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Invariant regions and global existence of
uniqueness weak solutions for tridiagonal
reaction-diffusion systems

Nabila Barrouk, Karima Abdelmalek and Mounir Redjouh

Abstract. In this paper we study the existence of uniqueness global weak solu-
tions for m × m reaction-diffusion systems for which two main properties hold:
the positivity of the weak solutions and the total mass of the components are
preserved with time. Moreover we suppose that the non-linearities have criti-
cal growth with respect to the gradient. The technique we use here in order to
prove global existence is in the same spirit of the method developed by Boccardo,
Murat, and Puel for a single equation.
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1. Introduction

In [26, 27], the authors obtained a global existence of solutions for the coupled semi-
linear reaction-diffusion system with diagonal by order 2, and m, triangular, and full
matrix of diffusion coefficients. By combining the compact semigroup methods and
some L1 estimates, we show that global solutions exist for a large class of the term
of reaction. In the works [8, 14], we find new developed methods based on truncation
functions, fixed point theorems and compactness, etc to prove establish the existence
of global solutions.
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In the present work we consider the problem

∂U
∂t −Am∆U = F (t, x, U,∇U) on ]0,+∞[× Ω,

U = 0 or ∂U
∂η = 0 on ]0,+∞[× ∂Ω,

U (0, x) = U0 (x) on Ω,

(1.1)

by using a technique based on L1-estimate we establish a global existence result of
the solution.
We consider the m-equations of reaction-diffusion system (1.1), with m ≥ 2, where Ω
is an open bounded domain of class C1 in Rn, the vectors U , F , U0 and the matrix
Am are defined as: 

U = (u1, . . . , um)T = ((us)
m
s=1)T ,

∇U = (∇u1, . . . ,∇um)
T

= ((∇us)ms=1)T ,
F = (F1, . . . , Fm)T = ((Fs)

m
s=1)T ,

U0 = (u0
1, . . . , u

0
m)T = ((u0

s)
m
s=1)T .

Am =



a1 b1 0 · · · 0

c1 a2 b2
. . .

...

0 c2 a3
. . . 0

...
. . .

. . .
. . . bm−1

0 · · · 0 cm−1 am


. (1.2)

The nonlinearities Fs, 1 ≤ s ≤ m, have critical growth with respect to |∇U |, and the
constants (ai)

m
i=1, (bi)

m−1
i=1 et (ci)

m−1
i=1 are supposed to be strictly positive and satisfy

the condition
cos2(

π

m+ 1
) <

aiai+1

(bi + ci)
2 (1.3)

which reflects the parabolicity of the system and implies at the same time that the
diffusion matrix is positive defnite. That means the eigenvalues (λi)

m
i=1 , (λ1 > λ2 >

. . . > λm), of Am are positive.
Note that ∂

∂η denotes the outward normal derivative on boundary ∂Ω.

The initial data are assumed to be in the regions:∑
S,Z

=

{
U0 ∈ Rm :

{
w0
z = 〈Vz, U0〉 ≤ 0 if z ∈ Z

w0
s = 〈Vs, U0〉 ≥ 0 if s ∈ S

}
, (1.4)

where
S ∩ Z = φ, S ∪ Z = {1, 2, . . . ,m} .

The notation 〈., .〉 denotes the inner product in Rm and Vs = (vs1, . . . , vsm)T the
eigenvector of the diffusion matrix Am associated with the eigenvalue (λs)

m
s=1. Hence,

we can see that there are 2m regions.
This work represents a generalization to the parabolic case study did in the elliptic
case (see [7]) for these systems of arbitrary order. This passage in parabolic case,
needs new approaches and also technical difficulties to be overcome. We will explain
in detail here.
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We found a good idea to present our work as follows: we start initially with an
introduction that presents the state of the art of the area studied and some recall the
main results obtained previously. This will highlight the contribution of our work and
its originality. In the second section we give the definition of the notion of solution
used here. We then present the main results of this work. In the last section, we give
the proof of global existence and uniqueness of our reaction-diffusion system. This is
done in three steps: in the first we truncate the system, the latter we give suitable
estimates on the approximate solutions and in the last step we show the convergence
of the approximating system by using the technics introduced by Boccardo et al. [13]
and Dall’Aglio and Orsina [15].

2. Eigenvalues and eigenvectors of the diffusion matrix

The usual norms in the spaces L1 (Ω) , L∞ (Ω) and C
(
Ω
)

are denoted respectively
by:

‖u‖1 =

∫
Ω

|u (x)| dx,

‖u‖∞ = ess sup
x∈Ω

|u (x)| and ‖u‖C(Ω) = max
x∈Ω
|u (x)| .

For any initial data in C
(
Ω
)

or L∞ (Ω) local existence and uniqueness of solutions
to the initial values problem (1.1) follow from the basic existence theory for abstract
semilinear differential equations (see Friedman [16], Henry [17], Pazzy [28]).

Our aim in this section is to get a three term reccurence relation of characteristic
polynomial of matrix A of dimension m × m in terms of matrices of dimensions
(m−1)×(m−1) and (m−2)×(m−2) so the eigenvectors of this matrix. The solutions of
characteristic polynomial det(Am−λIm) = 0 are λ which represent eigenvalues of the
matrix Am. We denote the characteristic polynomial of Am, Am−1, Am−2 by φm(λ),
φm−1(λ), φm−2 (λ) respectively.

Lemma 2.1 (See [22]). Let Am be the tridiagonal matrix defined in (1.2), the eigen-
values of Am are distinct and interlace strictly with eigenvalues of Am−1 for m ≥ 2.
Where

φ0 (λ) = 1, φ1 (λ) = a1 − λ, φm (λ) = (λ− am)φm−1 (λ)− bm−1cm−1φm−2 (λ) .
(2.1)

Lemma 2.2 (See Andelic and Fonseca [9]). Let Am be the real symmetric tridiagonal
matrix definied in (1.2), with diagonal entries positive.
If

cos2

(
π

m+ 1

)
<

aiai+1

(bi + ci)
2 , for i = 1, . . . ,m− 1,

then Am is positive definite.

We remark that general characterization in terms of the eigenvalues, i.e. Am is
positive definite if and only if all its eigenvalues are positive.
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Lemma 2.3. Let λs for s = 1, . . . ,m be the eigenvalues of the tridiagonal matrix Am.
Then the eigenvectors Vs = (vs1, . . . , vsm)T associated to λs for s = 1, . . . ,m are given
by the following expressions

vsm = 1,

vs(m−1) = λs−am
cm−1

,

vs(`−1) = − b`vs(`+1)+(a`−λs)vs`
c`−1

, ` = 2, . . . ,m− 1.

(2.2)

Proof. Recall that the diffusion matrix is positive definite, hence its eigenvalues are
necessarily positive. The eigenvectors of the diffusion matrix associated with the eigen-
values λs are defind as Vs = (vs1, vs2, . . . , vsm)T . For an eigenpair (λs, Vs), the com-
ponents in AmV = λV are a1v1 + b1v2 = λv1

c`−1v`−1 + a`v` + b`v`+1 = λv`, (2 ≤ ` ≤ m− 1)
cm−1vm−1 + amvm = λvm

if vm = 0, the assumption bi 6= 0, ci 6= 0 for all i = 1, . . . ,m − 1 we said that all vsi
are zero. We can therefore take vm = 1 and (v1, v2, . . . , vm−1) is a solution of upper
triangular system c`−1v`−1 + (a` − λ)v` + b`v`+1 = 0 (2 ≤ ` ≤ m− 2)

cm−2vm−2 + (am−1 − λ)vm−1 = −bm−1

cm−1vm−1 = λ− am

the solution of this system is given by{
vm−1 = λ−am

cm−1
,

v`−1 = − b`v`+1+(a`−λ)v`
c`−1

, (` = 2, . . . ,m− 1).
�

3. Diagonalizing system (1.1)

Usually to construct an invariant regions for systems such (1.1) we make a linear
change of variables ui to obtain a new equivalent system with diagonal diffusion
matrix for which standard techniques can be applied to deduce global existence (see
[1, 2, 3, 4, 5, 21]).

Let Vs = (vs1, . . . , vsm)T be an eigenvector of the matrix Am associated with its
eigenvalue (λs)

m
s=1 where λ1 > λ2 > . . . > λm. Multiplying the kth equation of (1.1)

by (−1)
is Vsk, is = 1, 2 and k = 1, . . . ,m, and adding the resulting equations, we get



∂W
∂t − diag (λ1, λ2, . . . , λm) ∆W = Ψ (t, x,W,∇W ) on ]0,+∞[× Ω,

W = 0 or ∂W
∂η = 0 on ]0,+∞[× ∂Ω,

W (0, x) = W0 (x) on Ω,

(3.1)
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where 
W = ((ws)

m
s=1)T , ∇W = ((∇ws)ms=1)T , ws =

〈
(−1)

is Vs, U
〉
,

Ψ = ((Ψs)
m
s=1)T , Ψs =

〈
(−1)

is Vs, F
〉
,

W0 = ((w0
s)
m
s=1)T , w0

s =
〈

(−1)
is Vs, U0

〉
, m ≥ 2.

for all is = {1, 2} .

Proposition 3.1. The system (3.1) admits a unique classical solution W on [0, Tmax)×
Ω, where Tmax

(∥∥w0
1

∥∥
∞ ,
∥∥w0

2

∥∥
∞ , . . . ,

∥∥w0
m

∥∥
∞

)
denotes the eventual blow-up time.

Furthermore, if Tmax < +∞, then

lim
t→Tmax

m∑
s=1

‖ws (t, .)‖∞ = +∞.

Therefore, if there exists a positive constant C such that
m∑
s=1

‖ws (t, .)‖∞ ≤ C for all t ∈ [0, Tmax) ,

then, Tmax = +∞.

4. Statement of the main result

4.1. Assumptions

Let us, now introduce for w0
s the hypotheses, for all 1 ≤ s ≤ m

(A1) The initial conditions are in
∑

S,Z, w0
s , are nonnegative functions in L1 (Ω) .

The following assumptions are also made on the function Ψ defined by:

Ψ = ((Ψs)
m
s=1)T , Ψs =

〈
(−1)

is Vs, F
〉
, is = 1, 2.

(A2) Ψs are continuously differentiable on Rm+ and Ψs, s = 1,m, are quasi-positives

functions which means that, for s = 1,m

[w1 ≥ 0, . . . , ws−1 ≥ 0, ws+1 ≥ 0, . . . , wm ≥ 0] ,

implies{
Ψs (t, x, w1, . . . , ws−1, 0, ws+1, . . . , wm, p1, . . . , ps−1, 0, ps+1, . . . , pm) ≥ 0.

for all 1 ≤ s ≤ m, (W,p) ∈ (R+)
m × RNm and for a.e. (t, x) ∈ QT

These conditions on Ψ guarantee local existence of unique, nonnegative classical
solutions on a maximal time interval [0, Tmax), see Hollis and Morgan [20].

(A3) The inequality

〈S,Ψ (t, x,W,∇W )〉 ≤ C1 (1 + 〈W, 1〉) ,

such that

W = (w1, . . . , wm) , S = (d1, d2, . . . , dm−1, 1) ,
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for all ws ≥ 0, s = 1, . . . ,m and all constants ds satisfy ds ≥ ds, s = 1, . . . ,m−1,
where C1 ≥ 0 and ds are positive constants sufficiently large.

Under the assumptions (A1)-(A3), the next proposition says that the classical solution
of the system (3.1) remains in

∑
S,Z for all t in [0, Tmax).

Proposition 4.1. Suppose that the assumptions (A1)-(A3) are satisfied. Then for any
W0 in

∑
S,Z the classical solution W of the system (3.1) on [0, Tmax)×Ω remains in∑

S,Z for all t in [0, Tmax).

(A4) The total mass of the components w1, . . . , wm is controlled with time, which is
ensured by{ ∑

1≤s≤r
Ψs(t, x,W, p) ≤ 0, for all 1 ≤ r ≤ m

for all (W,p) ∈ (R+)
m × RNm and a.e. (t, x) ∈ QT

Ψs : ]0, T [× Ω× Rm × RmN → R are measurable (4.1)

Ψs : Rm × RmN → R are locally Lipschitz continuous (4.2)

namely ∑
1≤s≤m

∣∣∣Ψs (t, x,W, p)−Ψs

(
t, x, Ŵ , p̂

)∣∣∣
≤ K(r)

 ∑
1≤s≤m

|ws − ŵs|+
∑

1≤s≤m

‖ps − p̂s‖


for a.e. (t, x) and for all 0 ≤ |ws| , |ŵs| , ‖ps‖ , ‖p̂s‖ ≤ r.

|Ψ1 (t, x,W,∇W )| ≤ C1 (|w1|)

F1 (t, x) + ‖∇w1‖2 +
∑

2≤j≤m

‖∇wj‖αj
 (4.3)

where C1 : [0,+∞)→ [0,+∞) is nondecreasing, F1 ∈ L1 (QT ) and 1 ≤ αj < 2

|Ψs (t, x,W,∇W )| ≤ Cs

 s∑
j=1

|wj |

Fs (t, x) +
∑

1≤j≤m

‖∇wj‖2
 , 2 ≤ s ≤ m

(4.4)
where Cs : [0,+∞)→ [0,+∞) is nondecreasing, Fs ∈ L1 (QT ) for all 2 ≤ s ≤ m.

Let us know that if the nonlinearities Ψ do not dependent on the gradient (system
(3.1) is semilinear), the existence of global positive solutions have been obtained by
Hollis et all [18], Hollis and Morgan [19] and Martin and Pierre [25]. One can see
that in all of these works, the triangular structure, namely hypotheses (A4) plays an
important role in the study of semilinear systems. Indeed, if (A4) does not hold, Pierre
and Schmitt [29] proved blow up in finite time of the solutions to some semilinear
reaction-diffusion systems.
Where Ψ = (Ψ1,Ψ2) depends on the gradient, Alaa and Mounir [8] solved the problem
where the triangular structure is satisfied and the growth of Ψ1 and Ψ2 with respect
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to |∇w1| , |∇w2| is sub-quadratic. There exists 1 ≤ p < 2, C : [0,∞)
2 → [0,∞)

nondecreasing such that

|Ψ1|+ |Ψ2| ≤ C (|w1| , |w2|) (1 + |∇w1|p + |∇w2|p)

About the critical growth with respect to the gradient (p = 2), we recall that for the
case of a single equation (d1 = d2 and Ψ1 = Ψ2), existence results have been proved
for the elliptic case in [11, 12]. The corresponding parabolic equations have also been
studied by many authors; see for instance [6, 13, 15, 24].

5. Statement of the result

First, we have to clarify in which sense we want to solved problem (3.1).

The existence of global unique solutions for the system (3.1) is to equivalence to
existence a ws, s = 1,m, true for the following theorem:

Theorem 5.1. Suppose that the hypotheses (A1)-(A4) and (4.1)-(4.4) are satisfied, so
it exists unique ws, s = 1,m solution of:

ws ∈ C
(
[0, T ] ;L1 (Ω)

)
∩ L1

(
0, T ;W 1,1

0 (Ω)
)
,

Ψs ∈ L1 (QT ) where QT = (0, T )× Ω for all T > 0,

ws (t) = Ss (t)w0
s +

∫ t
0
Ss (t− τ) Ψs (s, .,W (τ) ,∇W (τ)) dτ,

s = 1,m, ∀t ∈ [0, T [ ,

(5.1)

where W = (w1, . . . , wm) , ∇W = (∇w1, . . . ,∇wm) and Ss (t) are the semigroups of
contractions in L1 (Ω) generated by λs∆, s = 1,m.

Example 5.2. For 1 ≤ i ≤ m, A typical example where the result of this paper can be
applied is

∂wi
∂t
− di∆wi =

∑
1≤j≤i

aij
wj∑

1≤k≤m
wk
|∇wj |2 + fi (t, x) in QT

wi = 0 on ΣT
wi (0, x) = wi,0 in Ω

Theorem 5.3. Assume that (A2), (A4) and (4.1)-(4.4) hold. If w0
s ∈ L2 (Ω), for all

1 ≤ s ≤ m, then there exists a positive global solution W = (w1, . . . , wm) of system
(3.1). Moreover, w1, . . . , wm ∈ L2

(
0, T ;H1

0 (Ω)
)
.

Before giving the proof of this theorem, let us define the following functions.

Given a real positive number k, we set

Tk(s) = max{−k,min(k, s)} and Gk(s) = s− Tk(s)

We remark that {
Tk(s) = s for 0 ≤ s ≤ k,
Tk(s) = k for s > k.
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Proof of Theorem 5.3.
Approximating scheme. For every function h defined from R+ ×Ω×Rm ×RmN into
R, we associate ϕ̂ = ϕ̂(t, x,W, p) such that

ϕ̂ =


ϕ (t, x, w1, . . . , wm, p1, . . . , pm) if ws ≥ 0, 1 ≤ s ≤ m
ϕ (t, x, w1, . . . , ws−1, 0, ws+1, . . . , wm,
p1, . . . , ps−1, 0, ps+1, . . . , pm)

if ws ≤ 0 and wj ≥ 0, j 6= s

ϕ (t, x, 0, . . . , 0, p1, . . . , pm) if ws ≤ 0, 1 ≤ s ≤ m
and consider the system, for 1 ≤ s ≤ m

∂ws
∂t − ds∆ws = Ψ̂s (t, x,W,∇W ) in ]0,+∞[× Ω,

ws = 0 or ∂ws
∂η = 0 on ]0,+∞[× ∂Ω,

ws (0, x) = w0
s (x) in Ω.

(5.2)

It is obviously seen, by the structure of Ψ̂s, 1 ≤ s ≤ m, that systems (3.1) and (5.2)
are equivalent on the set where ws ≥ 0, 1 ≤ s ≤ m. Consequently, to prove Theorem
5.3, we have to show that problem (5.2) has a weak solution which is positive.
To this end, we define ψn a truncation function by ψn ∈ C∞c (R), 0 ≤ ψn ≤ 1, and

ψn(z) =

{
1 if |z| ≤ n
0 if |z| ≥ n+ 1

and the mollification with respect to (t, x) is defined as follows.
Let ρ ∈ C∞c

(
R× RN

)
such that

suppρ ⊂ B(0, 1),

∫
ρ = 1, ρ ≥ 0 on R× RN

and ρn(y) = nNρ(ny). One can see that

ρn ∈ C∞c
(
R× RN

)
, suppρn ⊂ B

(
0,

1

n

)
,

∫
ρn = 1, ρn ≥ 0 on R× RN

We also consider nondecreasing sequences wns,0 ∈ C∞c (Ω) such that

wns,0 → w0
s in L2 (Ω) , 1 ≤ s ≤ m

and define for all (t, x,W, p) in R+ × Ω× Rm × RmN and 1 ≤ s ≤ m,

Ψs,n(t, x,W, p) =

ψn
 ∑

1≤j≤m

(|wj |+ ‖pj‖)

Ψs(t, x,W, p)

 ∗ ρn (t, x) .

Note that these functions enjoy the same properties as Ψs, 1 ≤ s ≤ m, moreover they
are Hölder continuous with respect to (t, x) and |Ψs,n| ≤ Mn, 1 ≤ s ≤ m, where Mn

is a constant depending only on n (these estimates can be derived from (5.1), the
properties of the convolution product, and the fact that

∫
ρn = 1).

Let us now consider the truncated system, for 1 ≤ s ≤ m
∂ws,n
∂t

− ds∆ws,n = Ψs,n (t, x,Wn,∇Wn) in QT

ws,n = 0 or
∂ws,n
∂η = 0 on ΣT

ws,n (0, x) = wns,0 (x) in Ω

(5.3)



Invariant regions and global existence 375

It is well known that problem (5.3) has a global classical solution (see [23], theorem
7.1, p. 591 ) for the existence and ([24], Corollary of Theorem 4.9, p. 341 ) for the
regularity of solutions. It remains to show the positivity of the solutions.

Lemma 5.4. Let wn = (w1,n, . . . , wm,n) be a classical solution of (5.3) and suppose
that wn1,0, . . . , w

n
m,0 ≥ 0. Then w1,n, . . . , wm,n ≥ 0.

Proof. See [8], Lemma 1, p 537. �

5.1. A priori estimates

The hypotheses (A2) and (A4) allowed the following lemma.

Lemma 5.5. (i) There exists a constant M depending on
∑

1≤j≤m
‖wj,0‖L1(Ω) such that

∫
Ω

 ∑
1≤j≤m

wj,n(t)

 ≤M, for all t ∈ [0, T ]

(ii) There exists a constant R1 depending on
∑

1≤j≤m
‖wj,0‖L1(Ω), such that

∑
1≤j≤m

∫
Ω

|Ψj,n (t, x,Wn,∇Wn)| ≤ R1.

(iii) There exists a constant R2 depending on k and
∑

1≤s≤m

∥∥w0
s

∥∥
L1(Ω)

, such that for

all 1 ≤ j ≤ m ∫
QT

|∇Tk (wj,n)|2 ≤ R2.

(iv) There exists a constant R3 depending on
∑

1≤j≤r
‖wj,0‖L2(Ω) such that for all 2 ≤

r ≤ m, ∫
QT

∣∣∣∣∣∣∇Tk
 ∑

1≤j≤r

wj,n

∣∣∣∣∣∣
2

≤ R3

(v) There exists a constant R4 depending on
∑

1≤j≤m
‖wj,0‖L2(Ω) and d1, . . . , dm such

that∫
QT

|Ψj,n (t, x,Wn,∇Wn)|

 ∑
1≤r≤m

(m− r + 1)wk,n

 ≤ R4, for all 1 ≤ j ≤ m.

Proof. See Bouarifi et al. [14]. �
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5.2. Convergence

Our objective is to show that Wn = (w1,n, . . . , wm,n) converges to some W =
(w1, . . . , wm) solution of the problem (5.1). The sequences wn1,0, . . . , w

n
m,0 are uni-

formly bounded in L1 (Ω) (since they converge in L2 (Ω)
)
, and by Lemma 5.5, the

nonlinearities Ψ1,n, . . . ,Ψm,n are uniformly bounded in L1 (QT ) . Then according to
a result in [10] the applications(

wns,0,Ψs,n

)
→ ws,n, 1 ≤ s ≤ m

are compact from L1 (Ω)× L1 (QT ) into L1
(

0, T ;W 1,1
0 (Ω)

)
.

Therefore, we can extract a subsequence, still denoted by (w1,n, . . . , wm,n), such that

(w1,n, . . . , wm,n)→ (w1, . . . , wm) in L1
(

0, T ;W 1,1
0 (Ω)

)
(w1,n, . . . , wm,n)→ (w1, . . . , wm) a.e. in QT
(∇w1,n, . . . ,∇wm,n)→ (∇w1, . . . ,∇wm) a.e. in QT

Since Ψ1,n, . . . ,Ψm,n are continuous, we have

Ψs,n (t, x,Wn,∇Wn)→ Ψs (t, x,W,∇W ) a.e. in QT , 1 ≤ s ≤ m.
This is not sufficient to ensure that (w1, . . . , wm) is a solution of (5.1). In fact, we have
to prove that the previous convergence are in L1 (QT ). In view of the Vitali theorem, to
show that Ψs,n (t, x,Wn,∇Wn) , 1 ≤ s ≤ m, converges to Ψs (t, x,W,∇W ) in L1 (QT ),
is equivalent to proving that Ψs,n (t, x,Wn,∇Wn) , 1 ≤ s ≤ m are equi-integrable in
L1 (QT )

Lemma 5.6. Ψs,n (t, x,Wn,∇Wn), for all 1 ≤ s ≤ m, are equi-integrable in L1 (QT ).

The proof of this lemma requires the following result based on some properties of two
time-regularization denoted by wγ and wσ(γ, σ > 0) which we define for a function
w ∈ L2

(
0, T ;H1

0 (Ω)
)

such that w (0) = w0 ∈ L2 (Ω) (for more details see [8]). In the
following we will denote by ω(ε) a quantity that tends to zero as ε tends to zero, and
ωσ(ε) a quantity that tends to zero for every fixed σ as ε tends to zero.

Lemma 5.7. Let (wn) be a sequence in L2
(
0, T ;H1

0 (Ω)
)
∩C([0, T ]) such that wn (0) =

wn0 ∈ L2 (Ω) and (wn)t = ρ1,n + ρ2,n with ρ1,n ∈ L2
(
0, T ;H−1 (Ω)

)
and ρ2,n ∈

L1 (QT ) . Moreover assume that wn converges to w in L2 (QT ), and wn0 converges to
w (0) in L2 (Ω) .
Let Υ be a function in C1([0, T ]) such that Υ ≥ 0, Υ′ ≤ 0,Υ(T ) = 0. Let ϕ be a
Lipschitz increasing function in C0(R) such that ϕ (0) = 0. Then for all k, γ > 0〈

ρ1n,Υϕ
(
Tk (wn)− Tk (wm)γ

)〉
+

∫
QT

ρ2nΥϕ
(
Tk (wn)− Tk (wm)γ

)
≥ ωγ,n

(
1

m

)
+ ωγ

(
1

n

)
+

∫
Ω

Υ (0) Φ (Tk(w)− Tk(w)γ) (0) dx

−
∫

Ω

Gk(w) (0) Υ (0)ϕ (Tk(w)− Tk(w)γ) (0) dx

where Φ(t) =
∫ t

0
ϕ(s)ds and Gk(s) = s− Tk(s)
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Proof. See [8], Lemma 7, p 544. �

Lemma 5.8. Suppose that wj,n, wj , 1 ≤ j ≤ m, are as above.

(i) If

|Ψ1,n| ≤ C1 (|w1,n|)

F1 (t, x) + |∇w1,n|2 +
∑

2≤j≤m

|∇wj |αj


where C1 : [0,+∞)→ [0,+∞) is nondecreasing, F1 ∈ L1 (QT ) and 1 ≤ αj < 2. Then
for each fixed k

lim
n→∞

∫
QT

|∇Tk (w1,n)−∇Tk (w1)|2 χ[ ∑
1≤j≤m

wj,n≤k

] = 0.

(ii) If

|Ψs,n (t, x,W,∇W )| ≤ Cs

 s∑
j=1

|wj |

Fs (t, x) +
∑

1≤j≤m

|∇wj |2
 , 2 ≤ s ≤ m

where Cs : [0,+∞) → [0,+∞) is nondecreasing, Fs ∈ L1 (QT ) for all 2 ≤ s ≤ m.
Then for each fixed k and for all 2 ≤ s ≤ m

lim
n→∞

∫
QT

∣∣∣∣∣∣∇Tk
 ∑

1≤j≤s

wj,n

−∇Tk
 ∑

1≤j≤s

wj

∣∣∣∣∣∣
2

χ ∑
1≤j≤m

wj,n ≤ k


= 0.

Proof. (i) This is a direct consequence of the resulting output established in [8, 14] �

Proof of Lemma 5.6. Let A be a measurable subset of Ω, we have∫
A

|Ψ1,n (t, x,Wn,∇Wn)| =

∫
A∩[En>k]

|Ψ1,n|+
∫
A∩[En≤k]

|Ψ1,n|

≤
∫
A∩[θn>k]

|Ψ1,n|+
∫
A∩[En≤k]

|Ψ1,n|

with En =
∑

1≤j≤m
wj,n and θn =

∑
1≤k≤m

(m− k + 1)wk,n.

Thanks to (iii) (Lemma 5.5), we obtain ∀ε > 0, ∃k0 such that if k ≥ k0 then for all n∫
A∩[En>k]

|Ψ1,n (t, x,Wn,∇Wn)|

≤ 1

k

∫
[En>k]

k |Ψ1,n| ≤
1

k

∫
QT

En |Ψ1,n| ≤
1

k

∫
QT

θn |Ψ1,n| ≤
ε

m+ 2
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Hypothesis (4.3) implies that for all k > k0∫
A

|Ψ1,n (t, x,Wn,∇Wn)|

≤ ε

m+ 2
+ C1(k)

(∫
A

F1 (t, x) +

∫
A∩[En≤k]

|∇w1,n|2
)

+C1(k)
∑

2≤j≤m

(∫
A∩[En≤k]

|∇wj,n|αj
)

≤ ε

m+ 2
+ C1(k)

(∫
A

F1 (t, x) +

∫
A∩[En≤k]

|∇Tk (w1,n)|2
)

+C1(k)
∑

2≤j≤m

(∫
A∩[En≤k]

|∇Tk (wj,n)|αj
)

Using Hölder’s inequality for 1 ≤ αj < 2 and (iii) (Lemma 5.5), we obtain

C1(k)

∫
A∩[En≤k]

|∇Tk (wj,n)|αj ≤ C1(k)

(∫
A

|∇Tk (wj,n)|2
)αj

2

|A|
2−αj

2

≤ C1(k)R
αj
2

2 |A|
2−αj

2 ≤ ε

m+ 2

Whenever |A| ≤ %j , with %j =

(
ε

m+2C
−1
1 (k)R

−
αj
2

2

) 2
2−αj

, 2 ≤ j ≤ m To deal with

the second integral we write∫
A∩[En≤k]

|∇Tk (w1,n)|2 ≤ 2

∫
A∩[En≤k]

|∇Tk (w1,n)−∇Tk (w1)|2 + 2

∫
A

|∇Tk (w1)|2

According to (iii) (Lemma 5.5), |∇Tk (w1,n)−∇Tk (w1)|2 χ[En≤k] is equi-integrable

in L1 (Ω) since it converges strongly to 0 in L1 (Ω) . So, there exists %m+1 such that
if |A| ≤ %m+1, then

2C1(k)

∫
A∩[En≤k]

|∇Tk (w1,n)−∇Tk (w1)|2 ≤ ε

m+ 2

On the other hand F1, |∇Tk (w1)|2 ∈ L1 (Ω), therefore there exists %m+2 such that

C1(k)

(
2

∫
A

|∇Tk (w1)|2 +

∫
A

F1 (t, x)

)
≤ ε

m+ 2

whenever |A| ≤ %m+2. Choose %0 = inf {%j , 2 ≤ j ≤ m+ 2}, If |A| ≤ %0 we obtain∫
A

|Ψ1,n (x,Wn,∇Wn)| ≤ ε.

Similarly, we get for all 2 ≤ s ≤ m∫
A

|Ψs,n| ≤
ε

m+ 2
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+Cs(k)

(∫
A

Fs (t, x) +

∫
A∩[En≤k]

(
6 |∇w1|2 + 6 |∇Tk (w1,n)−∇Tk (w1)|2

))

+8Cs(k)
∑

2≤r≤m

 ∑
A∩[En≤k]

∣∣∣∣∣∣∇Tk
 ∑

1≤j≤r

wj

∣∣∣∣∣∣
2


+8Cs(k)
∑

2≤r≤m

 ∑
A∩[En≤k]

∣∣∣∣∣∣∇Tk
 ∑

1≤j≤r

wj,n

−∇Tk
 ∑

1≤j≤r

wj

∣∣∣∣∣∣
2


Arguing in the same way as before, we obtain the required result. �

Then (w1, . . . , wm) verify (3.1) consequently (w1, . . . , wm) is the solution of (1.1).
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