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Modified inertia Halpern method for split null
point problem in Banach spaces

Hammed Anuoluwapo Abass, Godwin Ugwunnadi and Ojen Narain

Abstract. In this paper, we study split null point problem in reflexive Banach
spaces. Using the Bregman technique together with a modified inertial Halpern
method, we approximate a solution of split null point problem. Also, we establish
a strong convergence result for approximating the solution of the aforementioned
problems. It is worth mentioning that the iterative algorithm employ in this study
is design in such a way that it does not require prior knowledge of operator norm.
We display some numerical examples to illustrate the performance of the proposed
iterative method. The result discuss in this paper extends and complements many
related results in literature.
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1. Introduction

Let E be a reflexive Banach space with E∗ its dual and Q be a nonempty closed and
convex subset of E. Let g : E → (−∞,+∞] be a proper, lower semicontinuous and
convex function, then the Fenchel conjugate of g denoted as g∗ : E∗ → (−∞,+∞] is
define as

g∗(x∗) = sup{〈x∗, x〉 − g(x) : x ∈ E}, x∗ ∈ E∗.

Let the domain of g be denoted as dom(g) = {x ∈ E : g(x) < +∞}, hence for any
x ∈ intdom(g) and y ∈ E, we define the right-hand derivative of g at x in the direction
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of y by

g0(x, y) = lim
t→0+

g(x+ ty)− g(x)

t
.

Let g : E → (−∞,+∞] be a function, then g is said to be:

(i) Gâteaux differentiable at x if limt→0+
g(x+ty)−g(x)

t exists for any y. In this case,

g0(x, y) coincides with ∇g(x) (the value of the gradient ∇g of g at x);
(ii) Gâteaux differentiable, if it is Gâteaux differentiable for any x ∈ intdomg;
(iii) Fréchet differentiable at x, if its limit is attained uniformly in ‖y‖ = 1;
(iv) Uniformly Fréchet differentiable on a subset Q of E, if the above limit is attained

uniformly for x ∈ Q and ‖y‖ = 1.
(v) essentially smooth, if the subdifferential of g denoted as ∂g is both locally

bounded and single-valued on its domain, where

∂g(x) = {w ∈ E : g(x)− g(y) ≥ 〈w, y − x〉, y ∈ E};

(vi) essentially strictly convex, if (∂g)−1 is locally bounded on its domain and g is
strictly convex on every convex subset of dom ∂g;

(vii) Legendre, if it is both essentially smooth and essentially strictly convex. See
[8, 9] for more details on Legendre functions.

Alternatively, a function g is said to be Legendre if it satisfies the following conditions:

(i) The intdom(g) is nonempty, g is Gâteaux differentiable on intdom(g) and
dom∇g = intdom(g);

(ii) The intdomg∗ is nonempty, g∗ is Gâteaux differentiable on intdomg∗ and
dom∇g∗ = intdom(g).

Let E be a Banach space and Bs := {z ∈ E : ‖z‖ ≤ s} for all s > 0. Then, a function
g : E → R is said to be uniformly convex on bounded subsets of E, [ see pp. 203 and
221] [51] if ρst > 0 for all s, t > 0, where ρs : [0,+∞)→ [0,∞] is defined by

ρs(t) = inf
x,y∈Bs,‖x−y‖=t,α∈(0,1)

αg(x) + (1− α)g(y)− g(α(x) + (1− α)y)

α(1− α)
,

for all t ≥ 0, with ρs denoting the gauge of uniform convexity of g. The function g
is also said to be uniformly smooth on bounded subsets of E, [ see pp. 221] [51], if
limt↓0

σs
t for all s > 0, where σs : [0,+∞)→ [0,∞] is defined by

σs(t) = sup
x∈B,y∈SE ,α∈(0,1)

αg(x) + (1− α)ty) + (1− α)g(x− αty)− g(x)

α(1− α)
,

for all t ≥ 0, and uniformly convex if the function δg : [0,+∞)→ [0,+∞) defined by

δg(t) := sup
{1

2
g(x) +

1

2
g(y)− g(

x+ y

2
) : ‖y − x‖ = t},

satisfies limt↓0
δg(t)
t = 0.

Definition 1.1. [11] Let E be a Banach space. A function g : E → (−∞,∞] is said
to be proper if the interior of its domain dom(g) is nonempty. Let g : E → (−∞,∞]
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be a convex and Gâteaux differentiable function. Then the Bregman distance corre-
sponding to g is the function Dg : dom(g)× intdom(g)→ R defined by

Dg(x, y) := g(x)− g(y)− 〈x− y,∇gE(y)〉, ∀ x, y ∈ E. (1.1)

It is clear that Dg(x, y) ≥ 0 for all x, y ∈ E.

It is well-known that Bregman distance Dg does not satisfy all the properties of a
metric function because Dg fail to satisfy the symmetric and triangular inequality
property. However, the Bregman distance satisfies the following so-called three point
identity: for any x ∈ dom(g) and y, z ∈ intdom(g),

Dg(x, z) = Dg(x, y) +Dg(y, z) + 〈x− y,∇gE(y)−∇gE(z)〉. (1.2)

In particular,

Dg(x, y) = −Dg(y, x) + 〈y − x,∇gE(y)−∇gE(x)〉, ∀ x, y ∈ E.

The relationship between Dg and ‖.‖ is guaranteed when g is strongly convex with
strong convexity constant ρ > 0 i.e.

Dg(x, y) ≥ ρ

2
‖x− y‖2, ∀ x ∈ dom(g), y ∈ intdom(g). (1.3)

Let g : E → R be a strictly convex and Gâteaux differentiable function and T :
Q → intdom(g) be a mapping, a point x ∈ Q is called a fixed point of T , if for all
x ∈ Q, Tx = x. We denote by Fix(T ) the set of all fixed points of T . Furthermore,
a point p ∈ Q is called an asymptotic fixed point of T if Q contains a sequence {xn}
which converges weakly to p such that lim

n→∞
‖Txn − xn‖ = 0. We denote by ˆFix(T )

the set of asymptotic fixed points of T .
Let Q be a nonempty closed and convex subset of int(dom g), then we define an
operator T : Q→ int(domg) to be :

(i) Bregman relatively nonexpansive, if Fix(T ) 6= ∅, and

Df (p, Tx) ≤ Df (p, x), ∀ p ∈ Fix(T ), x ∈ Q and ˆFix(T ) = Fix(T ).

(ii) Bregman quasi-nonexpansive mapping if Fix(T ) 6= ∅ and

Df (p, Tx) ≤ Df (p, x),∀ x ∈ Q and p ∈ Fix(T ).

(iii) Bregman firmly nonexpansive (BFNE), if

〈∇gE(Tx)−∇gE(Ty), Tx− Ty〉 ≤ 〈∇gE(x)−∇gE(y), Tx− Ty〉, ∀ x, y ∈ E.

Definition 1.2. [20] Let Q be a nonempty, closed and convex subset of a reflexive
Banach space E and g : E → (−∞,+∞] be a strongly coercive Bregman function.
Let β and γ be real numbers with β ∈ (−∞, 1) and γ ∈ [0,∞), respectively. Then a
mapping T : Q→ E with Fix(T ) 6= ∅ is called Bregman (β, γ)-demigeneralized if for
any x ∈ Q and p ∈ Fix(T ),

〈x− p,∇gE(x)−∇gE(Tx)〉 ≥ (1− β)Dg(x, Tx) + γDg(Tx, x), ∀ x ∈ E and p ∈ F (T ).
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For modelling inverse problems which arises from phase retrievals and medical image
reconstruction, (see [12]), Censor and Elfving [17] introduced the Split Feasibility
Problem (SFP) in 1994, which is to find

u∗ ∈ C such that Ku∗ ∈ Q; (1.4)

where C and Q are nonempty, closed and convex subsets of real Banach spaces E1 and
E2 respectively, and K : E1 → E2 is a bounded linear operator. The SFP have been
well studied in the framework of real Hilbert spaces, uniformly convex and uniformly
smooth Banach spaces, see ([2, 19, 24, 43] and other references contained in). Different
optimization problems have been formulated in terms of SFP (1.4), for instance, If
Q = {b} in SFP (1.4) is a singleton, then we have the following convexly constrained
linear inverse problem (in short, CCLIP) defined as follows:

Find a point u∗ ∈ C such that Ku∗ = b.

The Split Null Point Problem (SNPP) introduced by Bryne et al. [13] is formulated
as finding a point

x ∈ H1 such that 0 ∈ B1(x) and 0 ∈ B2(Kx), (1.5)

where H1 and H2 are real Hilbert spaces, B1 : H1 → 2H1 and B2 : H2 → 2H2 are
multivalued mappings and K : H1 → H2 are real Hilbert spaces.
In 2018, Jailoka and Suantai [23] introduced the following Halpern iterative method
for approximating the split null point and fixed point problems for maximal monotone
operators and multivalued demicontractive mapping T as follows:

u, x1 ∈ H1,

yn = JB1

λn
(xn + γK∗(JB2

λn
− I)Kxn),

un = (1− δ)yn + δzn,

xn+1 = αnu+ (1− αn)un, n ≥ 1,

where zn ∈ Tyn. Also, Oyewole et al. [33] introduced a new iterative method with
self adaptive step-size for approximating solutions of a SFP for sum of two monotone
operators and fixed point problem of a demimetric mapping in real Hilbert spaces.
Strong convergence result was proved and numerical experiment to illustrate the
performance of the algorithm were displayed.
In the framework of uniformly convex and smooth Banach spaces, Takahashi and
Takahashi [45] introduced a shrinking projection method to approximate a solution
of SNPP. Using their iterative method, they proved a strong convergence theorem.
Question: Can the results of [3, 6, 13, 22, 23, 32, 33, 45] be establish in a more
general Banach spaces (reflexive Banach spaces)?

Let B : E → 2E
∗

be a set-valued mapping. We define the domain and range
of B by domB = {x ∈ E : Bx 6= ∅} and ranB =

⋃
x∈E Bx, respectively. The graph

of B denoted by G(B) = {(x, x∗) ∈ E × E∗ : x∗ ∈ Bx}. The mapping B ⊂ E × E∗
is said to be monotone [38] if 〈x− y, x∗ − y∗〉 ≥ 0 whenever (x, x∗), (y, y∗) ∈ B. It is
also said to be maximal monotone [37] if its graph is not contained in the graph of
any other monotone operator on E. If B ⊂ E × E∗ is maximal monotone, then the
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set B−1(0) = {z ∈ E : 0 ∈ Bz} is closed and convex. Also, the resolvent associated
with B and λ for any λ > 0 is the mapping JgλB : E → 2E with Fix(JgλB) = B−1(0)
defined by

JgλB := (∇gE + λB)−1 ◦ ∇gE .

It is worth mentioning that a mapping B : E → 2E
∗

is called Bregman inverse strongly
monotone (BISM) on the set C if

C ∩ (domg) ∩ (int dom g) 6= ∅,

and for any x, y ∈ C ∩ (int dom g), η ∈ Ax and ξ ∈ Ay, we have

〈η − ξ, (∇g
∗

E∗(x)− η)−∇g
∗

E∗(∇gE(y)− ξ)〉 ≥ 0.

The anti-resolvent Bgλ : E → 2E associated with the mapping b : E → 2E
∗

and λ > 0
is defined by

Bgλ := ∇gE ◦ (∇gE − λB). (1.6)

Let A : E → E∗ be a single-valued monotone mapping and B : E → 2E
∗

be a multival-
ued monotone mapping. Then, the Monotone Variational Inclusion Problem (MVIP)
(also known as the problem of finding a zero of sum of two monotone mappings) is to
find x ∈ E such that

0∗ ∈ A(x) +B(x). (1.7)

We denote by Ω, the solution set of problem (1.7).
A simple and efficient method for solving (1.7) is the forward-backward splitting
method introduced by Lions and Mercier [26] in a Hilbert space H. It is known that
this method converges weakly to an element in (1.7) under the assumption that A
is α-inverse strongly monotone. Note that the inverse strongly monotonicity of A is
a strict assumption. To avoid this assumption, Tseng [48] introduced the following
algorithm which is known as Tseng’s splitting algorithm for solving (1.7) as follows:

x1 ∈ H,
yn = JBλn(xn − λnAxn),

xn+1 = yn − λn(Ayn −Axn), ∀ n ≥ 1,

(1.8)

where A : H → H is monotone and L-Lipschitz continuous and {λn} is the sequence
of suitable stepsize in (0, 1

L ). He proved that the sequence {xn} generated by (1.8)
converges weakly to an element in (1.7). It is well-known that the step size of Tseng’s
splitting method requires prior knowledge of the Lipschitz constant of the mapping.
However, from a practical point of view, the Lipschitz constant is very difficult to
approximate.
It is well known that many interesting problems arising from mechanics, economics,
finance, nonlinear programming, applied sciences, optimization such as equilibrium
and variational inequality problems can be solved using MVIP. Considerable efforts
have been devoted to develop efficient iterative method to approximate solutions of
MVIP in which the resolvent operator technique is one of the vital technique.
Many authors have considered approximating solutions of (1.7) together with fixed
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point problems in real Hilbert and Banach spaces, see [3, 1, 5, 33, 42].
For instance, Okeke and Izuchukwu [32] studied and analysed an iterative method
for approximating split feasibility problem and variational inclusion problem in p-
uniformly convex Banach spaces which are uniformly smooth, they proved a strong
convergence result for approximating the solution of the aforementioned problems.
Shehu [40] considered the splitting method for finding zeros of the sum of maximal
monotone operator and Lipschitz continuous monotone operator in Banach space.
He proved weak and strong convergence results and give some applications of his
main result. In the framework of 2-uniformly convex real Banach spaces which are
also uniformly smooth, Abass et al. [4] investigated a shrinking algorithm for finding
zeros of the sum of maximal monotone operators and Lipschitz continuous monotone
operators which is also a common fixed point for finite family of relatively quasi-
nonexpansive mappings.
Suppose A = 0 in (1.7), then (1.7) reduces to the following Monotone Inclusion
Problem (MIP), which is to find x ∈ E such that

0∗ ∈ B(x). (1.9)

Many results on MIP have been extended by authors from real Hilbert spaces to more
general Banach spaces. For instance, Reich and Sabach [36] introduced some iterative
algorithms and proved two strong convergence results for approximating a common
solution of a finite family of MIP (1.9) in a reflexive Banach spaces. Recently, Timnak
et al. [47] introduced a new Halpern-type iterative scheme for finding a common zero
of finitely many maximal monotone mappings in a reflexive Banach spaces and prove
the following strong convergence theorem.

Theorem 1.3. Let E be a reflexive Banach space and f : E → R be a strongly coercive
Bregman function which is bounded on bounded subsets and uniformly convex and
uniformly smooth on bounded subset of E. Let Ai : E → 2E

∗
, i = 1, 2, ..., be N

maximal monotone operators such that Z := ∩Ni=1A
−1
i (0∗) 6= ∅. Let {αn}n∈N and

{βn}n∈N be two sequences in (0, 1) satisfying the following control conditions:

(i) lim
n→∞

αn = 0 and
∞∑
n=1

αn =∞;

(ii) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

Let {xn}n∈N be a sequence generated by
u ∈ E, x1 ∈ E chosen arbitrarily,

yn = ∇f∗[βn∇f(xn) + (1− βn)∇f(ResfλnAN ) · · · (Resfr1A1
(xn))],

xn+1 = ∇f∗[αn∇f(u) + (1− αn)∇f(yn)],

(1.10)

for n ∈ N, where ∇f is the gradient of f . If ri > 0, for each i = 1, 2, ..., N , then the

sequence {xn}n∈N defined in (1.10) converges strongly to projfZu as n→∞.

Very recently, Ogbuisi and Izuchukwu [30] introduced an iterative algorithm and
obtained a strong convergence result for approximating a zero of sum of two maximal
monotone operators which is also a fixed point of a Bregman strongly nonexpansive
mapping in the framework of a reflexive Banach spaces.
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We will also like to emphasize that approximating a common solution of SNPP
have some possible applications to mathematical models whose constraints can be
expressed as SNPP. In fact, this happens in practical problems like signal processing,
network resource allocation, image recovery, to mention a few, (see [21]). It is
worth mentioning that the problem considered in this article generalizes the ones in
[6, 18, 29].

Inspired by the results discussed above, we introduce an iterative algorithm
which does not require the prior knowledge of operator norm as this may give
difficulty in computing, to approximate a solution of split null point problem
involving single-valued, multi-valued monotone and Lipschitz continuous monotone
mappings in reflexive Banach spaces. Using our iterative algorithm, we prove a strong
convergence result for approximating solutions of the aforementioned problems.
Finally, we illustrate some numerical experiments to show the performance and
behavior of our main result. The result discussed in this paper complements and
extends many related results in literature.
We state our contributions in this article as follows:

1. The main result in this paper generalizes the results in [10], [?] and [32] from
p-uniformly Banach spaces which are also uniformly smooth to reflexive Banach
spaces and [5, 6, 18, 29, 31, 32, 47] from real Hilbert spaces to a reflexive
Banach spaces.

2. The iterative method defined in this article is design in such a way that it does
not depend on the operator norm, see [20, 33].

3. We proved a strong convergence result which is more desirable than the weak
convergence result obtained in [44].

4. The sequence of stepsizes of our algorithms is chosen without the prior knowledge
of the Lipschitz constant and the uniform smoothness constant of the mapping,
see [40].

2. Preliminaries

We state some known and useful results which will be needed in the proof of our
main result. In the sequel, we denote strong and weak convergence by ”→” and ”⇀”,
respectively.

Definition 2.1. A function g : E → R is said to be strongly coercive if

lim
‖x‖→∞

g(x)

‖x‖
=∞.

Definition 2.2. A mapping T : C → E is said to be demiclosed at p if {xn} is a
sequence in C such that {xn} converges weakly to some x∗ ∈ C and {Txn} converges
strongly to p, then Tx∗ = p.
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Lemma 2.3. [47] Let E be a Banach space, s > 0 be a constant, ρs be the gauge of
uniform convexity of g and g : E → R be a strongly coercive Bregman function. Then,
(i) For any x, y ∈ Bs and α ∈ (0, 1), we have

Dg

(
x,∇g

∗

E∗ [α∇gE∇
g
E(y) + (1− α)∇gE(z)]

)
≤ αDg(x, y) + (1− α)Dg(x, z)

− α(1− α)ρs(‖∇gE(y)−∇gE(z)‖),

(ii) For any x, y ∈ Bs := {z ∈ E : ‖z‖ ≤ s}, s > 0,

ρs(‖x− y‖) ≤ Dg(x, y).

Lemma 2.4. [16] Let E be a reflexive Banach space, g : E → R be a strongly coercive
Bregman function and V be a function defined by

V (x, x∗) = g(x)− 〈x, x∗〉+ g∗(x∗), x ∈ E, x∗ ∈ E∗.
The following assertions also hold:

Dg(x,∇g
∗

E∗(x∗)) = V (x, x∗), for all x ∈ E and x∗ ∈ E∗.

V (x, x∗) + 〈∇g
∗

E∗(x∗)− x, y∗〉 ≤ V (x, x∗ + y∗) for all x ∈ Eand x∗, y∗ ∈ E∗.
Also, following a similar approach as in Lemma 2.4 and for any x ∈ E, y∗, z∗ ∈ Br
and α ∈ (0, 1), we have

Vg(x, αy
∗ + (1− α)z∗) ≤ αVg(x, y∗) + (1− α)Vg(x, z

∗)− α(1− α)ρ∗r(‖y∗ − x∗‖).
(2.1)

Lemma 2.5. [20] Let E1 and E2 be two Banach spaces. Let F : E1 → E2 be a bounded
linear operator and T : E2 → E2 be a Bregman (φ, σ)-demigeneralized for some
φ ∈ (−∞, 1) and σ ∈ [0,∞). Suppose that K = ran(A) ∩ Fix(T ) 6= ∅ (where ran(A)
denotes the range of (A). Then for any (x, q) ∈ E1 ×K,

〈x− q, F ∗(∇g2E2
(T (Fx)))〉 ≥ (1− φ)Dg2(Fx, T (Fx)) + σDg2(T (Fx), Fx)

≥ (1− φ)Dg2(Fx, T (Fx)). (2.2)

So, given any real numbers ξ1 and ξ2, the mapping L1 : E1 → [0,∞) and L2 : E2 →
[0.∞) formulated for x ∈ E1 as

L1(x) =

{ Dg2 (Fx,TFx)

D∗
g1

(F∗(∇g2E2
(Fx)),F∗(∇g2E2

(TFx))
, if (I − T )Fx 6= 0,

ξ1, otherwise,
(2.3)

and

L2(x) =


D∗
g1

(∇g1E1
(x)−γF∗(∇g2E2

(Fx)−∇g2E2
(TFx)),∇g1E1

(x))

D∗
g1

(F∗(∇g2E2
(Fx)),F∗(∇g2E2

(TFx))
, if , (I − T )Fx 6= 0,

ξ2, otherwise,
(2.4)

are well-defined, where γ is any nonnegative real number. Moreover, for any (x, p) ∈
E1 ×K, we have

Dg1(q, y) ≤ Dg1(q, x)− (γ(1− φ)L1(x)− L2(x))Dg∗1
(F ∗(∇g2E2

(Fx)), F ∗(∇g2E2
(TFx)),

(2.5)



Modified inertia Halpern method 621

where

y = (∇g1E1
)−1[∇g1E1

(x)− γF ∗(∇g2E2
(Fx)−∇g2E2

(TFx))].

Remark 2.6. From Definition 2.2 of [20], It can be seen that JgλB is (0, 1)− demigen-
eralized. Therefore, we conclude from (2.5) that

Dg1(q, y) ≤ Dg1(q, x)− (γL1(x)− L2(x))Dg∗1
(F ∗(∇g2E2

(Fx)), F ∗(∇g2E2
(JgλBFx)),

(2.6)

where T = JgλB and B : E → 2E
∗

is a maximal monotone operator.

Lemma 2.7. [16] Let E be a Banach space and g : E → R a Gâteaux differentiable
function which is uniformly convex on bounded subsets of E. Let {xn}n∈N and {yn}n∈N
be bounded sequences in E. Then,

lim
n→∞

Dg(yn, xn) = 0⇒ lim
n→∞

‖yn − xn‖ = 0.

Lemma 2.8. [7] Let A : E → E∗ be a monotone, hemicontinuous and bounded operator,
and B : E → 2E

∗
be a maximal monotone operator. Then A+B is maximal monotone.

Lemma 2.9. [36] Let g : E → R be a Gâteaux differentiable and totally convex function.
If x0 ∈ E and the sequence {Dg(xn, x0)} is bounded, then the sequence {xn} is also
bounded.

Definition 2.10. Let C be a nonempty closed and convex subset of a reflexive Banach
space E and g : E → (−∞,+∞] be a strongly coercive Bregman function. A Bregman
projection of x ∈ int(dom(g)) onto C ⊂ int(domg) is the unique vector P gC(x) ∈ C
satisfying

Dg(P
g
C(x), x) = int{Dg(y, x) : y ∈ C}.

Lemma 2.11. [34] Let C be a nonempty closed and convex subset of a reflexive Banach
space E and x ∈ E. Let g : E → R be a strongly coercive Bregman function. Then,
(i) z = P gC(x) if and only if 〈∇gE(x)−∇gE(z), y − z〉 ≤ 0, ∀ y ∈ C.
(ii) Dg(y, P

g
C(x)) +Dg(P

g
C(x), x) ≤ Dg(y, x), ∀ y ∈ C.

Lemma 2.12. [50] Let {an}, {γn}, {δn} and {tn} be sequences of nonnegative real
numbers satisfying the following relation:

an+1 ≤ (1− tn − γn)an + γnnan−1 + tnsn + δn, ∀n ≥ 0,

where
∞∑

n=n0

tn = +∞,
∞∑

n=n0

δn < +∞, for each n ≥ n0 (where n0 is a positive integer)

and {γn} ⊂ [0, 1
2 ], lim sup

n→∞
sn ≤ 0. Then, the sequence {an} converges weakly to zero.

Lemma 2.13. [27] Let Γn be a sequence of real numbers that does not decrease at
infinity, in the sense that there exists a subsequence {Γnk}k≥0 of {Γn} which satisfies
Γnk ≤ Γnj+1 for all j ≥ 0. Also, consider a sequence of integers {τ(n)}n≥n0 defined
by

τ(n) := max{k ≤ n | Γnk ≤ Γnk+1}.
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Then {τ(n)}n≥n0
is a nondecreasing sequence satisfying limn→∞ τ(n) =∞. If it holds

that Γτ(n) ≤ Γτ(n)+1 for all n ≥ n0 then we have

Γτ (n) ≤ Γτ(n)+1.

3. Main result

Throughout this section, we assume that

Assumption 3.1.
1. E1 and E2 be two reflexive Banach spaces, g1 : E1 → (−∞,+∞] and
g2 : E2 → (−∞,+∞] be strongly coercive Bregman functions which are bounded
on bounded subsets and uniformly convex and uniformly smooth on bounded
subsets of E1 and E2 with constant β > 0, respectively.

2. ∇g1E1
and ∇g2E2

be the gradients of E1 dependent on g1 and E2 dependent on g2

respectively.

3. A1 : E1 → E∗1 be a monotone and L-Lipschitz continuous mapping, B1 : E1 →
2E

∗
1 and B2 : E2 → 2E

∗
2 are maximal monotone mappings respectively, and Jg2λB2

be the resolvent of g2 on B2 for λ > 0, and λn = ρlmn where mn is the smallest
nonnegative integer such that

λn‖A1zn −A1yn‖ ≤ µ‖zn − yn‖. (3.1)

4. Suppose that K : E1 → E2 is a bounded linear operator such that K 6= 0 and
K∗ : E∗2 → E∗1 be the adjoint of K. Given that ρ > 0, l ∈ (0, 1), µ ∈ (0, σ),
where σ is a constant given by (1.3).

5. The control sequence {αn}, {βn} and {δn} are sequences in (0, 1) such that αn+
βn + δn = 1, {θn} ⊂ [0, 1

2 ] and the following conditions are satisfied:

(i) lim
n→∞

αn = 0,
∞∑
n=1

αn =∞,

(ii) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1,

(iii) 0 < a ≤ θn < δn ≤ 1
2 , ∀ n ≥ 1.

Algorithm 3.2. Define a sequence {xn}∞n=1 generated arbitrarily by chosen x0, x1 ∈ E1

and any fixed u ∈ E1, such that

wn = (∇g1E1
)−1[∇g1E1

(xn) + θn(∇g1E1
(xn−1)−∇g1E1

(xn))],

zn = (∇g1E1
)−1
[
∇g1E1

(wn)− γK∗(∇g2E2
(Kwn)−∇g2E2

(Jg2λB2
Kwn))

]
yn = Jg1λnB1

[
(∇g1E1

)(zn)− λnA1zn
]

un = (∇g1E1
)−1
[
∇g1E1

(yn)− λn(A1yn −A1zn)
]
,

xn+1 = (∇g1E1
)−1
[
αn∇g1E1

(u) + βn∇g1E1
(xn) + δn∇g1E1

(un)
]
.

(3.2)
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Suppose that Ω := {p ∈ (A1 + B1)−1(0) : Kp ∈ B−1
2 (0)} 6= ∅, let γ > 0, let the

sequences {ξ1,n}n∈N and {ξ2,n}n∈N satisfy the following conditions:

(i) there exists a positive real number φ1 such that

0 < φ1 < lim inf
n→∞

ξ2,n
ξ1,n

< γ,

where

ξ1,n =


Dg2 (Kwn,J

g2
λnB2

wn)

D∗
g1

(K∗(∇g2E2
(Kwn)),K∗(∇g2E2

(J
g2
λnB2

Kwn))
, if (I − Jg2λnB2

)Kwn 6= 0,

ξ1, otherwise,

and

ξ2,n =


D∗
g1

(∇g1E1
(wn)−γK∗(∇g2E2

(Kwn)−∇g2E2
(J
g2
λnB2

Kwn)),∇g1E1
(wn))

D∗
g1

(K∗(∇g2E2
(Kwn)),K∗(∇g2E2

(J
g2
λnB2

Kwn))
,

if (I − Jg2λnB2
)Kwn 6= 0,

ξ2, otherwise.

Then, the sequence {xn} generated iteratively converges strongly to z = P g1Ω u, where
P g1Ω is the Bregman projection of E1 onto Ω.

Proof. It can be seen in Lemma 3.2 of [44] that the Armijo linesearch rule defined by
(3.1) is well-defined and

min
{
ρ,
µl

L
} ≤ λn ≤ ρ.

Now, let x∗ ∈ Ω then, using definition of un in (3.2) we have from (1.1) that

Dg1(x∗, un) = Dg1

(
x∗, (∇g1E1

)−1[∇g1E1
(yn)− λn(A1yn −A1zn)]

)
= g1(x∗)− g1(un)− 〈x∗ − un,∇g1(yn)− λn(A1yn −A1zn)〉
= g1(x∗)− g1(un)− 〈x∗ − un,∇g1(yn)〉+ λn〈x∗ − un, A1yn −A1zn〉
= g1(x∗)− g1(yn)− 〈x∗ − yn,∇g1(yn)〉+ 〈x∗ − yn,∇g1(yn)〉
+ g1(yn)− g1(un)− 〈x∗ − un,∇g1(yn)〉+ λn〈x∗ − un, A1yn −A1zn〉
= g1(x∗)− g1(yn)− 〈x∗ − yn,∇g1(yn)〉 − g1(un) + g1(yn)

+ 〈un − yn,∇g1(yn)〉+ λn〈x∗ − un, A1yn −A1zn〉
= Dg1(x∗, yn)−Dg1(un, yn) + λn〈x∗ − un, A1yn −A1zn〉. (3.3)

Using (1.2), we get

Dg1(x∗, un) = Dg1(x∗, zn)−Dg1(yn, zn) + 〈x∗ − yn,∇g1(zn)−∇g1(yn)〉. (3.4)
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On substituting (3.4) into (3.3), we obtain

Dg1(x∗, un) = Dg1(x∗, zn)−Dg1(yn, zn)−Dg1(un, yn)

+ 〈x∗ − yn,∇g1(zn)−∇g1(yn)〉+ λn〈x∗ − un, A1yn −A1zn〉
= Dg1(x∗, zn)−Dg1(yn, zn)−Dg1(un, yn) + 〈x∗−yn,∇g1(zn)−∇g1(yn)〉
+ λn〈yn − un, A1yn −A1zn〉 − λn〈yn − x∗, A1yn −A1zn〉
= Dg1(x∗, zn)−Dg1(yn, zn)−Dg1(un, yn) + λn〈yn − un, A1yn −A1zn〉
− 〈yn − x∗,∇g1(zn)−∇g1(yn)− λn(A1zn −A1yn)〉. (3.5)

By applying the definition of yn, we have ∇g1(zn)−λnA1zn ∈ ∇g1(yn)+λnB1. Since
B1 : E1 → 2E

∗
1 is a maximal monotone mapping, there exists an ∈ B1yn such that

∇g1(zn)− λnA1zn = ∇g1(yn) + λnan, it follows that

an =
1

λn
(∇g1(zn)−∇g1(yn)− λnA1zn). (3.6)

Since 0 ∈ (A1 +B1)x∗ and A1yn + an ∈ (A1 +B1)yn, it follows from Lemma 2.8 that
A1 +B1 is maximal monotone, hence

〈yn − x∗, A1yn + an〉 ≥ 0. (3.7)

On substituting (3.6) into (3.7), we get

1

λn
〈yn − x∗,∇g1(zn)−∇g1(yn)− λnA1zn + λnA1yn〉 ≥ 0.

That is

〈yn − x∗,∇g1(zn)−∇g1(yn)− λn(A1zn −A1yn)〉 ≥ 0. (3.8)

Combining (3.5) and (3.8), and using (1.3), we have

Dg1(x∗, un) ≤ Dg1(x∗, zn)−Dg1(yn, zn)−Dg1(un, yn) + λn〈yn − un, A1yn −A1zn〉
≤ Dg1(x∗, zn)−Dg1(yn, zn)−Dg1(un, yn) + λn||yn−un|| ||A1yn−A1zn||
≤ Dg1(x∗, zn)−Dg1(yn, zn)−Dg1(un, yn) + µ‖yn − un‖ ‖yn − zn‖
≤ Dg1(x∗, zn)−Dg1(yn, zn)−Dg1(un, yn) + µ

(
‖yn − un‖2 + ‖yn−zn‖2

)
≤ Dg1(x∗, zn)−

(
1− µ

σ

)
Dg1(yn, zn)−

(
1− µ

σ

)
Dg1(yn, un) (3.9)

≤ Dg1(x∗, zn). (3.10)
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Also, from (2.6) and (3.2), we get

Dg1(x∗, zn) = Dg1

(
(∇g1E1

)−1
(
∇g1E1

(wn)− γK∗(∇g2E2
(Kwn −∇g2E2

(Jg2λB2
Kwn)))

))
≤Dg1(x∗, wn)−(γξ1,n−ξ2,n)Dg∗1

(
K∗(∇g2E2

(Kwn)),K∗(∇g2E2
(Jg2λB2

Kwn))
)

(3.11)

≤ Dg1(x∗, wn) (3.12)

= Dg1

(
x∗, (∇g1E1

)−1
(
∇g1E1

(xn) + θn(∇g1E1
(xn−1)−∇g1E1

(xn))
))

≤ (1− θn)Dg1(x∗, xn) + θnDg1(x∗, xn−1). (3.13)

From (2.1), (3.2), (3.9) and (3.10), we get

Dg1(x∗, xn+1) ≤ Dg1

(
x∗, (∇g1E1

)−1
(
αn∇g1E1

(u) + βn∇g1E1
(xn) + δn∇g1E1

(un)
))

≤ Vg1
(
x∗, αn∇g1E1

(u) + βn∇g1E1
(xn) + δn∇g1E1

(un)

)
= g1(x∗)− 〈x∗, αn∇g1E1

(u) + βn∇g1E1
(xn) + δn∇g1E1

(un)〉
+ g∗1

(
αn∇g1E1

(u) + βn∇g1E1
(xn) + δn∇g1E1

(un)
)

≤ αng1(x∗) + βng1(x∗) + δng1(x∗)− βn〈x∗,∇g1E1
(xn)〉

− δn〈x∗,∇g1E1
(un)〉 − αn〈x∗,∇g1E1

(u)〉+ βng
∗
1(∇g1E1

(xn))

+ δng
∗
1(∇g1E1

(un)) + αng
∗
1(∇g1E1

(u))− βnδnρ∗r(‖∇
g1
E1

(xn)−∇g1E1
(un)‖)

− βnδnρ∗r(‖∇
g1
E1

(xn)−∇g1E1
(u)‖)

≤ βn
(
g1(x∗)− 〈x∗,∇g1E1

(xn)〉+ g∗1(∇g1E1
(xn))

)
+ δn

(
g1(x∗)− 〈x∗,∇g1E1

(un)〉+ g∗1(∇g1E1
(un))

)
+ αn

(
g1(x∗)− 〈x∗,∇g1E1

(u)〉+ g∗1

(
∇g1E1

(u))

)
− βnδnρ∗r

(
‖∇g1E1

(xn)−∇g1E1
(un)‖

)
= βnVg1(x∗,∇g1(xn)

E1
) + δnVg1(x∗,∇g1E1

(un)) + αnVg1(x∗,∇g1E1
(u))

− βnδnρ∗r
(
‖∇g1E1

(xn)−∇g1E1
(un)‖

)
≤ βnDg1(x∗, xn) + δnDg1(x∗, un) + αnDg1(x∗, u)

− βnδnρ∗r
(
‖∇g1E1

(xn)−∇g1E1
(un)‖

)
≤ βnDg1(x∗, xn)

+ δn

(
Dg1(x∗, wn)−

(
1− µ

σ

)
Dg1(yn, zn)−

(
1− µ

σ

)
Dg1(yn, un)

− (γξ1,n − ξ2,n)Dg∗1

(
K∗(∇g2E2

(Kwn)),K∗(∇g2E2
(Jg2λB2

Kwn))
)



626 Hammed Anuoluwapo Abass, Godwin Ugwunnadi and Ojen Narain

+ αnDg1(x∗, u)− βnδnρ∗r
(
‖∇g1E1

(xn)−∇g1E1
(un)‖

)
≤ βnDg1(x∗, xn) + δn(1− θn)

(
Dg1(x∗, xn) + δnθnDg1(x∗, xn−1)

− δn
(
1− µ

σ

)(
Dg1(yn, zn)−Dg1(yn, un)

)
− δn(γξ1,n − ξ2,n)Dg∗1

(
K∗(∇g2E2

(Kwn)),K∗(∇g2E2
(Jg2λB2

Kwn))
)

+ αnDg1(x∗, u)− βnδnρ∗r
(
‖∇g1E1

(xn)−∇g1E1
(un)‖

)
≤ (1− αn − δnθn)Dg1(x∗, xn) + δnθnDg1(x∗, xn−1) + αnDg1(x∗, u)

− δn
(
1− µ

σ

)(
Dg1(yn, zn)−Dg1(yn, un)

)
− δn(γξ1,n − ξ2,n)Dg∗1

(
K∗(∇g2E2

(Kwn)),K∗(∇g2E2
(Jg2λB2

Kwn))

− βnδnρ∗r
(
‖∇g1E1

(xn)−∇g1E1
(un)‖

)
(3.14)

≤ (1− αn − δnθn)Dg1(x∗, xn) + δnθnDg1(x∗, xn−1) + αnDg1(x∗, u)

≤ max{Dg1(x∗, xn), Dg1(x∗, xn−1), Dg1(x∗, u)}, ∀ n ≥ 1. (3.15)

By induction, we obtain that

Dg1(x∗, xn) ≤ max{Dg1(x∗, x1), Dg1(x∗, x0), Dg1(x∗, u)}.

Hence, {Dg1(x∗, xn)} is bounded and therefore we conclude that from Lemma 2.9 that
{xn} is bounded. More so, {wn}, {zn}, {yn} and {un} are bounded. The remaining
proof is divided into two cases.
Case A: If there exists n0 ∈ N such that {Dg1(x∗, xn)}Nn=n0

is decreasing, then
{Dg1(x∗, xn)}n∈N is convergent. Thus, we have that Dg1(x∗, xn)−Dg1(x∗, xn+1)→ 0,
as n→∞. Hence, from (3.14), we have that

δn
(
1− µ

σ

)(
Dg1(yn, zn)−Dg1(yn, un)

)
− δn(γξ1,n − ξ2,n)Dg∗1

(
K∗(∇g2E2

(Kwn)),K∗(∇g2E2
(Jg2λB2

Kwn))
)

≤ (1− αn)D∗g1(x∗, xn)−Dg1(x∗, xn+1) + δnθn
(
Dg1(x∗, xn−1)−Dg1(x∗, xn)

)
+ αnDg1(x∗, u). (3.16)

On applying condition (i) and (ii), we obtain that

lim
n→∞

Dg1(yn, zn) = 0 = lim
n→∞

Dg1(yn, un). (3.17)

From Lemma 2.7, we get that

lim
n→∞

‖yn − zn‖ = 0 = lim
n→∞

‖yn − un‖. (3.18)

Since g1 is bounded and uniformly smooth on bounded sets of E1, it follows that ∇g1E1

is uniformly continuous on bounded subsets of E1. Thus, we conclude from (3.18)
that

lim
n→∞

‖∇g1E1
(yn)−∇g1E1

(zn)‖ = 0. (3.19)
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From (3.18), we have

lim
n→∞

‖un − zn‖ = 0. (3.20)

Also, from (3.16), we have

lim
n→∞

βnδnρ
∗
r

(
‖∇g1E1

(xn)−∇g1E1
(un)‖

)
= 0 (3.21)

= lim
n→∞

δn(γξ1,n − ξ2,n)Dg∗1

(
K∗(∇g2E2

(Kwn)),K∗(∇g2E2
(Jg2λB2

Kwn))
)
. (3.22)

By Lemma 2.7 and from properties of the functions ρr, D
∗
g1 and K, we have

lim
n→∞

‖K∗(∇g2E2
(Kwn))−K∗(∇g2E2

(Jg2λB2
Kwn))‖ = 0, (3.23)

and

lim
n→∞

(‖∇g1E1
(xn)−∇g1E1

(un)‖) = 0. (3.24)

Employing Lemma 2.7, we arrive at

lim
n→∞

‖Kwn − Jg2λB2
Kwn) = 0. (3.25)

and

lim
n→∞

‖un − xn‖ = 0. (3.26)

In view of (3.2), we obtain that

lim
n→∞

‖zn − wn‖ = 0. (3.27)

From (3.20) and (3.26), we ge that

lim
n→∞

‖un − xn‖ = 0. (3.28)

From (3.2), it is easy to see that

‖∇g1E1
(xn+1)−∇g1E1

(xn)‖ ≤ αn‖∇g1E1
(u)−∇g1E1

(xn)‖+ βn‖∇g1E1
(xn)−∇g1E1

(xn)‖
+ δn‖∇g1E1

(un)−∇g1E1
(xn)‖. (3.29)

Hence, we have from (3.29) and condition (i) of (3.2) that

lim
n→∞

‖∇g1E1
(xn+1)−∇g1E1

(xn)‖ = 0. (3.30)

Since ∇g1E1
is norm to norm uniformly continuous on bounded subset of E∗1 , we have

lim
n→∞

‖xn+1 − xn‖ = 0. (3.31)

From (3.18) and (3.26), we get that

lim
n→∞

‖yn − xn‖ = 0. (3.32)

From (3.2), we obtain from (3.31)

‖∇g1E1
(wn)−∇g1E1

(xn)‖ = θn‖∇g1E1
(xn−1)−∇g1E1

(xn)‖ → 0, as n→∞.. (3.33)
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Using the fact that ∇g1E1
is norm to norm uniformly continuous on bounded subset of

E∗1 , we have

lim
n→∞

‖wn − xn‖ = 0. (3.34)

Lastly, with (3.27) and (3.34), we arrive at

lim
n→∞

‖zn − xn‖ = 0. (3.35)

Since {xn}n∈N is bounded and E1 is reflexive, we deduce that there exists a sub-
sequence {xnj}j∈N of {xn}n∈N which converges weakly to z. Also, from (3.28),
(3.32), (3.34) and (3.35), we have that there exist subsequences {unj}j∈N of {un}n∈N,
{ynj}j∈N of {yn}n∈N, {wnj}j∈N of {wn}n∈N and {znj}j∈N of {zn}n∈N converge weakly
to z respectively. Hence, from (3.25) and the demiclosedness principle we have
that Jg2λB2

(Kz) = Kz, therefore we conclude that Kz ∈ B−1
2 (0). To show that

z ∈ (A1 + B1)−1(0). Let (v, w) ∈ G(A1 + B1), we have w − A1v ∈ B1v. From the
definition of yn, we observe that

∇g1E1
(zn)− λnA1zn ∈ ∇g1E1

(yn) + λnB1yn,

or equivalently

1

λn
(∇g1E1

(zn)−∇g1E1
(yn)− λnA1zn) ∈ B1yn.

By the maximal monotonicity of B1, we get

〈v − yn, w −A1v +
1

λn
(∇g1E1

(zn)−∇g1E1
(yn)− λnA1zn)〉 ≥ 0.

Also, from the monotonicity of A1, we have〈
v − yn, w〉 ≥ 〈v − yn, A1v +

1

λn
(∇g1E1

(zn)−∇g1E1
(yn)− λnA1zn)

〉
= 〈v − yn, A1v −A1zn〉+

1

λn
〈v − yn,∇g1E1

(zn)−∇g1E1
(yn)〉

= 〈v − yn, A1v −A1yn〉+ 〈v − yn, A1yn −A1zn〉

+
1

λn
〈v − yn,∇g1E1

(zn)−∇g1E1
(yn)〉

≥ 〈v − yn, A1yn −A1zn〉+
1

λn
〈v − yn,∇g1E1

(zn)−∇g1E1
(yn)〉. (3.36)

Since A1 is Lipschitz continuous and ynj ⇀ z, it follows from (3.18) and (3.19) that

〈v − z, w〉 ≥ 0.

By the monotonicity of A1 +B1, we get 0 ∈ (A1 +B1)z, that is z ∈ (A1 +B1)−1(0).
Hence z ∈ Ω.
Next, we show that {xn} converges strongly to z, where z = P g1Ω u.
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From Lemma 2.11, we have

lim sup
n→∞

〈xn − x∗,∇g1E1
(u)−∇g1E1

(x∗)〉 = lim
j→∞
〈xnj − x∗,∇

g1
E1

(u)−∇g1E1
(x∗)〉

= 〈z − x∗,∇g1E1
(u)−∇g1E1

(x∗)〉
≤ 0, (3.37)

and hence from (3.31), we obtain

lim sup
n→∞

〈xn+1 − x∗,∇g1E1
(u)−∇g1E1

(x∗)〉 ≤ 0. (3.38)

Using Lemma 2.4, (3.10) and (3.12), we obtain

Dg1(z, xn+1) ≤ Dg1

(
z, (∇g1E1

)−1(βn∇g1E1
(xn) + δn∇g1E1

(un) + αn∇g1E1
(u))

)
= Vg1(z, βn∇g1E1

(xn) + δn∇g1E1
+ αn∇g1E1

(u))− αn(∇g1E1
(u)−∇g1E1

(z))

+ αn〈xn+1 − z,∇g1E1
(u)−∇g1E1

(z)〉
= βnDg1(z, xn) + δnDg1(z, un) + αn〈xn+1 − z,∇g1E1

(u)−∇g1E1
(z)〉

≤ βnDg1(z, xn) + δnDg1(z, wn) + αn〈xn+1 − z,∇g1E1
(u)−∇g1E1

(z)〉
≤ βnDg1(z, xn) + δn((1− θn)Dg1(z, xn) + θnDg1(z, xn−1))

+ αn〈xn+1 − z,∇g1E1
(u)−∇g1E1

(z)〉
≤ (1− αn − δnθn)Dg1(z, xn) + δnθnDg1(z, xn−1)

+ αn〈xn+1 − z,∇g1E1
(u)−∇g1E1

(z)〉. (3.39)

By applying (3.39) and Lemma 2.12, we have that xn → z.
Case B: Assume {Dg1(z, xn)} is non-decreasing. Set Γn of Lemma 2.13, as Γn :=
Dg1(z, xn) and let τ : N→ N be a mapping for all n ≥ n0 (for some n0 large enough),
defined by

τ(n) := max{k ∈ N : k ≤ n,Γk ≤ Γk+1}.

Then τ is non-decreasing sequence such that τ(n)→∞ as n→∞. Thus

0 < Γτ(n) ≤ Γτ(n)+1, ∀ n ≥ n0,

this implies that

Dg1(z, xτ(n)) ≤ Dg1(z, xτ(n)+1), n > n0.

Since {Dg1(z, xτ(n))} is bounded, therefore limn→∞Dg1(z, xτ(n)) exists. Then the
following estimates can be obtained, using same argument as in case A above.

lim
n→∞

‖yτ(n) − zτ(n)‖ = 0,

lim
n→∞

‖Kwτ(n) − Jg2λB2
Kwτ(n)‖ = 0,

lim
n→∞

‖zτ(n) − xτ(n)‖ = 0,

lim
n→∞

‖wτ(n) − xτ(n)‖ = 0,

lim sup
n→∞

〈xτ(n) − z,∇g1E1
(u)−∇g1E1

(z)〉 ≤ 0.

(3.40)
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From (3.39) and Γτ(n) ≤ Γτ(n)+1, we have

Dg1(z, xτ(n)) ≤ (1− ατ(n))Dg1(z, xτ(n)) + δτ(n)θτ(n)

(
Dg1(z, xτ(n)−1 −Dg1(z, xτ(n))

)
+ ατ(n)〈xτ(n)+1 − z,∇g1E1

(u)−∇g1E1
(z)〉.

and hence

lim
n→∞

Γτ(n) = lim
n→∞

Γτ(n)+1 = 0,

for all n ≥ n0, we have Γτ(n) ≤ Γτ(n)+1, if n 6= τ(n) (that is, τ(n) < n), because
Γk+1 ≤ Γk, for τ(n) ≤ k ≤ n. This gives for all n ≥ n0

0 < Γn ≤ max{Γτ(n),Γτ(n)+1} = Γτ(n)+1.

This implies that lim
n→∞

Γn = 0 which yields that lim
n→∞

Dg1(z, xn) = 0. Hence, xn →
z = P g1Ω u as n→∞. �

Remark 3.3. Our main result improve and generalize the main results of [22, 23, 33,
40, 45] in the following ways:

(i) We extend Theorem 3.1 of [40] from 2-uniformly Banach spaces which are
uniformly smooth to a reflexive Banach space and also extend the results of
[22, 23, 45] from real Hilbert spaces to reflexive Banach spaces.

(ii) We relax the strict assumption of the mapping A in [22, 23, 33] with the weaker
assumption that A is a monotone and L-Lipschitz continuous mapping.

4. Numerical examples

In this section, we give a couple of examples to implement our main result.

Example 4.1. This is an implementation of our result in infinite dimensional Hilbert
space with our application to split feasibility problem. Let C and Q be nonempty,
closed and convex subsets of real Hilbert spaces H1 and H2, respectively. Let K :
H1 → H2 be a bounded linear operator with its adjoint K∗ and Θ denote the solution
set of (1.4). Let H1 = H2 = L2([0, 1]) with norm

‖x‖2 =

(∫ 1

0

|x(t)|2dt
) 1

2

,

and inner product

〈x, y〉 =

∫ 1

0

x(t)y(t)dt,

for all x, y ∈ L2([0, 1]).
Now, let

C = {x ∈ L2([0, 1]) : ‖x‖ ≤ 1},
and

Q = {x ∈ L2([0, 1]) : 〈 t
2
, x〉 = 0}.
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Let K : L2([0, 1]) → L2([0, 1]) be a mapping defined by (Kx)(t) = x(t)
3 for all x ∈

L2([0, 1]). Then, we have (K∗x)(t) = x(t)
3 and ‖K‖ = 1

3 . We see that the Θ 6= ∅
because x∗(t) = 0 is a solution. We define

A1(x) = ∇
(

1

2
‖Kx− PQKx‖2

)
= K∗(I − PQ)Kx, B1(x) = NC(x)

and

B2(x) = NQ(x) for all x ∈ L2([0, 1]).

For our algorithm, we take

αn =
1

12n+ 3
, βn =

8n+ 1

12n+ 3
, δn =

4n+ 1

12n+ 3
,

γ = 0.002, l = 0.0001, µ = 0.03 and θn =
1

4
.

We present the result of this experiment in Figure 1 with ‖xn+1 − xn‖2 = 10−4 and
varying initial values of x0 and x1 as follows:

(I) x0 = t
2
3 + 11t and x1 = t;

(II) x0 = 2t and x1 = cos t;
(III) x0 = −2t+ 5 and x1 = t+ 1;

(IV) x0 = 2t and x1 = 7t2

11 ;

Example 4.2. Let E1 = E2 = E = R2 be the two-dimensional Euclidean space of the
real number with an inner product 〈·, ·〉 : R2 × R2 → R be defined by

〈x, y〉 = x · y = x1y1 + x2y2

where x = (x1, x2) ∈ R2 and y = (y1, y2) ∈ R2 and a usual norm ‖ · ‖ : R2 → R
be defined by ‖x‖ = (x2

1 + x2
1)

1
2 where x = (x1, x2) ∈ R2. Let B1 : R2 → R2 and

B2 : R2 → R2 be defined respectively by

B1 =

(
1 2
0 1

)
, B2 =

(
1 2
2 5

)
.

Since B1 and B2 are positive definite, they are maximal monotone operators. Also,
let A1 : R2 → R2 be defined by

A1(x) =

(
3 0
0 3

)(
x1

x2

)
.

Now, define hi : R→ (−∞,+∞] by hi(x) = x2

2 for i = 1, 2, then ∇hi(x) = x. We also
define g1 = g2 = g by

g : R2 → (−∞,+∞], g(x) = h1(x1) + h2(x2) =
x2

1

2
+
x2

2

2
, x = (x1, x2).

Therefore, we have

∇g(x) = (∇h1(x1),∇h2(x2)) = (x1, x2) =

(
1 0
0 1

)(
x1

x2

)
.
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Figure 1. Example 4.1. Top left: Case I, Top right: II, Bottom left:
III, Bottom right: IV.

For λ > 0, we compute the resolvents of B1 and B2 as follows:

Jg1λB1
= ∇g1 + rB1 =

(
1 + λ 2λ

0 1 + λ

)
, (∇g1 + rB1)−1 =

1

(1 + λ)2

(
1 + λ −2λ

0 1 + λ

)
and

Jg2λB2
= ∇g1 + rB2 =

(
1 + λ 2λ

2λ 1 + λ

)
,

(∇g1 + rB2)−1 =
1

1 + 6λ+ λ2

(
1 + 5λ −2λ
−2λ 1 + λ

)
.

Let the operator K : R2 → R2 be defined by

K(x) = (2x1 − x2, x1 + 2x2) for all x = (x1, x2) ∈ R2
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and K∗ : R2 → R2 be defined by

K∗(y) = (2y1 − y2, y1 + 2y2) for all y = (y1, y2) ∈ R2.

For this experiment, we choose the parameters

αn =
3n

4n2 + 5n+ 3
, βn =

n2 + 3

4n2 + 5n+ 3
, δn =

3n2 + 2n

4n2 + 5n+ 3
,

γ = 0.002, l = 0.0001, µ = 0.03 and θn =
1

4
.

For u = 0.1 and initial values of x0 and x1, we report our test for the following cases
in Figure 2 with ‖xn+1 − xn‖ = 10−5.
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Figure 2. Example 4.2. Top left: Case 1, Top right: Case 2, Bottom
left: Case 3, Bottom right: Case 4.
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Case 1. x0 = [5,−5] and x1 = [3, 5];

Case 2. x0 = [−5,−5] and x1 = [10, 10];

Case 3. x0 = [10, 10] and x1 = [20, 20];

Case 4. x0 = [10,−5] and x1 = [5, 15].
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