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Abstract. The method of upper and lower solutions is presented for the fixed
point problem associated to operators which are compositions of a linear oper-
ator and a nonlinear mapping. Spectral properties of the linear part together
with growth and monotonicity properties of the nonlinear part are involved. An
application to singular boundary value problems is included.
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1. Introduction

One of the most useful methods for solving nonlinear equations arising from
mathematical modeling of real processes is the method of upper and lower solutions
(see [1], [2], [5], [6], [8], [10], [12], [13], [14]). It consists in localizing solutions of an
operator equation

u = Tu

in an order interval [u0, v0] , where u0 is a lower solution, i.e.

u0 ≤ Tu0,

v0 is an upper solution, i.e.

v0 ≥ Tv0,
and u0, v0 are comparable in the sense of order, that is u0 ≤ v0. Thus a basic
problem is to find comparable lower and upper solutions. In this paper we present
such type of results for the abstract Hammerstein equation

u = ANu (1.1)
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in an ordered Banach space X. Here A is a linear operator and N is a nonlinear
mapping from X to X. Although the main motivation is in applications to real pro-
cesses from science and engineering, a general abstract method is essential in order
to understand unitarily particular results and to make clear the applicability of the
method to a specific problem.

2. Main results

The first result guarantees that the solutions of an equation u = AΦu simpler
than (1.1), are upper (lower) solutions for (1.1) provided that Φ (respectively, N)
dominates N (respectively, Φ).Throughout this paper we shall use the same symbol≤
to denote the order relation in different ordered sets.

Theorem 2.1. Let X and Y be two ordered sets, N : X → Y be any mapping and A :
Y → X be an increasing operator. Assume that there are D ⊂ X and Φ : D → Y
such that

Nu ≤ Φu (respectively, Nu ≥ Φu) (2.1)

for all u ∈ D. Then any solution u ∈ D of the equation

u = AΦu, (2.2)

if there is one, is an upper (respectively, lower) solution of the equation u = ANu.

Proof. Assume v0 ∈ D solves (2.2). Then, from (2.1) we have

Nv0 ≤ Φv0

and since A is increasing,

ANv0 ≤ AΦv0 = v0.

Hence v0 is an upper solution. Similarly, if Nu ≥ Φu on D, then any solution of
(2.2) is a lower solution of the equation u = ANu. �

If in Theorem 2.1 we add linearity, then we obtain the following result.

Corollary 2.2. Let X, Y be ordered linear spaces, N : X → Y any mapping and
A : Y → X a linear increasing operator. Let KX be the cone of all elements u of X
with u ≥ 0. Assume there are c ∈ R+ and w0 ∈ Y such that

Nu ≤ cu+ w0 (2.3)

for all u ∈ KX ∩ Y. Then any solution v0 ∈ KX of the equation

u− cAu = Aw0 (2.4)

is an upper solution of (1.1). If in addition,

−N (−u) ≤ cu+ w0 (2.5)

for all u ∈ KX ∩ Y, then u0 := −v0 is a lower solution of (1.1).
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Proof. In Theorem 2.1 take D = KX ∩ Y and Φu = cu+w0. For the second part of
the corollary, take D = (−KX) ∩ Y, Φu = cu− w0. �

Equation (2.4) suggests that more applicable results can be established if we
take into account the spectral properties of A.

Theorem 2.3. Let X be a Banach space ordered by a normal cone K. Assume that
A : X → X is a completely continuous linear operator whose non-zero eigenvalues
are positive and that A satisfies the weak maximum principle

u− αAu = Aw, w ∈ K implies u ∈ K (2.6)

for every α ∈ (−∞, |A|−1). In addition assume that N : X → X is a continuous
mapping such that

Nu ≤ cu+ w0, N (−u) ≥ −cu− w0 (2.7)

for all u ∈ K and some 0 < c < |A|−1 , w0 ∈ K, and there exists a ∈ R+ such that
the operator

Nu+ au is increasing on [−v0, v0] ,

where v0 is the (unique) solution of the equation u− cAu = Aw0.
Then equation (1.1) has at least one solution. Moreover, if the set S+ (S−)

of all solutions u ≥ 0 (respectively, u ≤ 0) is nonempty, then it has a maximal
(respectively, minimal) element.

Proof. First note that for any constant α < |A|−1 , the operator I − αA is injective
(equivalently, bijective, according to the Fredholm’s alternative [4, p. 92]). Indeed,
otherwise for some u ∈ X \ {0} one has u − αAu = 0. For α < 0 this is impossible
since all non-zero eigenvalues are assumed to be positive (here 1/α is a non-zero
eigenvalue). If α = 0, this equality is obviously impossible. It remains to discuss the

case α > 0. Then |u| = α |Au| ≤ α |A| |u| , whence α ≥ |A|−1 , a contradiction. Thus
our claim is proved.

Let v0 be the unique solution of the equation u− cAu = Aw0.From (2.6) one
has v0 ≥ 0. Now, (2.7) guarantees both (2.3), (2.5). Thus, by Corollary 2.2, v0 is
an upper solution and u0 := −v0 is a lower solution. Let

Nau = Nu+ au.

The equation u = ANu is equivalent to

u = (I + aA)
−1
ANau.

Let

Ta = (I + aA)
−1
ANa.

Clearly Ta is completely continuous on [u0, v0] . Also Ta is increasing on [u0, v0] since

Na is increasing by our hypothesis and (I + aA)
−1
A is increasing as well. Indeed,

if w ∈ K and u := (I + aA)
−1
Aw, then u+ aAu = Aw and by the weak maximum

principle u ∈ K. Hence the linear operator (I + aA)
−1
A is increasing. In addition

Tav0 ≤ v0. (2.8)
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To prove this denote u := Tav0. Then

u+ aAu = ANv0 + aAv0 = A (cv0 + w0 − h) + aAv0

= cAv0 +Aw0 −Ah+ aAv0 = v0 −Ah+ aAv0

where h := cv0 + w0 −Nv0 ∈ K. Consequently

v0 − u+ aA (v0 − u) = Ah

and by the weak maximum principle v0 − u ≥ 0 which proves (2.8). Similarly,

u0 ≤ Tau0.

Let u∗, v∗ be the minimal, respectively maximal solution in [u0, v0] as guaranteed by
the Monotone Iterative Principle (see [9] and [13]). One has

−v0 ≤ u∗ ≤ v∗ ≤ v0.

We now show that if w ∈ K solves w = ANw, then w ≤ v0. Indeed, from

w = ANw = A (cw + w0 − h) = cAw +Aw0 −Ah,

where h := cw + w0 −Nw ∈ K, and

v0 = cAv0 +Aw0, (2.9)

by subtraction, we obtain

v0 − w − cA (v0 − w) = Ah.

Then by the weak maximum principle, v0 − w ≥ 0 and so w ∈ [0, v0] . Consequently
w ≤ v∗. Hence v∗ is maximal in S+. Similarly, if w ∈ −K and w = ANw, then
−v0 ≤ w. Hence u∗ is minimal in S−. �

For our next theorem, an existence and localization result of a nonnegative non-
zero solution, we assume that X is a Hilbert space with inner product and norm
(., .) , |.| ordered by a normal cone K, which is also a vector lattice with respect to
the order relation introduced by K. Then any element x ∈ X can be written as a
difference of two elements x+, x−of K, that is x = x+ − x−, where x+ = x ∨ 0 and
x− = (−x)∨ 0. Thus for an element x one has x ≥ 0, if and only if x− = 0. We also
assume that

(x, y) ≥ 0 for all x, y ∈ K and
(
x+, x−

)
= 0 for every x ∈ X. (2.10)

We also note that if A : X → X is a completely continuous positive (with
(Au, u) ≥ 0 for all u ∈ X) self-adjoint linear operator, then there exists u1 ∈ X,
|u1| = 1, such that

|A| = (Au1, u1) . (2.11)

This follows from the characterization of the norm of self-adjoint linear operators:

|A| = sup
u6=0

|(Au, u)|
|u|2

.
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Since (x+, x−) = 0 for every x ∈ X, we have
∣∣u+1 + u−1

∣∣ =
∣∣u+1 − u−1 ∣∣ = 1. Also if

A (K) ⊂ K, then

|A| =
(
A
(
u+1 − u

−
1

)
, u+1 − u

−
1

)
=

(
Au+1 , u

+
1

)
+
(
Au−1 , u

−
1

)
− 2

(
Au+1 , u

−
1

)
≤

(
Au+1 , u

+
1

)
+
(
Au−1 , u

−
1

)
+ 2

(
Au+1 , u

−
1

)
=

(
A
(
u+1 + u−1

)
, u+1 + u−1

)
≤ |A|

∣∣u+1 + u−1
∣∣2

= |A| .

Hence in (2.11) we may assume that u1 ≥ 0 (otherwise, replace u1 by u+1 + u−1 ).

Theorem 2.4. Let A : X → X be a completely continuous positive self-adjoint linear
operator such that weak maximum principle (2.6) holds, and let N : X → X be any
continuous mapping such that N (0) = 0,

Nu ≤ cu+ w0 (2.12)

for all u ∈ K and some 0 ≤ c < |A|−1 , w0 ≥ u1, and

N (εu1) ≥ ε |A|−1 u1 (2.13)

for all ε ∈ [0, ε0] and some ε0 > 0. Here u1 ∈ K, |u1| = 1 and (Au1, u1) = |A| .
In addition assume that there exists a ∈ R+ with

Nu+ au increasing on [0, v0] ,

where v0 is the (unique) solution of the equation u − cAu = Aw0. Then equation
(1.1) has a maximal solution in K \ {0} .

Proof. First note that the non-zero eigenvalues of A are positive since A is positive.
As above, the unique solution v0 of the equation u−cAu = Aw0 is an upper solution
of the equation u = ANu. Since N (0) = 0, the null element is a solution, and
so a lower solution. Now we apply the Monotone Iterative Principle to deduce the
existence of a maximal fixed point v∗ in [0, v0] of the operator

Ta = (I + aA)
−1
ANa.

As in the proof of Theorem 2.3 we can show that v∗ is maximal in the set of all
nonnegative solutions. To show that v∗ 6= 0, we prove that v∗ is the maximal fixed
point of Ta in an order subinterval [u0, v0] ⊂ [0, v0] with u0 6= 0.

For any fixed v ∈ X we consider the function

g (t) =
(A (u1 + tv) , u1 + tv)

|u1 + tv|2
,

which can be defined on a neighborhood of t = 0. This function attains its maximum
|A| at t = 0, so g′ (0) = 0. Notice

g′ (0) = 2 [(Au1, v)− |A| (u1, v)] .

Hence

u1 = |A|−1Au1
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(i.e., |A| is the largest eigenvalue of A and u1 is an eigenvector). Let u0 = εu1,
where 0 < ε ≤ ε0. Clearly

u0 ≥ 0, u0 6= 0, u0 = |A|−1Au0.

Using (2.13), we deduce

u0 = |A|−1Au0 = A
(
|A|−1 u0

)
≤ ANu0.

Thus u0 is a lower solution of u = ANu. Also, from

v0 = cAv0 +Aw0, u0 = |A|−1Au0,

we have

v0 − u0 = cA (v0 − u0) +
(
c− |A|−1

)
Au0 +Aw0.

= cA (v0 − u0) +A
[(
c− |A|−1

)
u0 + w0

]
.

Since w0 ≥ u1, we may write w0 = u1 + h, where h = w0 − u1 ∈ K. Then

v0 − u0 = cA (v0 − u0) +A
[((

c− |A|−1
)
ε+ 1

)
u1 + h

]
.

Now we choose ε > 0 small enough so that
(
c− |A|−1

)
ε+ 1 ≥ 0. Then((

c− |A|−1
)
ε+ 1

)
u1 ∈ K

and ((
c− |A|−1

)
ε+ 1

)
u1 + h ∈ K

too, and by the maximum principle, v0 − u0 ≥ 0. Next we apply the Monotone
Iterative Principle to deduce the existence of a maximal fixed point in [u0, v0] of Ta.
Clearly it is equal to v∗. �

Remark 2.5. Under the assumptions on X from Theorem 2.4, the weak maximum

principle holds for A on
(
−∞, |A|−1

)
if it holds on (−∞, 0].

Indeed, if (2.6) holds on (−∞, 0], then, in particular (take α = 0 in (2.6))

A (K) ⊂ K. Furthermore, assume α ∈
(

0, |A|−1
)

and u := v − αAv ∈ K. We have

to show that v ≥ 0, equivalently v− = 0. Assume the contrary, i.e. v− 6= 0. Then if
we multiply by v− and we use (2.10), we obtain

0 ≤
(
v−, u

)
=
(
v−, v

)
− α

(
v−, Av

)
=

(
v−, v+

)
−
∣∣ v−∣∣2 − α ( v−, Av+)+ α

(
v−, A v−

)
≤ −

∣∣ v−∣∣2 + α
(
v−, A v−

)
.

It follows that

α ≥ |v−|2

(v−, A v−)
.
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But (v−, A v−) ≤ |A| |v−|2 . Then α ≥ 1

|A|
, a contradiction. Thus v− = 0.

3. Application to singular boundary value problems

We shall apply the above results to the boundary value problem for a singular
second order differential equation

− 1
p (pu′)

′
= q (t) f (u) , 0 < t < 1

(pu′) (0) = 0
u (1) = 0

(3.1)

where p ∈ C [0, 1] ∩ C1 (0, 1) with p > 0 on (0, 1) ,

∫ 1

0

1

p (t)
dt < ∞ and q ∈

L∞ ([0, 1] ,R+) . The equation is singular if p is zero at t = 0 or/and t = 1. Such
kind of problems are in connection with radial solutions to stationary diffusion and
waves equations and arise from mathematical modelling of many processes in physics
and biology [3], [7], [11].

By a solution of (3.1) we mean a function u ∈ C [0, 1] ∩ C1 (0, 1) , with pu′ ∈
AC [0, 1] which satisfies the differential equation for almost every t ∈ (0, 1) .

Let X = L2
p [0, 1] with inner product and norm

(u, v) =

∫ 1

0

p uv dt, |u| =
(∫ 1

0

p u2dt

)1/2

.

Clearly, X is vector lattice ordered by the regular (hence, normal) cone K of all
nonnegative functions, with the additional property (2.10).

Denote Lu = − 1
p (pu′)

′
, where

D (L) = {u ∈ C [0, 1] ∩ C1 (0, 1) : pu′ ∈ AC [0, 1] ,

Lu ∈ L2
p [0, 1] , (pu′) (0) = u (1) = 0}.

It is easy to see that for every h ∈ L2
p [0, 1] there is a unique u ∈ D (L) with Lu = h,

and

u (t) =

∫ 1

t

1

p (s)

∫ s

0

p (τ)h (τ) dτds.

Let A be the inverse of L, more exactly

A : L2
p [0, 1]→ L2

p [0, 1] , (Ah) (t) =

∫ 1

t

1

p (s)

∫ s

0

p (τ)h (τ) dτds.

We note that A has all the required properties, i.e., it is completely continuous,
positive, self-adjoint (see e.g. [11]) and satisfies the weak maximum principle. To
prove the last property, according to Remark 2.5, it is sufficient to show that (2.6)
holds for α ≤ 0. For α = 0 this trivially holds as follows looking at the expression of
A. Let α < 0 and let u− αAu = Aw for some w ∈ K. Then{

− 1
p (pu′)

′ − αu = w, 0 < t < 1

u (1) = (pu′) (0) = 0.
(3.2)
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Suppose that u /∈ K. Then there would be an interval [a, b] , 0 ≤ a < b ≤ 1 such that

u < 0 in (a, b) , u (b) = 0 and

either a = 0, or 0 < a and u (a) = 0.

Then on [a, b] , one has − 1
p (pu′)

′ ≥ 0, i.e. (pu′)
′ ≤ 0. Hence pu′ is decreasing on [a, b]

and since (pu′) (b) ≥ 0, we must have pu′ ≥ 0 on [a, b] . Then u is increasing and since
u (b) = 0, we have u (a) < 0. Hence a = 0 and u < 0 in (0, b) . Now integration from
0 to b in (3.2) gives

− (pu′) (b)− α
∫ b

0

pudt =

∫ b

0

pwdt.

Since
∫ b

0
pwdt ≥ 0 and α

∫ b

0
pudt > 0, we deduce (pu′) (b) < 0, a contradiction.

Therefore u ≥ 0 in [0, 1] .

Theorem 3.1. Assume f ∈ C1 (R) and

lim sup
|x|→∞

∣∣∣∣f (x)

x

∣∣∣∣ < |A|−1 |q|−1L∞[0,1] . (3.3)

Then problem (3.1) has at least one solution. Moreover, if the set S+ (S−) of all so-
lutions u ≥ 0 (respectively, u ≤ 0) is nonempty, then it has a maximal (respectively,
minimal) element.

Proof. From (3.3) we can find a c0 ∈
(

0, |A|−1 |q|−1L∞[0,1]

)
and a µ > 0 such that

|f (x)| ≤ c0 |x| for |x| > µ.

Next the continuity of f on [−µ, µ] guarantees the existence of a c1 > 0 with

|f (x)| ≤ c1 on [−µ, µ] .

Thus

|f (x)| ≤ c0 |x|+ c1 for all x ∈ R. (3.4)

This implies that the mapping

N (u) (t) = q (t) f (u (t))

is well-defined and continuous from L2
p [0, 1] to itself and

|Nu|L2
p[0,1]

≤ |q|L∞[0,1]

(
c0 |u|L2

p[0,1]
+ c1 |1|L2

p[0,1]

)
.

On the other hand, if u ∈ K = L2
p ([0, 1] ,R+) , then (3.4) guarantees

N (u) ≤ cu+ w0 and −N (−u) ≤ cu+ w0,

where c = c0 |q|L∞[0,1] < |A|
−1

and w0 = c1 |q|L∞[0,1] .

If v0 is the (unique) solution of the equation u − cAu = Aw0, then v0 ∈
C([0, 1] ,R+) and so 0 ≤ v0 (t) ≤ M for all t ∈ [0, 1] and some M > 0. Function f
being C1, there is a number a ∈ R+ such that

|q|L∞[0,1] f
′ (x) + a ≥ 0 for all x ∈ [−M,M ] .
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Consequently, N (u) + au is an increasing operator on [−v0, v0] and we may apply
Theorem 2.3. �

Finally Theorem 2.4 yields the following result.

Theorem 3.2. Assume q ≡ 1, f ∈ C1 (R+,R) , f (0) = 0 and

lim sup
x→∞

f (x)

x
< |A|−1 < f ′ (0) .

Then problem (3.1) has a maximal positive solution.
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