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A p(x)-Kirchhoff type problem involving
the p(x)-Laplacian-like operators with Dirichlet
boundary condition
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Abstract. This paper deals with a class of p(x)-Kirchhoff type problems involv-
ing the p(x)-Laplacian-like operators, arising from the capillarity phenomena,
depending on two real parameters with Dirichlet boundary conditions. Using a
topological degree for a class of demicontinuous operators of generalized (S+),
we prove the existence of weak solutions of this problem. Our results extend and
generalize several corresponding results from the existing literature.
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1. Introduction

The study of differential equations and variational problems with nonlinearities
and nonstandard p(x)-growth conditions or nonstandard (p(x), q(x))− growth condi-
tions have received a lot of attention. Perhaps the impulse for this comes from the new
search field that reflects a new type of physical phenomenon is a class of nonlinear
problems with variable exponents (see [26]). The motivation for this research comes
from the application of similar models in physics to represent the behavior of elasticity
[34] and electrorheological fluids (see [30, 32]), which have the ability to modify their
mechanical properties when exposed to an electric field (see [3, 4, 7, 11, 15, 27, 28, 29]),
specifically the phenomenon of capillarity, which depends on solid-liquid interfacial
characteristics as surface tension, contact angle, and solid surface geometry.
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Let Ω be a bounded domain in RN (N > 1) with smooth boundary denoted by
∂Ω, a ∈ L∞(Ω), p(x), k(x) ∈ C+(Ω), and let µ and λ be two real parameters.

In this article, we consider a class of p(x)-Kirchhoff type problems involving the
p(x)-Laplacian-like operators, originated from a capillarity phenomena, depending on
two real parameters with Dirichlet boundary conditions of the following form:

−M
(
C(u)

)(
∆Lp(x)u− |u|

p(x)−2u
)

+ a(x)|u|k(x)−2u

= µ g(x, u) + λ f(x, u,∇u) in Ω,

u = 0 on ∂Ω,

(1.1)

where

C(u) :=

∫
Ω

|∇u|p(x) +
√

1 + |∇u|2p(x) + |u|p(x)

p(x)
dx,

and

∆Lp(x)u := div
(
|∇u|p(x)−2∇u+

|∇u|2p(x)−2∇u√
1 + |∇u|2p(x)

)
is the p(x)-Laplacian-like operators, g : Ω × R → R and f : Ω × R × RN → R are
Carathéodory functions that satisfy the assumption of growth, and
M : R+ → R+ is a continuous function.

Problems related to (1.1) have been studied by many scholars, for example, Ni
and Serrin [20, 21] considered the following equation

− div
( ∇u√

1 + |∇u|2
)

= f(u) in RN . (1.2)

The operator −div
( ∇u√

1 + |∇u|2
)

is most often denoted by the specified mean cur-

vature operator and ∇u√
1+|∇u|2

is the Kirchhoff stress term.

”Elliptic boundary value problems” involving the mean curvature operator play
apivotal role in the mathematical analysis of several physical or geometrical issues,
such as capillarity phenomena for incompressible or compressible fluids, mathematical
models in physiology or in electrostatics, flux-limited diffusion phenomena, prescribed
mean curvature problems for Cartesian surfaces in the Euclidean space: relevant ref-
erences on these topics include [8, 9, 13, 14].

In the case when M
(
C(u)

)
≡ 1, µ = a = 0, λ > 0, f independent of ∇u and

without the term |u|p(x)−2u, we know that the problem (1.1) has a nontrivial solutions
from [31].

For M
(
C(u)

)
≡ 1, k(x) = p(x), µ ≥ 0, λ > 0, a ∈ L∞(Ω) with ess infΩ a > 0

and f independent of ∇u, Afrouzi et al. [5] established some new sufficient conditions
underwhich the problem (1.1), under Neumann boundary condition, possesses infin-
itely many weak solutions. Their discussion is based on a fully variational method
and the main tool is a general critical point theorem.
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Note that, in the case when

C(u) =

∫
Ω

|∇u|p(x)

p(x)
dx, ∆Lp(x)u = ∆p(x)u = div

(
|∇u|p(x)−2∇u

)
,

µ = a = 0, λ = 1, f independent of ∇u and without the term |u|p(x)−2u, then we
obtain the following problem

−M
(∫

Ω

|∇u|p(x)

p(x)
dx
)

∆p(x)u = f(x, u) in Ω,

u = 0 on ∂Ω,

(1.3)

which is called the p(x)-Kirchhoff type problem. In this case, Dai et al. [10], by a direct
variational approach, established conditions ensuring the existence and multiplicity of
solutions to (1.3). Furthermore, the problem (1.3) is a generalization of the stationary
problem of a model introduced by Kirchhoff [17] of the following form:

ρ
∂2u

∂t2
−
(ρ0

h
+

E

2L

∫ L

0

∣∣∣∂u
∂x

∣∣∣2dx)∂2u

∂x2
= 0, (1.4)

where ρ, ρ0, h, E, L are all constants, which extends the classical D’Alembert’s wave
equation, by considering the effect of the changing in the length of the string during
the vibration.

Lapa et al. [19] showed, by using a Fredholm-type result for a couple of nonlinear
operators, and the theory of variable exponent Sobolev spaces, the existence of weak
solutions for the problem (1.1), under no-flux boundary conditions, in the case when
µ = a = 0, λ = 1 and f independent of ∇u.

In the present paper, we will generalize these works, by proving the existence
of a weak solutions for the problem (1.1). Note that the problem (1.1) has not a
variational structure, so the most usual variational methods can not used to study
it. To attack it we will employ a topological degree for a class of demicontinuous
operators of generalized (S+) type of [6].

2. Preliminaries

In the analysis of problem (1.1), we will use the theory of the generalized

Lebesgue-Sobolev spaces Lp(x)(Ω) and W
1,p(x)
0 (Ω). For convenience, we only recall

some basic facts with will be used later, we refer to [12, 18, 22, 25, 23, 24] for more
details.

Let Ω be a smooth bounded domain in RN (N > 1), with a Lipschitz boundary
denoted by ∂Ω. Set

C+(Ω) =
{
p : p ∈ C(Ω) such that p(x) > 1 for any x ∈ Ω

}
.

For each p ∈ C+(Ω), we define

p+ := max
{
p(x), x ∈ Ω

}
and p− := min

{
p(x), x ∈ Ω

}
.
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For every p ∈ C+(Ω), we define

Lp(x)(Ω) =
{
u : Ω→ R is measurable such that

∫
Ω

|u(x)|p(x)dx < +∞
}
,

equipped with the Luxemburg norm

|u|p(x) = inf
{
λ > 0 : ρp(x)

(u
λ

)
≤ 1
}
,

where

ρp(x)(u) =

∫
Ω

|u(x)|p(x)dx, ∀ u ∈ Lp(x)(Ω).

Proposition 2.1. [12] Let (un) and u ∈ Lp(x)(Ω), then

|u|p(x) < 1
(
resp. = 1;> 1

)
⇔ ρp(x)(u) < 1

(
resp. = 1;> 1

)
, (2.1)

|u|p(x) > 1 ⇒ |u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|p
+

p(x), (2.2)

|u|p(x) < 1 ⇒ |u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x), (2.3)

lim
n→∞

|un − u|p(x) = 0 ⇔ lim
n→∞

ρp(x)

(
un − u

)
= 0. (2.4)

Remark 2.2. According to (2.2) and (2.3), we have

|u|p(x) ≤ ρp(x)(u) + 1, (2.5)

ρp(x)(u) ≤ |u|p
−

p(x) + |u|p
+

p(x). (2.6)

Proposition 2.3. [18] The space
(
Lp(x)(Ω), | · |p(x)

)
is a separable and reflexive Banach

spaces.

Proposition 2.4. [18] The conjugate space of Lp(x)(Ω) is Lp
′(x)(Ω) where

1

p(x)
+

1

p′(x)
= 1

for all x ∈ Ω. For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω), we have the following Hölder-
type inequality∣∣∣ ∫

Ω

uv dx
∣∣∣ ≤ ( 1

p−
+

1

p′−

)
|u|p(x)|v|p′(x) ≤ 2|u|p(x)|v|p′(x). (2.7)

Remark 2.5. If p1, p2 ∈ C+(Ω) with p1(x) ≤ p2(x) for any x ∈ Ω, then there exists
the continuous embedding Lp2(x)(Ω) ↪→ Lp1(x)(Ω).

Now, let p ∈ C+(Ω) and we define W 1,p(x)(Ω) as

W 1,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) such that |∇u| ∈ Lp(x)(Ω)

}
,

equipped with the norm
||u|| = |u|p(x) + |∇u|p(x).

We also define W
1,p(x)
0 (Ω) as the subspace of W 1,p(x)(Ω), which is the closure of

C∞0 (Ω) with respect to the norm || · ||.
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Proposition 2.6. [12] If the exponent p(x) satisfies the log-Hölder continuity condition,

i.e. there is a constant a > 0 such that for every x, y ∈ Ω, x 6= y with |x − y| ≤ 1

2
one has

|p(x)− p(y)| ≤ a

− log |x− y|
, (2.8)

then we have the Poincaré inequality, i.e. there exists a constant C > 0 depending
only on Ω and the function p such that

|u|p(x) ≤ C|∇u|p(x), ∀ u ∈W
1,p(x)
0 (Ω). (2.9)

In this paper we will use the following equivalent norm on W
1,p(x)
0 (Ω)

|u|1,p(x) = |∇u|p(x),

which is equivalent to || · ||.
Furthermore, we have the compact embedding W

1,p(x)
0 (Ω) ↪→ Lp(x)(Ω)(see [18]).

Proposition 2.7. [12, 18] The spaces
(
W

1,p(x)
0 (Ω), |·|1,p(x)

)
and

(
W

1,p(x)
0 (Ω), |·|1,p(x)

)
are separable and reflexive Banach spaces.

Remark 2.8. The dual space of W
1,p(x)
0 (Ω) denoted W−1,p′(x)(Ω), is equipped with

the norm

|u|−1,p′(x) = inf
{
|u0|p′(x) +

N∑
i=1

|ui|p′(x)

}
,

where the infinimum is taken on all possible decompositions u = u0 − divF with
u0 ∈ Lp

′(x)(Ω) and F = (u1, . . . , uN ) ∈ (Lp
′(x)(Ω))N .

3. A review on the topological degree theory

Now, we give some results and properties from the theory of topological degree.
The readers can find more information about the history of this theory in [1, 2, 6, 16].

In what follows, let X be a real separable reflexive Banach space and X∗ be
its dual space with dual pairing 〈 · , · 〉 and given a nonempty subset Ω of X. Strong
(weak) convergence is represented by the symbol → (⇀).

Definition 3.1. Let Y be real Banach space. A operator F : Ω ⊂ X → Y is said to be:

1. bounded, if it takes any bounded set into a bounded set.
2. demicontinuous, if for any sequence (un) ⊂ Ω, un → u implies that F (un) ⇀
F (u).

3. compact, if it is continuous and the image of any bounded set is relatively com-
pact.

Definition 3.2. A mapping F : Ω ⊂ X → X∗ is said to be:

1. of type (S+), if for any sequence (un) ⊂ Ω with un ⇀ u and
lim sup
n→∞

〈Fun, un − u〉 ≤ 0, we have un → u.
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2. quasimonotone, if for any sequence (un) ⊂ Ω with un ⇀ u, we have
lim sup
n→∞

〈Fun, un − u〉 ≥ 0.

Definition 3.3. Let T : Ω1 ⊂ X → X∗ be a bounded operator such that Ω ⊂ Ω1. For
any operator F : Ω ⊂ X → X, we say that

1. F of type (S+)T , if for any sequence (un) ⊂ Ω with un ⇀ u,
yn := Tun ⇀ y and lim sup

n→∞
〈Fun, yn − y〉 ≤ 0, we have un → u.

2. F has the property (QM)T , if for any sequence (un) ⊂ Ω with un ⇀ u,
yn := Tun ⇀ y, we have lim sup

n→∞
〈Fun, y − yn〉 ≥ 0.

In the sequel, we consider the following classes of operators:

F1(Ω) :=
{
F : Ω→ X∗ : F is bounded, demicontinuous and of type (S+)

}
,

FT,B(Ω) :=
{
F : Ω→ X : F is bounded, demicontinuous and of type (S+)T

}
,

FT (Ω) :=
{
F : Ω→ X : F is demicontinuous and of type (S+)T

}
,

for any Ω ⊂ D(F ), where D(F ) denotes the domain of F , and any T ∈ F1(Ω).
Now, let O be the collection of all bounded open sets in X and we define

F(X) :=
{
F ∈ FT (E) : E ∈ O, T ∈ F1(E)

}
,

where, T ∈ F1(E) is called an essential inner map to F .

Lemma 3.4. [16, Lemma 2.3] Let T ∈ F1(E) be continuous and S : D(S) ⊂ X∗ → X
be demicontinuous such that T (E) ⊂ D(S), where E is a bounded open set in a real
reflexive Banach space X. Then the following statements are true:

1. If S is quasimonotone, then I + S ◦ T ∈ FT (E), where I denotes the identity
operator.

2. If S is of type (S+), then S ◦ T ∈ FT (E).

Definition 3.5. Suppose that E is bounded open subset of a real reflexive Banach space
X, T ∈ F1(E) is continuous and F, S ∈ FT (E). The affine homotopy H : [0, 1]×E →
X defined by

H(t, u) := (1− t)Fu+ tSu, for all (t, u) ∈ [0, 1]× E
is called an admissible affine homotopy with the common continuous essential inner
map T .

Remark 3.6. [16, Lemma 2.5] The above affine homotopy is of type (S+)T .

Next, as in [16] we give the topological degree for the type F(X).

Theorem 3.7. Let

M =
{

(F,E, h) : E ∈ O, T ∈ F1(E), F ∈ FT,B(E), h 6∈ F (∂E)
}
,

then, there exists a unique degree function d : M −→ Z that satisfies the following
properties:
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1. ( Normalization) For any h ∈ E, we have d(I, E, h) = 1.
2. ( Homotopy invariance) If H : [0, 1] × E → X is a bounded admissible affine

homotopy with a common continuous essential inner map and h : [0, 1] → X is
a continuous path in X such that h(t) 6∈ H(t, ∂E) for all t ∈ [0, 1], then

d(H(t, ·), E, h(t)) = const for all t ∈ [0, 1].

3. ( Existence) If d(F,E, h) 6= 0, then the equation Fu = h has a solution in E.

Definition 3.8. [16, Definition 3.3] The above degree is defined as follows:

d(F,E, h) := dB(F |E0
, E0, h),

where dB is the Berkovits degree [6] and E0 is any open subset of E with F−1(h) ⊂ E0

and F is bounded on E0.

4. Existence of weak solution

In this section, we will discuss the existence of weak solutions of (1.1).
We assume that Ω ⊂ RN (N > 1) is a bounded domain with a Lipschitz boundary

∂Ω, p ∈ C+(Ω) satisfy the log-Hölder continuity condition (2.8), a ∈ L∞(Ω), k ∈
C+(Ω) with 1 < k− ≤ k(x) ≤ k+ < p−, M : R+ → R+, g : Ω × R → R and
f : Ω× R× RN → R are functions such that:

(A1). f is a Carathéodory function.

(A2). There exists % > 0 and γ ∈ Lp′(x)(Ω) such that

|f(x, ζ, ξ)| ≤ %(γ(x) + |ζ|q(x)−1 + |ξ|q(x)−1).

(A3). g is a Carathéodory function.

(A4). There are σ > 0 and ν ∈ Lp′(x)(Ω) such that

|g(x, ζ)| ≤ σ(ν(x) + |ζ|s(x)−1),

for a.e. x ∈ Ω and all (ζ, ξ) ∈ R× RN , where q, s ∈ C+(Ω) with
1 < q− ≤ q(x) ≤ q+ < p− and 1 < s− ≤ s(x) ≤ s+ < p−.

(M0). M : [0,+∞) → (m0,+∞) is a continuous and increasing function with
m0 > 0.

Remark 4.1. • Note that, for all u, v ∈W 1,p(x)
0 (Ω)

M
(
C(u)

)∫
Ω

((
|∇u|p(x)−2∇u+

|∇u|2p(x)−2∇u√
1 + |∇u|2p(x)

)
∇v + |u|p(x)−2u v

)
dx

is well defined (see [19]).

• a(x)|u|k(x)−2u, µ g(x, u) and λ f(x, u,∇u) are belongs to Lp
′(x)(Ω) under u ∈

W
1,p(x)
0 (Ω), the assumptions (A2) and (A4) and the given hypotheses about the

exponents p, k, q and s because:

γ ∈ Lp
′(x)(Ω), ν ∈ Lp

′(x)(Ω), r(x) = (q(x)− 1)p′(x) ∈ C+(Ω)
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with r(x) < p(x), β(x) = (k(x)− 1)p′(x) ∈ C+(Ω) with β(x) < p(x) and

κ(x) = (s(x)− 1)p′(x) ∈ C+(Ω) with κ(x) < p(x).

Then, by Remark 2.5 we can conclude that

Lp(x) ↪→ Lr(x), Lp(x) ↪→ Lβ(x) and Lp(x) ↪→ Lκ(x).

Hence, since v ∈ Lp(x)(Ω), we have(
− a(x)|u|k(x)−2u+ µ g(x, u) + λ f(x, u,∇u)

)
v ∈ L1(Ω).

This implies that, the integral∫
Ω

(
− a(x)|u|k(x)−2u+ µ g(x, u) + λ f(x, u,∇u)

)
vdx

exists.

Then, we shall use the definition of weak solution for problem (1.1) in the following
sense:

Definition 4.2. We say that a function u ∈ W 1,p(x)
0 (Ω) is a weak solution of (1.1), if

for any v ∈W 1,p(x)
0 (Ω), it satisfies the following:

M
(
C(u)

)∫
Ω

((
|∇u|p(x)−2∇u+

|∇u|2p(x)−2∇u√
1 + |∇u|2p(x)

)
∇v + |u|p(x)−2u v

)
dx

=

∫
Ω

(
− a(x)|u|k(x)−2u+ µ g(x, u) + λ f(x, u,∇u)

)
vdx.

Before giving our main result we first give two results that will be used later.

Lemma 4.3. If (M0) holds, then the operator T : W
1,p(x)
0 (Ω)→ W−1,p′(x)(Ω) defined

by

〈T u, v〉 =M
(
C(u)

)∫
Ω

((
|∇u|p(x)−2∇u+

|∇u|2p(x)−2∇u√
1 + |∇u|2p(x)

)
∇v + |u|p(x)−2u v

)
dx,

is continuous, bounded, strictly monotone and is of type (S+).

Proof. Let us consider the following functional:

J (u) := M̂
(
C(u)

)
, where M̂(s) =

∫ s

0

M(τ)dτ,

such that M(τ) satisfies the assumption (M0).
From [19], it is obvious that J is a continuously Gâteaux differentiable function whose

Gâteaux derivative at the point u ∈ W
1,p(x)
0 (Ω) is the functional T (u) := J ′(u) ∈

W−1,p′(x)(Ω) given by

〈T u, v〉 =M
(
C(u)

)∫
Ω

((
|∇u|p(x)−2∇u+

|∇u|2p(x)−2∇u√
1 + |∇u|2p(x)

)
∇v + |u|p(x)−2u v

)
dx,

for all u, v ∈W 1,p(x)
0 (Ω) where 〈·, ·〉 means the duality pairing between W−1,p′(x)(Ω)

and W
1,p(x)
0 (Ω).
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Hence, by using the similar argument as in the Theorem 3.1. of [19] and in the
Proposition 3.1. of [31], we conclude that T is continuous, bounded, strictly monotone
and is of type (S+). �

Proposition 4.4. Assume that the assumptions (A1)− (A4) hold, then the operator

S : W
1,p(x)
0 (Ω)→W−1,p′(x)(Ω)

〈Su, v〉 = −
∫

Ω

(
− a(x)|u|k(x)−2u+ µ g(x, u) + λ f(x, u,∇u)

)
vdx,

for all u, v ∈W 1,p(x)
0 (Ω), is compact.

Proof. In order to prove this proposition, we proceed in four steps.

Step 1: Let Ψ1 : W
1,p(x)
0 (Ω)→ Lp

′(x)(Ω) be an operator defined by

Ψ1u(x) := −µ g(x, u).

In this step, we prove that the operator Ψ1 is bounded and continuous.

First, let u ∈W 1,p(x)
0 (Ω), bearing (A4) in mind and using (2.5) and (2.6), we infer

|Ψ1u|p′(x) ≤ ρp′(x)(Ψ1u) + 1

=

∫
Ω

|µ g(x, u(x))|p
′(x)dx+ 1

=

∫
Ω

|µ|p
′(x)|g(x, u(x)|p

′(x)dx+ 1

≤
(
|µ|p

′−
+ |µ|p

′+
)∫

Ω

|σ
(
ν(x) + |u|s(x)−1

)
|p
′(x)dx+ 1

≤ const
(
|µ|p

′−
+ |µ|p

′+
)∫

Ω

(
|ν(x)|p

′(x) + |u|κ(x)
)
dx+ 1

≤ const
(
|µ|p

′−
+ |µ|p

′+
)(
ρp′(x)(ν) + ρκ(x)(u)

)
+ 1

≤ const
(
|ν|p

′+

p(x) + |u|κ
+

κ(x) + |u|κ
−

κ(x)

)
+ 1.

Then, we deduce from (2.9) and Lp(x) ↪→ Lκ(x), that

|Ψ1u|p′(x) ≤ const
(
|ν|p

′+

p(x) + |u|κ
+

1,p(x) + |u|κ
−

1,p(x)

)
+ 1,

that means Ψ1 is bounded on W
1,p(x)
0 (Ω).

Second, we show that the operator Ψ1 is continuous. To this purpose let un → u

in W
1,p(x)
0 (Ω). We need to show that Ψ1un → Ψ1u in Lp

′(x)(Ω). We will apply the
Lebesgue’s theorem.

Note that if un → u in W
1,p(x)
0 (Ω), then un → u in Lp(x)(Ω). Hence there exist a

subsequence (uk) of (un) and φ in Lp(x)(Ω) such that

uk(x)→ u(x) and |uk(x)| ≤ φ(x), (4.1)

for a.e. x ∈ Ω and all k ∈ N.
Hence, from (A2) and (4.1), we have

|g(x, uk(x))| ≤ σ(ν(x) + |φ(x)|s(x)−1),
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for a.e. x ∈ Ω and for all k ∈ N.
On the other hand, thanks to (A3) and (4.1), we get, as k −→∞

g(x, uk(x))→ g(x, u(x)) a.e. x ∈ Ω.

Seeing that

ν+|φ|s(x)−1 ∈ Lp
′(x)(Ω) and ρp′(x)(Ψ1uk−Ψ1u) =

∫
Ω

|g(x, uk(x))−g(x, u(x))|p
′(x)dx,

then, from the Lebesgue’s theorem and the equivalence (2.4), we have

Ψ1uk → Ψ1u in Lp
′(x)(Ω),

and consequently

Ψ1un → Ψ1u in Lp
′(x)(Ω),

that is, Ψ1 is continuous.

Step 2: We define the operator Ψ2 : W
1,p(x)
0 (Ω)→ Lp

′(x)(Ω) by

Ψ2u(x) := a(x)|u(x)|k(x)−2u(x).

We will prove that Ψ2 is bounded and continuous.
It is clear that Ψ2 is continuous. Next we show that Ψ2 is bounded.

Let u ∈W 1,p(x)
0 (Ω) and using (2.5) and (2.6), we obtain

|Ψ2u|p′(x) ≤ ρp′(x)(Ψ2u) + 1

=

∫
Ω

|a(x)|u|k(x)−2u|p
′(x)dx+ 1

=

∫
Ω

|a(x)|p
′(x)|u|(k(x)−1)p′(x)dx+ 1

≤ ||a||p
′

L∞(Ω)

∫
Ω

|u|β(x)dx+ 1

= ||a||p
′

L∞(Ω)ρβ(x)(u) + 1

≤ ||a||p
′

L∞(Ω)

(
|u|β

−

β(x) + |u|β
+

β(x)

)
+ 1.

Hence, we deduce from Lp(x) ↪→ Lβ(x) and (2.9) that

|Ψ2u|p′(x) ≤ const
(
|u|β

−

1,p(x) + |u|β
+

1,p(x)

)
+ 1,

and consequently, Ψ2 is bounded on W
1,p(x)
0 (Ω).

Step 3: Let us define the operator Ψ3 : W
1,p(x)
0 (Ω)→ Lp

′(x)(Ω) by

Ψ3u(x) := −λ f(x, u(x),∇u(x)).
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We will show that Ψ3 is bounded and continuous.

Let u ∈W 1,p(x)
0 (Ω). According to (A2) and the inequalities (2.5) and (2.6), we obtain

|Ψ3u|p′(x) ≤ ρp′(x)(Ψ3u) + 1

=

∫
Ω

|λ f(x, u(x),∇u(x))|p
′(x)dx+ 1

=

∫
Ω

|λ|p
′(x)|f(x, u(x),∇u(x))|p

′(x)dx+ 1

≤
(
|λ|p

′−
+ |λ|p

′+
)∫

Ω

|%
(
γ(x) + |u|q(x)−1 + |∇u|q(x)−1

)
|p
′(x)dx+ 1

≤ const
(
|λ|p

′−
+ |λ|p

′+
)∫

Ω

(
|γ(x)|p

′(x) + |u|r(x) + |∇u|r(x)
)
dx+ 1

≤ const
(
|λ|p

′−
+ |λ|p

′+
)(
ρp′(x)(γ) + ρr(x)(u) + ρr(x)(∇u)

)
+ 1

≤ const
(
|γ|p

′+

p(x) + |u|r
+

r(x) + |u|r
−

r(x) + |∇u|r
+

r(x) + |∇u|r
−

r(x)

)
+ 1.

Taking into account that Lp(x) ↪→ Lr(x) and (2.9), we have then

|Ψ3u|p′(x) ≤ const
(
|γ|p

′+

p(x) + |u|r
+

1,p(x) + |u|r
−

1,p(x)

)
+ 1,

and consequently Ψ3 is bounded on W
1,p(x)
0 (Ω).

It remains to show that Ψ3 is continuous. Let un → u in W
1,p(x)
0 (Ω), we need to show

that Ψ3un → Ψ3u in Lp
′(x)(Ω). We will apply the Lebesgue’s theorem.

Note that if un → u in W
1,p(x)
0 (Ω), then un → u in Lp(x)(Ω) and ∇un → ∇u

in (Lp(x)(Ω))N . Hence, there exist a subsequence (uk) and φ in Lp(x)(Ω) and ψ in
(Lp(x)(Ω))N such that

uk(x)→ u(x) and ∇uk(x)→ ∇u(x), (4.2)

|uk(x)| ≤ φ(x) and |∇uk(x)| ≤ |ψ(x)|, (4.3)

for a.e. x ∈ Ω and all k ∈ N.
Hence, thanks to (A1) and (4.2), we get, as k −→∞

f(x, uk(x),∇uk(x))→ f(x, u(x),∇u(x)) a.e. x ∈ Ω.

On the other hand, from (A2) and (4.3), we can deduce the estimate

|f(x, uk(x),∇uk(x))| ≤ %(γ(x) + |φ(x)|q(x)−1 + |ψ(x)|q(x)−1),

for a.e. x ∈ Ω and for all k ∈ N.
Seeing that

γ + |φ|q(x)−1 + |ψ(x)|q(x)−1 ∈ Lp
′(x)(Ω),

and taking into account the equality

ρp′(x)(Ψ3uk −Ψ3u) =

∫
Ω

|f(x, uk(x),∇uk(x))− f(x, u(x),∇u(x))|p
′(x)dx,

then, we conclude from the Lebesgue’s theorem and (2.4) that

Ψ3uk → Ψ3u in Lp
′(x)(Ω),
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and consequently

Ψ3un → Ψ3u in Lp
′(x)(Ω),

and then Ψ3 is continuous.
Step 4: Let I∗ : Lp

′(x)(Ω) → W−1,p′(x)(Ω) be the adjoint operator of the operator

I : W
1,p(x)
0 (Ω)→ Lp(x)(Ω).

We then define

I∗ ◦Ψ1 : W
1,p(x)
0 (Ω)→W−1,p′(x)(Ω),

I∗ ◦Ψ2 : W
1,p(x)
0 (Ω)→W−1,p′(x)(Ω),

and

I∗ ◦Ψ3 : W
1,p(x)
0 (Ω)→W−1,p′(x)(Ω).

On another side, taking into account that I is compact, then I∗ is compact. Thus,
the compositions I∗ ◦Ψ1, I∗ ◦Ψ2 and I∗ ◦Ψ3 are compact, that means

S = I∗ ◦Ψ1 + I∗ ◦Ψ2 + I∗ ◦Ψ3

is compact. With this last step the proof of Proposition 4.4 is completed. �

We are now in the position to give the existence result of weak solution for (1.1).

Theorem 4.5. Assume that (A1)− (A4) and (M0) hold, then the problem (1.1) admits

at least one weak solution u in W
1,p(x)
0 (Ω).

Proof. We will reduce the problem (1.1) to a new one governed by a Hammerstein
equation, and we will apply the theory of topological degree introduced in Section 3.

For all u, v ∈ W 1,p(x)
0 (Ω), we define the operators T and S, as defined in Lemma 4.3

and Proposition 4.4 respectively,

T : W
1,p(x)
0 (Ω) −→W−1,p′(x)(Ω)

〈T u, v〉 =M
(
C(u)

)∫
Ω

((
|∇u|p(x)−2∇u+

|∇u|2p(x)−2∇u√
1 + |∇u|2p(x)

)
∇v + |u|p(x)−2u v

)
dx,

and

S : W
1,p(x)
0 (Ω) −→W−1,p′(x)(Ω)

〈Su, v〉 = −
∫

Ω

(
− a(x)|u|k(x)−2u+ µ g(x, u) + λ f(x, u,∇u)

)
vdx.

Consequently, the problem (1.1) is equivalent to the equation

T u+ Su = 0, u ∈W 1,p(x)
0 (Ω). (4.4)

Taking into account that, by Lemma 4.3, the operator T is a continuous, bounded,
strictly monotone and of type (S+), then, by [33, Theorem 26 A], the inverse operator

L := T −1 : W−1,p′(x)(Ω)→W
1,p(x)
0 (Ω),

is also bounded, continuous, strictly monotone and of type (S+).
On another side, according to Proposition 4.4, we have that the operator S is bounded,
continuous and quasimonotone.
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Consequently, following Zeidler’s terminology [33], the equation (4.4) is equivalent to
the following abstract Hammerstein equation

u = Lv and v + S ◦ Lv = 0, u ∈W 1,p(x)
0 (Ω) and v ∈W−1,p′(x)(Ω). (4.5)

Seeing that (4.4) is equivalent to (4.5), then to solve (4.4) it is thus enough to solve
(4.5). In order to solve (4.5), we will apply the Berkovits topological degree introduced
in Section 3.
First, let us set

B :=
{
v ∈W−1,p′(x)(Ω) : ∃ t ∈ [0, 1] such that v + tS ◦ Lv = 0

}
.

Next, we show that B is bounded in ∈W−1,p′(x)(Ω).
Let us put u := Lv for all v ∈ B.
Taking into account that |Lv|1,p(x) = |∇u|p(x), then we have the following two cases:

First case: If |∇u|p(x) ≤ 1, then |Lv|1,p(x) ≤ 1, that means
{
Lv : v ∈ B

}
is bounded.

Second case: If |∇u|p(x) > 1, then, we deduce from (2.2), (A2) and (A4), the inequal-
ities (2.7) and (2.6) and the Young’s inequality that

|Lv|p
−

1,p(x)

≤ ρp(x)(∇u)

≤ 〈T u, u〉
= 〈v, Lv〉
= −t〈S ◦ Lv, Lv〉

= t

∫
Ω

(
− a(x)|u|k(x)−2u+ µ g(x, u) + λ f(x, u,∇u)

)
udx

≤ tmax(||a||L∞(Ω), σ|µ|, %|λ|)
(
ρk(x)(u) +

∫
Ω

|ν(x)u(x)|dx+

∫
Ω

|γ(x)u(x)|dx

+ ρs(x)(u) + ρq(x)(u) +

∫
Ω

|∇u|q(x)−1|u|dx
)

≤ const
(
|u|k

−

k(x) + |u|k
+

k(x) + |ν|p′(x)|u|p(x) + |γ|p′(x)|u|p(x) + |u|s
+

s(x) + |u|s
−

s(x)

+ |u|q
+

q(x) + |u|q
−

q(x) +
1

q′−
ρq(x)(∇u) +

1

q−
ρq(x)(u)

)
≤ const

(
|u|k

−

k(x) + |u|k
+

k(x) + |u|p(x) + |u|s
+

s(x) + |u|s
−

s(x) + |u|q
+

q(x) + |u|q
−

q(x) + |∇u|q
+

q(x)

)
,

then, according to Lp(x) ↪→ Lk(x), Lp(x) ↪→ Ls(x) and Lp(x) ↪→ Lq(x), we get

|Lv|p
−

1,p(x) ≤ const
(
|Lv|k

+

1,p(x) + |Lv|1,p(x) + |Lv|s
+

1,p(x) + |Lv|q
+

1,p(x)

)
,

what implies that
{
Lv : v ∈ B

}
is bounded.

On the other hand, we have that the operator is S is bounded, then S◦Lv is bounded.
Thus, thanks to (4.5), we have that B is bounded in W−1,p′(x)(Ω).
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However, ∃ a > 0 such that

|v|−1,p′(x) < a for all v ∈ B,

which leads to

v + tS ◦ Lv 6= 0, v ∈ ∂Ba(0) and t ∈ [0, 1],

where Ba(0) is the ball of center 0 and radius a in W−1,p′(x)(Ω).
Moreover, by Lemma 3.4, we conclude that

I + S ◦ L ∈ FL(Ba(0)) and I = T ◦ L ∈ FL(Ba(0)).

On another side, taking into account that I, S and L are bounded, then I + S ◦ L is
bounded. Hence, we infer that

I + S ◦ L ∈ FL,B(Ba(0)) and I = T ◦ L ∈ FL,B(Ba(0)).

Now, we define the homotopy H : [0, 1]× Ba(0)→W−1,p′(x)(Ω) by

H(t, ϑ) := ϑ+ tS ◦ Lϑ.

Applying the homotopy invariance and normalization property of the degree d seen
in Theorem 3.7, we have

d(I + S ◦ L,Ba(0), 0) = d(I,Ba(0), 0) = 1 6= 0.

Since d
(
I +S ◦L,Ba(0), 0

)
6= 0, then by the existence property of the degree d stated

in Theorem 3.7, we conclude that there exists ϑ ∈ Ba(0) which verifies(
I + S ◦ L

)
(ϑ) = 0⇔ ϑ+ S ◦ Lϑ = 0⇔ T ◦ Lϑ+ S ◦ Lϑ = 0.

Hence, we conclude that u = Lv is a weak solutions of (1.1). The proof is completed.
�
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