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Statistical Korovkin-type theorem for monotone
and sublinear operators
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Abstract. In this paper we generalize the result on statistical uniform convergence
in the Korovkin theorem for positive and linear operators in C([a, b]), to the more
general case of monotone and sublinear operators. Our result is illustrated by
concrete examples.
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1. Introduction

The celebrated theorem of Korovkin [29], [30] provides a very simple test of
strong operator convergence to the identity for any sequence (Tn)n of positive linear
operators that map C ([0, 1]) into itself: the occurrence of this convergence for the
functions e0(t) = 1, e1(t) = t and e2(t) = t2, t ∈ [0, 1]. In other words, the fact that

lim
n→∞

Tn(f) = f uniformly on [0, 1],

for every f ∈ C ([0, 1]) reduces to the status of the three aforementioned functions.
Due to its simplicity and usefulness, this result has attracted a great deal of attention
leading to numerous generalizations. Part of them are included in the authoritative
monograph of Altomare-Campiti [7] and the excellent survey of Altomare [6].

Recently, the present authors have extended the Korovkin theorem to the frame-
work of monotone and sublinear operators acting on function spaces endowed with
the topology of uniform convergence on compact sets. See Gal-Niculescu [24], [25],
[27].
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Let D be a subset of N, the set of all natural numbers. The density of D is
defined by

δ(D) := lim
n→∞

1

n

n∑
j=1

χD(j),

whenever the limit exists, where χD is the characteristic function of D.
The sequence (αk)k is statistically convergent to the number L if, for every ε > 0,

we have δ{k ∈ N : |αk − L| ≥ ε} = 0, (see Conor [10]) or equivalently, there exists
a subset K ⊂ N with δ(K) = 1 and n0(ε) such that k > n0 and k ∈ K imply that

|αk −L| < ε, see S̆alát [34]. In this case we write st− lim αk = L. It is known that
any convergent sequence is statistically convergent, but not conversely. For example,
the sequence defined by αn =

√
n if n is square and αn = 0 otherwise, has the property

that st− limαn = 0.
Some basic properties of statistical convergence are exhibited in Connor [10],

Salat [34], Schoenberg [35]. Over the years this concept has been examined in number
theory Erdös - Jenenbaüm [16], trigonometric series Zygmund [37], probability theory
Fridy-Khan [19], optimization Pehlivan-Mamedov [33], measure theory Miller [32] and
summability theory Connor [10], Fridy [18], Fridy-Orhan [20].

Korovkin type theorems for statistical convergence of positive and linear opera-
tors were obtained by many authors, to make a selection see, e.g., Gadjev [22], [21],
Agratini [1]-[4], Cárdenas-Morales - Garancho [8], Dirik [13], Duman-Khan-Orhan
[14], Duman [15], Akdag̈ [5] and the references therein.

Since evidently that a positive linear operator is monotone and sublinear, it is
the purpose of this paper to generalize the result on statistical uniform convergence
in the Korovkin theorem for positive and linear operators, to monotone and sublinear
operators.

2. Preliminaries on weakly nonlinear operators and on Choquet
integral

In what follows we denote by X a metric measure space that is, a triple (X, d,m)
consisting of a space X endowed with the metric d and the measure m defined on
the sigma field of Borel subsets of X. Notice that every metric space can be seen as
a metric measure considering on it any finite combination (with positive coefficients)
of Dirac measures.

Attached to it is the vector lattice F(X) of all real-valued functions defined on
X, endowed with the pointwise ordering. Some important vector sublattices of F(X)
are

B(X) = {f ∈ F(X) : f bounded} .

C(X) = {f ∈ F(X) : f continuous and bounded} .

On B(X) and C(X) one considers the uniform norm ‖f‖ = sup{|f(x)|;x ∈ [a, b]}.
Suppose that X and Y are two metric spaces and E and F are respectively

ordered vector subspaces (or the positive cones) of F(X) and F(Y ) that contain the
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unity. An operator T : E → F is said to be a weakly nonlinear operator (respectively a
weakly nonlinear functional when F = R) if it satisfies the following three conditions:

(SL) (Sublinearity) T is subadditive and positively homogeneous, that is,

T (f + g) ≤ T (f) + T (g) and T (af) = aT (f)

for all f, g in E and a ≥ 0;
(M) (Monotonicity) f ≤ g in E implies T (f) ≤ T (g).

(TR) (Translatability) T (f + α · 1) = T (f) + αT (1) for all functions f ∈ E and all
numbers a ≥ 0.

A stronger condition than translatability is that of comonotonic additivity,

(CA) T (f + g) = T (f) + T (g) whenever the functions f, g ∈ E are comonotone in the
sense that

(f(s)− f(t)) · (g(s)− g(t)) ≥ 0 for all s, t ∈ X.
The (CA) condition occurs naturally in the context of Choquet’s integral (and

thus in the case of Choquet type operators). See Gal-Niculescu [25], [26] and the
references therein.

Suppose that E and F are respectively closed vector sublattices of the Banach
lattices C(X) and C(Y ).

Every monotone and subadditive operator (functional when F = R) T : E → F
verifies the inequality

|T (f)− T (g)| ≤ T (|f − g|) for all f, g. (2.1)

Indeed, f ≤ g + |f − g| yields T (f) ≤ T (g) + T (|f − g|) , that is,

T (f)− T (g) ≤ T (|f − g|) ,
and interchanging the role of f and g we infer that

− (T (f)− T (g)) ≤ T (|f − g|) .
If T is linear, then the property of monotonicity is equivalent to that of positivity,

that is, to the fact that
T (f) ≥ 0 for all f ≥ 0.

If the operator (functional when F = R) T is monotone and positively homogeneous,
then necessarily

T (0) = 0.

The properties of weakly nonlinear operators were suggested by those of the
nonlinear functional called Choquet integral. For this reason we shortly mention them
below. Full details on this integral can be found in the books of D. Denneberg [12],
M. Grabisch [28] and Z. Wang and G. J. Klir [36].

Let (X,A) be an arbitrarily fixed measurable space, consisting of a nonempty
abstract set X and a σ-algebra A of subsets of X.

Definition 2.1. (see, e.g., Denneberg [12] or Wang-Klir [36]) A set function µ : A →
[0, 1] is called a capacity if it verifies the following two conditions:

(a) µ(∅) = 0;
(b) µ(A) ≤ µ(B) for all A,B ∈ A, with A ⊂ B (monotonicity).
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An important class of capacities is that of probability measures (that is, the
capacities playing the property of σ-additivity). Probability distortions represents
a major source of nonadditive capacities. Technically, one start with a probability
measure P : A →[0, 1] and applies to it a distortion u : [0, 1] → [0, 1], that is, a
nondecreasing and continuous function such that u(0) = 0 and u(1) = 1;for example,
one may chose u(t) = ta with α > 0. When the distortion u is concave (for example,
when u(t) = ta with 0 < α < 1), then µ is also submodular in the sense that

µ(A ∪B) + µ(A ∩B) ≤ µ(A) + µ(B) for all A,B ∈ A.

The Choquet concept of integrability with respect to a capacity refers to the whole
class of random variables, that is, to all functions f : X → R such that f−1(A) ∈ A
for every Borel subset A of R.

Definition 2.2. (see, e.g., Denneberg [12] or Wang-Klir [36]) The Choquet integral
of a random variable f with respect to the capacity µ is defined as the sum of two
Riemann improper integrals,

(C)

∫
X

fdµ =

∫ +∞

0

µ ({x ∈ X : f(x) ≥ t}) dt+

∫ 0

−∞
[µ ({x ∈ X : f(x) ≥ t})− 1] dt,

Accordingly, f is said to be Choquet integrable if both integrals above are finite.

If f ≥ 0, then the last integral in the formula appearing in Definition 2.2 is 0.
The inequality sign ≥ in the above two integrands can be replaced by >; see

[36], Theorem 11.1, p. 226.
The Choquet integral coincides with the Lebesgue integral when the underlying

set function µ is a σ-additive measure.
As usually, a function f is said to be Choquet integrable on a set A ∈ A if fχA

is integrable in the sense of Definition 2.2. We denote

(C)

∫
A

fdµ = (C)

∫
X

fχAdµ.

The basic properties of the Choquet integral, seen as a functional are as follows:
it is monotone, positive homogenous, comonotonic additive and subadditive (if µ is
submodular).

Remark 2.3. Several extensions of Korovkin’s theorem in the case of weakly nonlinear
operators acting on a sublattice of a space C(X) and the uniform convergence on
compact sets can be found in the papers Gal-Niculescu [24], [25], [27].

In the next section we discuss an analogue in the space C([a, b]) and for statistical
uniform convergence.

3. Main result, uniform convergence case

In this section we obtain an analogue result with the classical Korovkin theorem
in C([a, b]) for the statistical uniform convergence of a sequence of monotone and
sublinear operators.
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Theorem 3.1. If the sequence of monotone and sublinear operators An : C([a, b]) →
B([a, b]) satisfies the conditions

st− lim ‖An(e0)− e0‖ = 0; st− lim ‖An(e1)− e1‖ = 0,

st− lim ‖An(e2)− e2‖ = 0; st− lim ‖An(−e1) + e1‖ = 0, (3.1)

then for any nonnegative function f ∈ C([a; b]), we have

st− lim ‖An(f)− f‖ = 0. (3.2)

If, in addition, all An are translatable, then the above convergence holds for all f ∈
C([a, b]). Here ‖ · ‖ denotes the uniform norm.

Proof. Suppose firstly that f ∈ C([a, b]) is nonnegative on [a, b]. Since f is bounded,
we can write

|f(t)− f(x)| ≤ 2M, for all t, x ∈ [a, b].

Also, since f is continuous on [a, b], it follows that there exists a δ > 0 (depending on
ε) such that |f(t) − f(x)| < ε for all t, x ∈ [a, b] satisfying |x − t| < δ, which implies
that for all t, x ∈ [a, b] we obtain

|f(t)− f(x)| ≤ ε+
2M

δ2
(t− x)2 = ε+

2M

δ2
(t2 − 2xt+ x2). (3.3)

We have two cases:
Case 1. x ∈ [a, b], x ≤ 0.
Case 2. x ∈ [a, b], x > 0.

Applying An to (3.3), by the sublinearity of An and by the property (2.1), since
−2x ≥ 0, in Case 1 it follows

An(|f − f(x)|)(x) ≤ εAn(e0)(x) +
2M

δ2
An((e1 − x)2)(x) ≤ εAn(e0)(x)

+
2M

δ2
(An(e2)(x)− x2 + x2 − 2xAn(e1)(x) + 2x2 − 2x2 + x2An(e0)(x)− x2 + x2)

≤ ε‖An(e0)− e0‖+ ε

+
2M

δ2
(‖An(e2)− e2‖+ 2|x| · ‖An(e1)− e1‖+ x2‖An(e0)− e0‖),

which by

An(f)(x)− f(x) = An(f)(x)−An(f(x))(x) + f(x)(An(e0)(x)− e0(x)),

immediately implies

|An(f)(x)− f(x)| ≤ |An(f)(x)−An(f(x))(x)|+ |f(x)| · |An(e0)(x)− e0(x)|,
and therefore

‖An(f)− f‖ ≤ ‖An(|f − f(x)|)‖+M · ‖An(e0)− e0‖

≤ (ε+M +
2Mα2

δ2
)‖An(e0)− e0‖+

4Mα

δ2
‖An(e1)− e1‖+

2M

δ2
‖An(e2)− e2‖

≤ C(‖An(e0)− e0‖+ ‖An(e1)− e1‖+ ‖An(e2)− e2‖), (3.4)

where C = max{ε+M + 2Mα2

δ2 , 4Mα
δ2 } and α = max{|a|, |b|}.
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In the Case 2, since −2x < 0 and applying the positive homogeneity of An too,
it follows

An(|f − f(x)|)(x) ≤ εAn(e0)(x) +
2M

δ2
An((e1 − x)2)(x) ≤ εAn(e0)(x)

+
2M

δ2
(An(e2)(x)− x2 + x2 + 2xAn(−e1)(x) + 2x2 − 2x2 + x2An(e0)(x)− x2 + x2)

≤ ε‖An(e0)− e0‖+ ε

+
2M

δ2
(‖An(e2)− e2‖+ 2|x| · ‖An(−e1) + e1‖+ x2|An(e0)− e0‖),

which immediately implies

‖An(f)− f‖ ≤ ‖An(|f − f(x)|)‖+M · ‖An(e0)− e0‖

≤ (ε+M +
2Mα2

δ2
)‖An(e0)− e0‖+

4Mα

δ2
‖An(−e1) + e1‖+

2M

δ2
‖An(e2)− e2‖

≤ C(‖An(1, x)− 1‖+ ‖An(−t, x) + x‖+ ‖An(t2, x)− x2‖), (3.5)

where again C = max{ε+M + 2Mα2

δ2 , 4Mα
δ2 } and α = max{|a|, |b|}.

Denoting

E =
{
n : ‖An(e0)− e0‖+ ‖An(e1)− e1‖+ ‖An(−e1) + e1‖+ ‖An(e2)− e2‖ ≥

η

C

}
,

E1 :=
{
n : ‖An(e0)− e0‖ ≥

η

4C

}
,

E2 :=
{
n : ‖An(e1)− e1‖ ≥

η

4C

}
,

E3 :=
{
n : ‖An(−e1) + e1‖ ≥

η

4C

}
,

E4 :=
{
n : ‖An(e2)− e2‖ ≥

η

4C

}
,

the inequalities (3.4) and (3.5) show that E ⊂ E1 ∪ E2 ∪ E3 ∪ E4, which implies

χE(j) ≤ χE1(j) + χE2(j) + χE3(j) + χE4(j), for all j ∈ N.
Therefore, denoting D = {n ∈ N; ‖An(f)− f‖ ≥ η}, it is immediate that

δ(D) ≤ δ(E) ≤ δ(E1) + δ(E2) + δ(E3) + δ(E4)

and by using (3.1), we get (3.2) and therefore it follows that the proof is complete for
nonnegative f .

Suppose now that f is of arbitrary sign. It follows that f + ‖f‖ is nonnegative
and therefore form the above conclusion we get

st− lim ‖An(f + ‖f‖)− f − ‖f‖ ‖ = 0.

Since all An are translatable, it follows

An(f + ‖f‖)(x) = An(f)(x) + ‖f‖ ·An(e0)(x)

for all n ∈ N and therefore

‖An(f + ‖f‖)− f − ‖f‖ ‖ = ‖An(f)− f + ‖f‖ · (An(e0)− e0)‖,
which immediately leads to the desired conclusion. �
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4. Concrete examples in Theorem 1

In this section we present three concrete examples illustrating Theorem 1.

Example 4.1. Firstly, let us consider the Bernstein-Kantorovich-Choquet polynomial
operators for functions of one real variable defined by the formula

Kn,µ(f)(x) =

n∑
k=0

pn,k(x) ·
(C)

∫ (k+1)/(n+1)

k/(n+1)
f(t)dµ(t)

µ([k/(n+ 1), (k + 1)/(n+ 1)])
,

with µ =
√
m, m the Lebesgue measure and

pn,k(t) =

(
n

k

)
tk(1− t)n−k, for t ∈ [0, 1] and n ∈ N.

According to the results in Section 3 in Gal-Niculescu [24], Kn,µ(ek) → ek, k ∈
{0, 1, 2} and Kn,µ(−e1) → −e1, uniformly on [0, 1]. Also, according to Section 5 in
Gal-Niculescu [27], these operators are monotone, sublinear and translatable.

Define now the sequence

Pn(f)(x) = (1 + αn)Kn,µ(f)(x), x ∈ [0, 1], n ∈ N,

where αn is a sequence statistically convergent to zero but not convergent to zero in
classical sense.

Therefore Pn(f)(x) satisfies the conditions in Theorem 1 and consequently Pn(f)
converges statistically to f , for any f ∈ C([a, b]).

Example 4.2. We consider below an example which does not involve the Choquet
integral, namely they are the so-called possibilistic Kantorovich operators introduced
in Gal [23], defined by

Tn(f)(x) =

n∑
k=0

pn,k(x) · sup{f(x);x ∈ [k/(n+ 1), (k + 1)/(n+ 1)]}.

It is easy to see that each Tn is a monotone, sublinear and translatable operator and

Tn(e0)(x) = e0(x).

Also we have

Tn(e1)(x) =

n∑
k=0

pn,k(x)
k + 1

n+ 1

=
n

n+ 1
·
n∑
k=0

pn,k(x)

[
k

n
+

1

n

]
=

n

n+ 1
x+

1

n+ 1
→ e1(x),
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Tn(−e1)(x) =

n∑
k=0

pn,k(x)

[
− k

n+ 1

]

=
n

n+ 1

n∑
k=0

pn,k(x)− k

n

= − n

n+ 1
x→ −e1(x),

for n→∞, uniformly on [0, 1].
Moreover,

Tn(e2)(x) =

n∑
k=0

pn,k(x) ·
(
k + 1

n+ 1

)2

=

(
n

n+ 1

)2

·
n∑
k=0

pn,k(x)
k2 + 2k + 1

n2

=

(
n

n+ 1

)2

x2 +
2n

(n+ 1)2
x+

1

(n+ 1)2
→ e2(x),

for n→∞, uniformly on [0, 1].
Now, the sequence

Qn(f)(x) = (1 + αn) · Tn(f)(x), x ∈ [a, b], n ∈ N,

where αn is the sequence mentioned in Example 4.1 too, satisfies Theorem 1.

Example 4.3. Define now the sequence

Qn(f)(x) =

n∑
k=0

pn,k(x) ·
(C)

∫ (k+1)/(n+1)

k/(n+1)
f(βnt)dµ(t)

µ([k/(n+ 1), (k + 1)/(n+ 1)])
,

where µ =
√
m and 0 ≤ βn ≤ 1, n ∈ N, is statistically convergent to 1 but not

convergent in the classical sense.
These operators are monotone, sublinear and translatable and we easily seen

that we have

Qn(e0)(x) = 1,

Qn(e1)(x) = βnKn,µ(e1)(x),

Qn(−e1)(x) = βnKn,µ(−e1)(x),

Qn(e2)(x) = β2
nKn,µ(e2)(x).

Therefore, the hypothesis of Theorem 1 are satisfied.
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