4α+ 2α2

(1 + 2α)(1 + 6α)
+

3 + 12α+ 2α2

(1 + 4α)2
+

2 + 8α+ 4α2

(1 + 3α)(1 + 5α)

]
+

1

(1 + 3α)2

[
2 + 12α+ 9α2

(1 + 6α)(1 + 3α)2
+

3

(1 + 2α)(1 + 4α)

]
.

Proof. We have
|a2a4 + 2a23| ≤ |a2a4 − a23|+ 3|a3|2.

Applying the triangle inequality in (1.2) and using the above inequality along with
Theorem 2.1, Theorem 2.4, Theorem 2.8, Theorem 2.11 and Theorem 2.14, the proof
of the Theorem 2.17 is obvious. �

For α = 0, Theorem 2.17 yields the following result:

Remark 2.18. If f ∈ R′

sin, then

|H4(1)| ≤ 17.

For α = 1, Theorem 2.17 yields the following result due to Khan et al. [11]:

Remark 2.19. If f ∈ Rsin, then

|H4(1)| ≤ 0.10556.

3. Bounds of |H3(1)| for two-fold and three-fold symmetric functions

A function f is said to be n-fold symmetric if is satisfy the following condition:

f(ξz) = ξf(z)

where ξ = e
2πi
n and z ∈ E.

By S(n), we denote the set of all n-fold symmetric functions which belong to the class
S.
The n-fold univalent function have the following Taylor-Maclaurin series:

f(z) = z +

∞∑
k=1

ank+1z
nk+1. (3.1)

An analytic function f of the form (3.1) belongs to the family Rα(n)sin if and only if

(1− α)
f(z)

z
+ αf ′(z) = 1 + sin

(
p(z)− 1

p(z) + 1

)
, p ∈ P(n),

where

Pn =

{
p ∈ P : p(z) = 1 +

∞∑
k=1

pnkz
nk, z ∈ E

}
. (3.2)

Theorem 3.1. If f ∈ Rα(2)sin , then

|H3(1)| ≤ 1

(1 + 2α)(1 + 4α)
. (3.3)
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Proof. If f ∈ Rα(2)sin , so there exists a function p ∈ P(2) such that

(1− α)
f(z)

z
+ αf ′(z) = 1 + sin

(
p(z)− 1

p(z) + 1

)
. (3.4)

Using (3.1) and (3.2) for n = 2, (3.4) yields

a3 =
1

2(1 + 2α)
p2, (3.5)

a5 =
1

2(1 + 4α)

(
p4 −

1

2
p22

)
. (3.6)

Also

H3(1) = a3a5 − a33. (3.7)

Using (3.5) and (3.6) in (3.7), it yields

H3(1) =
1

4(1 + 2α)(1 + 4α)
p2

[
p4 −

(1 + 2α)2 + (1 + 4α)

2(1 + 2α)2
p22

]
. (3.8)

On applying triangle inequality in (3.8) and using fourth inequality of Lemma 1.2, we
can easily get the result (3.3). �

Putting α = 0, the following result can be easily obtained from Theorem 3.1:

Remark 3.2. If f ∈ R
′(2)
sin , then

|H3(1)| ≤ 1.

For α = 1, Theorem 3.1 agrees with the following result:

Remark 3.3. If f ∈ R(2)
sin, then

|H3(1)| ≤ 1

15
.

Theorem 3.4. If f ∈ Rα(3)sin , then

|H3(1)| ≤ 1

(1 + 3α)2
. (3.9)

Proof. If f ∈ Rα(3)sin , so there exists a function p ∈ P(3) such that

(1− α)
f(z)

z
+ αf ′(z) = 1 + sin

(
p(z)− 1

p(z) + 1

)
. (3.10)

Using (3.1) and (3.2) for n = 3, (3.10) gives

a4 =
1

2(1 + 3α)
p3. (3.11)

Also

H3(1) = −a24. (3.12)

Using (3.11) in (3.12), it yields

H3(1) = − 1

4(1 + 3α)2
p23. (3.13)
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On applying triangle inequality and using first inequality of Lemma 1.2, (3.9) can be
easily obtained. �

For α = 0, Theorem 3.4 yields the following result:

Remark 3.5. If f ∈ R
′(3)
sin , then

|H3(1)| ≤ 1.

For α = 1, Theorem 3.4 yields the following result:

Remark 3.6. If f ∈ R(3)
sin, then

|H3(1)| ≤ 1

16
.
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