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Abstract. In this paper the authors consider the existence of positive solutions
to a two point boundary value problem for nonlinear second-order impulsive
systems. They use a vector version of Krasnosel’skii’s fixed point theorem in
cones in their proofs. Examples are provided to illustrate the results.
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1. Introduction

The existence of positive solutions to second order impulsive differential equa-
tions and systems has been studied by many authors such as in [7, 9, 10, 11, 12].

Liu et al. [10, 11, 12] studied the existence of one and multiple positive solutions
to two point boundary value problems for systems of nonlinear second-order singular
impulsive differential equations by using fixed point index theory. In [7], He inves-
tigated the existence of positive solutions to second order periodic boundary value
problems with impulse actions by applying fixed point index theory.

The existence and location of positive solutions for ordinary differential systems
has been studied in [4, 8, 13, 14] by using a technique based on a vector version of
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Krasnosel’skii’s fixed point theorem in cones. In [8], Herlea considered the system of
first order equations with integral boundary conditions

u′1(t) = f1(t, u1, u2),
u′2(t) = f2(t, u1, u2),
u1(0)− a1u1(1) = g1[u1],
u2(0)− a2u2(1) = g2[u2],

where fi, f2 ∈ C([0, 1]×R2
+,R+) and gi : C[0, 1]→ R, i = 1, 2, are linear functionals

given by

gi[u] =

∫ 1

0

u(s)dγi, i = 1, 2

with gi[1] < 1 and γi ∈ C1[0, 1] is increasing and satisfies 0 < ai < 1 − gi[1] for
i = 1, 2. Herlea obtained the existence and the location of positive solutions by using
a vector version of Krasnosel’skii’s fixed point theorem in cones.

Precup [14] also used the vector version of Krasnosel’skii’s fixed point theorem to
study the existence and localization of positive solutions of the nonlinear differential
system 

u′′1(t) + f1(t, u1, u2) = 0,
u′2(t) + f2(t, u1, u2) = 0,
u1(0) = u1(1) = 0,
u2(0) = u2(1) = 0.

Other authors have recently studied the existence of solution for system of im-
pulsive differential equations using vector versions of fixed point theorems, such as in
[1, 3, 2, 5, 6].

With this background in mind, in this paper we examine the existence and
location of positive solutions of the two point boundary value problem for the system
of nonlinear second-order impulsive differential equations

−u′′1(t) = f1(t, u1(t), u2(t)), t ∈ J ′,
−u′′2(t) = f2(t, u1(t), u2(t)), t ∈ J ′,
−∆u′1 |t=tk= I1,ku1(tk), k = 1, 2, · · · ,m,
−∆u′2 |t=tk= I2,ku2(tk), k = 1, 2, · · · ,m,
αu1(0)− βu′1(0) = 0, αu2(0)− βu′2(0) = 0,
γu1(1) + δu′1(1) = 0, γu2(1) + δu′2(1) = 0,

(1.1)

where α, β, γ, δ ≥ 0, ρ = βγ + αγ + αδ > 0, J = [0, 1], 0 < t1 < t2 < · · · <
tm < 1, J ′ = J \ {t1, t2, · · · , tm}, fi ∈ C(J × R × R,R), Ii,k ∈ C(R,R), i = 1, 2,
k ∈ {1, 2, · · · ,m}. Here, ∆u′ |t=tk= u1(t+k )− u1(t−k ) and ∆u′2 |t=tk= u2(t+k )− u2(t−k ),

where u′1(t+k ) and u′2(t+k ), (u′1(t−k ) and u′2(t−k )) denote the right (left) hand limits of
u′1(t) and u′2(t) at t = tk, respectively.

Motivated by the work mentioned above, here we study the existence and loca-
tion of positive solution of the system (1.1) using the vector version of Krasnosel’skii’s
fixed point theorem in cones given in [13]. As we will see, this approach allows the
nonlinear terms and impulses in the system to have different types of behaviors in
their variables.
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2. Preliminaries

In this paper we need the following concepts. For a normed linear space (X, ‖·‖),
a cone K ⊂ X is a closed and convex set with K \ {0} 6= ∅, λK ⊂ K for all λ ∈ R+,
and K ∩ (−K) = {0}. A cone K in X induces a partial order relation in X that we
will denote by �; we write u � v if and only if v − u ∈ K. We say that u ≺ v if
v − u ∈ K \ {0} and u ⊀ v if v − u /∈ K \ {0}. Finally, u � v means v � u.

Consider two cones K1 and K2 in X and the corresponding cone K := K1×K2

in X2. We use the same symbol � to denote the partial order relation induced by
K in X2 as we do for K1 or K2 in X. In X2, u = (u1, u2) ≺ v = (v1, v2) means
ui ≺ vi for i = 1, 2. For r, R ∈ R2

+ with r = (r1, r2) and R = (R1, R2), we will write
0 < r < R to mean 0 < r1 < R1 and 0 < r2 < R2. Also, we set

(Ki)ri,Ri := {u ∈ Ki : ri ≤ ‖u‖ ≤ Ri}, i = 1, 2,

Kr,R := {u ∈ K : ri ≤ ‖ui‖ ≤ Ri for i = 1, 2},
and we see that Kr,R = (K1)r1,R1 × (K2)r2,R2 .

The following vector version of Krasnosel’skii’s fixed point theorem in a cone
[13, Theorem 2.1] will be used to obtain our main existence result.

Theorem 2.1. Let (X, ‖ · ‖) be a normed linear space, K1, K2 ⊂ X be two cones in X,
K := K1×K2, r, R ∈ R+ with 0 < r < R, and N : Kr,R → K given by N = (N1, N2)
be a compact map. Assume that for each i ∈ {1, 2}, one of the following conditions is
satisfied in Kr,R:

(a) Ni(u) ⊀ ui if ‖ui‖ = ri and Ni(u) � ui if ‖ui‖ = Ri;
(b) Ni(u) � ui if ‖ui‖ = ri and Ni(u) ⊀ ui if ‖ui‖ = Ri.

Then N has a fixed point u in K with ri ≤ ‖ui‖ ≤ Ri for i ∈ {1, 2}.

3. Main Result

We first formulate problem (1.1) as a fixed point problem for a vector-valued
mapping N = (N1, N2). Then, u := (u1, u2) will satisfy an operator system{

u1 = N1(u1, u2),
u2 = N2(u1, u2),

(3.1)

in the vector conical shell Kr,R with u ∈ K and

r1 ≤ ‖u1‖ ≤ R1, r2 ≤ ‖u2‖ ≤ R2.

We denote by G(t, s) the Green’s function for the boundary value problem −x
′′(t) = 0,

αx(0)− βx′(0) = 0,
γx(1) + δx′(1) = 0.

(3.2)

It is given explicitly by

G(t, s) =
1

ρ

{
(γ + δ − γt)(β + αs), 0≤ s≤t≤1
(β + αt)(γ + δ − γs), 0≤t≤s≤1.



642 H. Kadari, A. Oumansour, J.R. Graef and A. Ouahab

The function G(t, s) is positive and satisfies the properties (see [10, p. 552], [11, p.
3775]):

G(t, s) ≤ G(s, s), for all t, s ∈ [0, 1], (3.3)

0 < σG(s, s) ≤ G(t, s), t ∈ [a, b], s ∈ [0, 1], (3.4)

where a ∈ [0, t1], b ∈ [tm, 1] and 0 ≤ σ = min{ (1−b)γ+δγ+δ , aα+βα+β } ≤ 1.

In this paper, we consider the space

PC(J,R+) = {x : [0, 1] −→ R+ | xk ∈ C(J ′,R), k = 1, . . . ,m,

x(t−k ) and x(t+k ) exist, k = 1, . . . ,m, and x(t−k ) = x(t)}.
We see that PC(J,R+) is a Banach space with the norm

‖x‖PC = sup
t∈J
|x(t)|.

Let P be the cone of all nonnegative functions in PC([0, 1],R+).

Definition 3.1. A pair (u1, u2) ∈ PC(J,R+)×PC(J,R+) is called a solution of system
(1.1) if it satisfies system (1.1).

The following lemma is obvious.

Lemma 3.2. The vector (u1, u2) ∈ PC(J,R+)×PC(J,R+) is a solution of the differ-
ential system (1.1) if and only if (u1, u2) ∈ PC1(J,R+) × PC1(J,R+) is a solution
of the integral system

u1(t) =

∫ 1

0

G(t, s)f1(s, u1(s), u2(s))ds+

m∑
k=1

G(t, tk)I1,k(u1(tk)),

u2(t) =

∫ 1

0

G(t, s)f2(s, u1(s), u2(s))ds+

m∑
k=1

G(t, tk)I2,k(u2(tk)).

(3.5)

Let N : P 2 → P 2 be the completely continuous map N = (N1, N2) given by

Ni(u(t)) =

∫ 1

0

G(t, s)fi(s, u(s), v(s))ds+

m∑
k=1

G(t, tk)Ii,k(ui(tk)) i = 1, 2.

Then (3.5) is equivalent to the fixed point problem

u = N(u), u ∈ P 2.

If v ∈ P ,

ui(t) :=

∫ 1

0

G(t, s)v(s)ds+

m∑
k=1

G(t, tk)Ii,k(ui(tk)),

and if ui(t
′) = ‖ui‖PC , then in view of (3.4), for every t ∈ [0, 1], we have

ui(t) ≥ σ
∫ 1

0

G(s, s)v(s)ds+ σ

m∑
k=1

G(tk, tk)Ii,k(ui(tk)).
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If t′ 6= tk for k = 1, 2, · · · ,m, then

ui(t) ≥ σ

∫ 1

0

G(t′, s)v(s)ds+ σ

m∑
k=1

G(tk, tk)Ii,k(ui(tk))

≥ σ

∫ 1

0

G(t′, s)v(s)ds+ σ

m∑
k=1

G(t′, tk)Ii,k(ui(tk)) = σui(t
′) = σ‖u‖PC .

If t′ = tk for k = 1, 2, · · · ,m, then

ui(t) ≥ σ

∫ 1

0

G(s, s)v(s)ds+ σ

m∑
k=1

G(t′, tk)Ii,k(ui(tk))

≥ σ

∫ 1

0

G(t′, s)v(s)ds+ σ

m∑
k=1

G(t′, tk)Ii,k(ui(tk)) = σui(t
′) = σ‖u‖PC .

Define the cones Ki in P by

Ki = {ui ∈ P : ui(t) ≥ σ‖ui‖PC for all t ∈ [a, b]}, i = 1, 2,

and the product cone K = K1 × K2 in X2. Then N(K) ⊂ K. Before we state our
main result we introduce the following notations. For any αi, βi > 0 with αi 6= βi, let
ri = min{αi, βi}, Ri = max{αi, βi}, and

γ1 = min{f1(t, u1, u2) : a ≤ t ≤ b, σβ1 ≤ u1 ≤ β1, σr2 ≤ u2 ≤ R2},

γ2 = min{f2(t, u1, u2) : a ≤ t ≤ b, σr1 ≤ u1 ≤ R1, σβ2 ≤ u2 ≤ β2},

Γ1 = max{f1(t, u1, u2) : 0 ≤ t ≤ 1, σα1 ≤ u1 ≤ α1, σr2 ≤ u2 ≤ R2},

Γ2 = max{f2(t, u1, u2) : 0 ≤ t ≤ 1, σr1 ≤ u1 ≤ R1, σα2 ≤ u2 ≤ α2}.
Also, let

B = max{G(t, s) : 0 ≤ t ≤ 1, 0 ≤ s ≤ 1},

A = min{G(t, s) : a ≤ t ≤ b, a ≤ s ≤ b},

λ1 = min
1≤k≤m

{min{I1,k(u1) : σβ1 ≤ u1 ≤ β1}},

λ2 = min
1≤k≤m

{min{I2,k(u2) : σβ2 ≤ u2 ≤ β2}},

Λ1 = max
1≤k≤m

{max{I1,k(u1) : σα1 ≤ u1 ≤ α1}},

Λ2 = max
1≤k≤m

{max{I2,k(u2) : σα2 ≤ u2 ≤ α2}}.

Theorem 3.3. Assume that there exist αi, βi > 0 with αi 6= βi, i = 1, 2, such that

B(Γ1 + Λ1m) ≤ α1, A(γ1(b− a) + λ1m) ≥ β1,
B(Γ2 + Λ2m) ≤ α2, A(γ2(b− a) + λ2m) ≥ β2.

(3.6)

Then (1.1) has a positive solution u = (u1, u2) with ri ≤ ‖ui‖PC ≤ Ri, i = 1, 2,
where ri = min{αi, βi}, Ri = max{αi, βi}. Moreover, the corresponding orbit of u is
included in the rectangle [σr1, R1]× [σr2, R2].
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Proof. If u ∈ Kr,R, then r1 ≤ ‖u1‖PC ≤ R1 and r2 ≤ ‖u2‖PC ≤ R2, so from the
definition of K,

σr1 ≤ ‖u1‖PC ≤ R1 and σr2 ≤ ‖u2‖PC ≤ R2,

for t ∈ [a, b], that is, for t ∈ [a, b], u(t) ∈ [σr1, R1] × [σr2, R2]. Also, if ‖u1‖PC = α1,
then u1(t) ≤ α1 for t ∈ [0, 1], and

σα1 ≤ u1(t) ≤ α1 for all t ∈ [a, b].

We wish to show that for every u ∈ Kr,R and each i ∈ {1, 2}, we have

‖ui‖PC = αi implies ui ⊀ Ni(u),
‖ui‖PC = βi implies ui � Ni(u).

(3.7)

If ‖u1‖PC = α1 and u1 ≺ N1(u), then

u1(t) < N1(u)(t) ≤ B(Γ1 + Λ1m) ≤ α1

for t ∈ [0, 1], which leads to the contradiction α1 < α1.

If ‖u1‖PC = β1 and u2 � N2(u), then for t ∈ [a, b], we obtain

u1(t) > N1(u)(t) ≥
∫ b

a

G(t, s)f1(s, u1(s), u2(s))ds+

m∑
k=1

G(t, tk)I1,k(u1(tk))

≥ A(γ1(b− a) + λ1m) ≥ β1,

yielding the contradiction β1 > β1. Hence, (3.7) holds for i = 1. In a similar way we
can show that (3.7) holds for i = 2. By Theorem 2.1, we see that N has at least one
nonzero fixed point in K. Therefore, system (1.1) has at least one positive solution.
This completes the proof of the theorem. �

Analogous to the discussion by Precup in [13] and [14], we examine the situation
where f1 and f2 are independent of t, i.e., suppose f1 = f1(u1, u2) and f2 = f2(u1, u2).
If f1, f2, I1,k, and I2,k, k = 1, 2, .....,m, satisfy various monotonicity conditions, then
we can obtain specific estimates for γ1, γ2, Γ1, Γ2, λ1, λ2, Λ1, Λ2. As examples, we
have the following cases.

Case 1. If f1 and f2 are nondecreasing in u1 and u2, and I1,k and I2,k are nondecreasing
respectively in u1 and u2 for k = 1, 2, . . . ,m, then

Γ1 = f1(α1, R2), γ1 = f1(σβ1, σr2),
Γ2 = f2(R1, α2), γ2 = f2(σr1, σβ2),

Λ1 = max
1≤k≤m

{I1,k(α1)}, λ1 = min
1≤k≤m

{I1,k(σβ1)},

Λ2 = max
1≤k≤m

{I2,k(α2)}, λ2 = min
1≤k≤m

{I2,k(σβ2)}.

Case 2. If f1 is nondecreasing in u1 and u2, f2 is nondecreasing in u1 and non increasing
in u2, and on the other hand I1,k are nondecreasing in u1 and I2,k are non increasing
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in u2 for k = 1, 2, . . . ,m, then

Γ1 = f1(α1, R2), γ1 = f1(σβ1, σr2),
Γ2 = f2(R1, σα2), γ2 = f2(σr1, β2),

Λ1 = max
1≤k≤m

{I1,k(α1)}, λ1 = min
1≤k≤m

{I1,k(σβ1)},

Λ2 = max
1≤k≤m

{I2,k(σα2)}, λ2 = min
1≤k≤m

{I2,k(β2)}.

Case 3. If f1 is nondecreasing in u1 and non increasing in u2, f2 is non increasing in
u1 and nondecreasing in u2, and on the other hand I1,k are non increasing in u1 and
I2,k are nondecreasing in u2 for k = 1, 2, .....,m, then

Γ1 = f1(α1, σr2), γ1 = f1(σβ1, R2),
Γ2 = f2(σr1, α2), γ2 = f2(R1, σβ2),

Λ1 = max
1≤k≤m

{I1,k(σα1)}, λ1 = min
1≤k≤m

{I1,k(β1)},

Λ2 = max
1≤k≤m

{I2,k(α2)}, λ2 = min
1≤k≤m

{I2,k(σβ2)}.

Case 4. If f1 and f2 are nondecreasing in u1 and nonincreasing in u2, and I1,k are
nondecreasing in u1 and I2,k are nonincreasing in u2 for k = 1, 2, . . . ,m, then

Γ1 = f1(α1, σr2), γ1 = f1(σβ1, R2),
Γ2 = f2(R1, σα2), γ2 = f2(σr1, β2),

Λ1 = max
1≤k≤m

{I1,k(α1)}, λ1 = min
1≤k≤m

{I1,k(σβ1)},

Λ2 = max
1≤k≤m

{I2,k(σα2)}, λ2 = min
1≤k≤m

{I2,k(β2)}.

4. Examples

We conclude this paper with two examples to illustrate Theorem 3.3 in the
Cases 1 and 4 above.

Example 4.1. Consider the second-order impulsive system

u′′1(t) + uθ1 + uε2 = 0, 0 < θ < ε < 1, t 6= 1
4 , 0 ≤ t ≤ 1,

u′′2(t) + uε1 + uθ2 = 0, 0 < θ < ε < 1, t 6= 1
4 , 0 ≤ t ≤ 1,

−∆u′1 |t= 1
4
= c
√
u1
(
1
4

)
, c > 0,

−∆u′2 |t= 1
4
= d
√
u2( 1

4 ), d > 0,

u1(0)− u′1(0) = 0, u1(1)− u′1(1) = 0,
u2(0) + u′2(0) = 0, u2(1) + u′2(1) = 0.

(4.1)
We can establish that system (4.1) has at least one positive solution u = (u1, u2).
Here,

f1(u1, u2) = uθ1 + uε2, f2(u1, u2) = uε1 + uθ2,

I1,1

(
u1

(
1

4

))
= c

√
u1

(
1

4

)
, I2,1

(
u2

(
1

4

))
= d

√
u2

(
1

4

)
.
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System (4.1) is equivalent to the integral system u1(t) =
∫ 1

0
G(t, s)[u1(s)θ + u2(s)ε]ds+ cG

(
t, 14
)√

u1
(
1
4

)
,

u2(t) =
∫ 1

0
G(t, s)[u1(s)ε + u2(s)θ]ds+ dG

(
t, 14
)√

u2
(
1
4

)
.

where G(t, s) is the Green’s function

G(t, s) =
1

3

{
(2− t)(1 + s), 0 ≤ s ≤ t ≤ 1
(2− s)(1 + t), 0 ≤ t ≤ s ≤ 1

ClearlyB = 9
4 andA = σ. In this case f1(u1, u2) and f2(u1, u2) are both nondecreasing

in u1 and u2, while I1,1 and I2,1 are nondecreasing respectively in u1 and u2 for u1,
u2 ∈ R+, so we are in Case 1. We choose α1 = α2 =: α∗ and β1 = β2 =: β∗, with
β∗ < α∗, and so r1 = r2 = β∗, R1 = R2 = α∗, and γi = fi(σβ

∗, σβ∗), Γi = fi(α
∗, α∗),

Λi = Ii,1(α∗), λi = Ii,2(σβ∗) for i = 1, 2. The values of α∗ and β∗ will be made precise
in what follows. Since

lim
x→∞

fi(x, x)

x
= 0, lim

x→0

fi(x, x)

x
=∞,

lim
x→∞

I1,1(x)

x
= 0 and lim

x→0

I2,1(x)

x
=∞,

we may find β∗ small enough and α∗ large enough that the conditions

fi(α
∗, α∗)

α∗
≤ 1

2B
,

fi(σβ
∗, σβ∗)

σβ∗
≥ 1

2σA(b− a)
,

Ii,1(α∗)

α∗
≤ 1

2Bm
,

Ii,1(σβ∗)

σβ∗
≥ 1

2σAm
,

i ∈ {1, 2}, are satisfied. Thus, condition (3.6) holds. Hence, system (4.1) has at least
one positive solution (u1, u2) with β∗ ≤ ‖ui‖PC ≤ α∗ for i ∈ {1, 2}.

Example 4.2. Consider the second-order impulsive system

u′′1(t) +
u

1
4
1

u2 + 1
= 0, t 6= 1

2 , 0 ≤ t ≤ 1,

u′′1(t) +
u1

u2 + 1
= 0, t 6= 1

2 , 0 ≤ t ≤ 1,

−∆u′1 |t= 1
2
= u

1
3
1 ( 1

2 ),

−∆u′2 |t= 1
2
= e−u2(

1
2 ),

u1(0)− u′1(0) = 0, u1(1)− u′1(1) = 0,
u2(0) + u′2(0) = 0, u2(1) + u′2(1) = 0.

(4.2)

Here we have

f1(u1, u2) =
u

1
4
1

u2 + 1
, f2(u1, u2) =

u1
u2 + 1

,

I1,1

(
u1

(
1

2

))
= u

1
3
1 (

1

2
) and I2,1

(
u2

(
1

2

))
= e−u2(

1
2 ).
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System (4.2) is equivalent to the integral system
u1(t) =

∫ 1

0
G(t, s)

u1(s)
1
4

u2(s) + 1
ds+G

(
t,

1

2

)
u

1
3
1

(
1

2

)
,

u2(t) =
∫ 1

0
G(t, s)

u1(s)

u2(s) + 1
ds+G

(
t,

1

2

)
e−u2(

1
2 ).

The Green function G(t, s) is the same as in Example 4.1. In this case f1(u1, u2) and
f2(u1, u2) are nondecreasing in u1 and nonincreasing in u2. Also, I1,1 is nondecreasing
in u1 and I2,1 is nonincreasing in u2 for u1, u2 ∈ R+, so we are in Case 4. We choose
α1 = α2 =: α∗, β1 = β2 =: β∗, with β∗ < α∗. Then r1 = r2 = β∗, R1 = R2 = α∗

and Γ1 = f1(α∗, σβ∗), Γ2 = f2(α∗, σα∗), γ1 = f1(σβ∗, α∗), γ2 = f2(σβ∗, β∗), Λ1 =
I1,1(α∗), λ1 = I1,1(σβ∗), Λ2 = I2,1(σα∗), λ2 = I2,1(β∗), where α∗ and β∗ will be
made precise below. Since

lim
x→∞

f1(x, 0)

x
= 0, lim

y→∞

f2(x, σy)

y
= 0,

lim
x→∞

I1,1(x)

x
= 0, and lim

y→∞

I2,1(σy)

y
= 0,

we may find α∗ > 0 large enough so that

f1(α∗, 0)

α∗
≤ 1

2B
,

f2(α∗, σα∗)

α∗
≤ 1

2B
,

I1,1(α∗)

α∗
≤ 1

2Bm
,

I1,2(σα∗)

α∗
≤ 1

2Bm
.

Since
f1(α∗, σβ∗)

α∗
≤ f1(α∗, 0)

α∗
,

we have
f1(α∗, σβ∗)

α∗
≤ 1

2B
.

And since

lim
x→0

f1(σx, y)

x
=∞, lim

y→0

f2(x, y)

y
=∞,

lim
x→0

I1,1(σx)

x
=∞, lim

y→0

I2,1(y)

y
=∞,

with α fixed as above, we can choose β small enough that

f1(σβ∗, α∗)

β∗
≥ 1

2A(b− a)
,

f2(σβ∗, β∗)

β∗
≥ 1

2A(b− a)
,

I1,1(σβ∗)

β∗
≥ 1

2Am
,

I1,2(β∗)

β∗
≥ 1

2Am
.

Conditions (3.6) are satisfied, hence system (4.2) has at least one positive solution
u = (u1, u2).
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