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Asymptotic behavior of generalized
CR−iteration algorithm and application
to common zeros of accretive operators

Aadil Mushtaq, Khaja Moinuddin, Nisha Sharma and Anita Tomar

Abstract. The purpose of this study is to provide a generalized CR−iteration al-
gorithm for finding common fixed points (CFPs) for nonself quasi-nonexpansive
mappings (QNEMs) in a uniformly convex Banach space. The suggested algo-
rithm’s convergence analysis is analyzed in uniformly convex Banach spaces.
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1. Introduction

Let B be a Banach space, ∅ 6= Bs ⊆ B be closed and convex, and Υ : Bs → Bs

be an operator which has at least one fixed point. Then, for the initial value a0 ∈ Bs :

(i) Picard’s iteration algorithm [16] is defined as :
aη+1 = Υaη, ∀ η ∈ N0.

(ii) Mann’s iteration algorithm [13] is defined as:
aη+1 = (1− κη)aη + κηΥaη, ∀ η ∈ N0,
where {κη} ∈ (0, 1).

(iii) Ishikawa’s iteration algorithm [8] is defined as:
aη+1 = (1− κ1

η)aη + κ1
ηΥ[(1− κ2

η)aη + κ2
ηΥaη], ∀ η ∈ N0,

where {κ1
η} and {κ2

η} ∈ (0, 1).
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For nonexpansive operators, it is very well established that the Picard iteration al-
gorithm often does not work effectively. As a result, for the estimation of FPs for
nonexpansive type mappings in ambient spaces, the Mann and Ishikawa iterative al-
gorithms have been extensively studied (see [1, 3, 6]).
On the other side, Chug et al. [5] introduced the CR−iteration algorithm in a Banach
space in 2012. The structure of the CR−iterative algorithm differs significantly from
that of the Mann and Ishikawa iterative algorithms, making it absolutely independent
of both. Several mathematicians have been intrigued by the CR−iterative algorithm
as an alternative iterative algorithm for fixed point analysis in recent years (see [9, 2]),
and it has opened up a substantial field of research in various aspects (see [11, 12]).

Let Υ be a self map on B. Then the sequence {aη}∞n=0 defined as follows:
a0 ∈ B

aη+1 = (1− κ1
η)bη + κ1

ηΥbη,

bη = (1− κ2
η)Υaη + κ2

ηΥcη,

cη = (1− κ3
η)aη + κ3

ηΥaη,

(CR)

where {κ1
η}, {κ2

η} and {κ3
η} ∈ (0, 1) is called CR−iteration. The CR−iteration method

is a three-step iteration method. For contraction mappings, CR−iterative algorithms
perform better than Picard and Ishikawa iterative algorithms, and behave well for
nonexpansive mappings.
We are concerned with two quasi-nonexpansive nonself mappingsM1, M2 : Bs → B,
where Bs is a nonempty subset of the Banach space B, the iterative location and weak
limits of the proposed iterative algorithm for these types of functions in the context
of current research [19]. Our findings are applied to the zeros of accretive operators
in some different ways.

2. Tools and notations

In this section, we discuss the notations which we are going to use in the entire
manuscript. The framework in which we shall prove our results from now on is a Ba-
nach space B. Υ is a mapping. N0 represents the set of natural numbers including 0,
whereas the terminology R is used to represent the set of real numbers. The notation
‘for all’is represented by ‘∀’and ‘such that’is represented by ‘3’. The symbol ∈ rep-
resents ‘belongs to’. The terminology Hs is used to represent the ‘Hilbert space’with
the inner product 〈·, ·〉 and whereas QBs

is a retraction of B onto Bs. PBs
is used

to represent the projection from B to Bs. H
′

s ⊆ Hs. Dom(A) represents the domain
of A, Ran(A) is used to represent the range set of A, and Gr(A) is the graph of
A whereas A−1 is the inverse of A. ∆ is a non-negative real number. The terminol-
ogy ‘fixed points’, we denote by ‘FPs’.The Proximal point algorithm is denoted by
‘PPA’. It is important to note that the ‘set of all fixed points’is denoted by ‘z(Υ)’.
Furthermore, ∇ is used to represent the ‘vector differential operator’.
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3. Preliminaries

In this section, we discuss key definitions and lemmas that are necessary in order
to make this article self-contained.
Throughout the paper, we denote the closed ball with the center at a and radius r by
CBr[a] and is defined as

CBr[a] = {b ∈ B : ||a− b|| ≤ r}.
Also, B is said to be uniformly convex if for 0 < ε ≤ 2, ||a|| ≤ 1, ||b|| ≤ 1 and
||a− b|| ≥ ε imply ∃ µ = µ(ε) > 0 3

1

2
||a + b|| ≤ 1− µ.

Lemma 3.1. [21] Let m > 1 and r1 > 0 be two fixed numbers. Then, Bs is uniformly
convex iff ∃ a convex and strictly increasing function Υ : [0,∞)→ [0,∞) with Υ(0) =
0 3

||ca + (1− c)b||m ≤ c||a||m + (1− c)||b||m − c(1− c)Υ(||a− b||),
∀ a, b ∈ Bm > [0] and c ∈ [0, 1].

For Hs, we have

||ca + (1− c)b||2 ≤ c||x||2 + (1− c)||y||2 − c(1− c)||a− b||,
∀ a, b ∈ Hs and c ∈ [0, 1].

Definition 3.2. A mapping Υ : Bs → B has the demiclosed property at b ∈ B if

{a ∈ Bs, aη → a and Υaη → b =⇒ a ∈ Bs and Υa = b}.

Lemma 3.3. [4]Let Bs be a nonempty,closed and convex subset of a uniformly con-
vex Banach space B.If Υ : Bs → B is nonexpansive mappings then I − Υ has the
demiclosed property with respect to 0.

The collection of points of Bs, unaltered by Υ is defined as follows:

z(Υ) = {a ∈ Bs : Υa = a}.

For a constant L ∈ [0,∞), the mapping Υ is called L−Lipschitz if

||Υa−Υb|| ≤ L||a−B||,
∀ a, b ∈ Bs. Every 1−Lipschitz is called QNEM .

A retract of B is a subset Bs of a Banach space B that has a continuous mapping
QBs

from B to Bs such that QBs
(a) = a for any a ∈ Bs. A QBs

like this is known
as B onto Bs retraction.
If QBs

(QBs
(a + c(a−QBs

(a)))) = QBs
(a), ∀ a ∈ B and c ≥ 0, a retraction QBs

is
said to be sunny. Bs is a sunny nonexpansive retract of B if a sunny retraction QBs

is also nonexpansive. Let B be reflexive and strictly convex Banach space. Let PBs
:

B→ Bs be a projection. Also, PBs
(a) is in Bs with the property

||a− PBs
(a)|| = {inf ||a− u|| : u ∈ Bs}.

for a ∈ B.
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It is also well comprehended that PH′s(a) ∈ Hs and

〈a− PH′s(a), PH′s(a)− b〉 ≥ 0,

∀ a ∈ Hs, b ∈ H′s.
Sunny nonexpansive retractions work in the same way in B as projections do in Hs.
If a subset H′s 6= ∅ of H is closed and convex, then ∃ a unique sunny nonexpansive
retraction from Bs to H′s.

Definition 3.4. [1]Let B be a Banach space. For any sequence {aη} → a ∈ B, and ∀
b 6= a, we say that B satisfies the Opial condition, if the following inequality holds:

lim supη→∞||aη − a|| < lim supη→∞||aη − b||.

It is to be noted that lim sup can be substituted by lim inf in this definition
and that every Hilbert space satisfies the Opial condition [1]. Let ∅ 6= Bs ⊆ B,
Υ : Bs → B a mapping, and {aη} a sequence in Bs. If limη→∞ ||aη −Υaη|| = 0, then
{aη} is referred to as a sequence in Υ.
The following proposition is the generalization of Proposition 2.5 [20].

Proposition 3.5. Let Υ : Bs → B be uniformly continuous mapping and {aη} ⊂ Bs be
a sequence of Υ. Then, {bη} ⊂ Bs is an approximating FP sequence of Υ whenever
{bη} ∈ Bs 3 limη→∞ ||aη − bη|| = 0.

For dual space B∗ of B, the symbol || · || denotes the norms of B and B∗.
For a∗ ∈ B∗ and a ∈ B, we use 〈a, a∗〉 instead of a∗(a). The set-valued mapping
J : B→ 2B

∗
is defined as

J(a) = {a∗ ∈ B : 〈a, a∗〉 = ||a||||a|| and ||a∗|| = ||a||}, a ∈ B,

and is known as a normalized duality mapping of B. For a multi- valued operator
A : B→ 2B, the following are defined as:

Dom(A) = {a ∈ B : Aa 6= ∅},
Ran(A) = ∪{Au : u ∈ Dom(A)},

and
Gr(A) = {(a, b) ∈ B×B : a ∈ Dom(A), b ∈ Aa}

respectively. A ⊆ B × B represents A : B → 2B and the inverse A−1 of A is as
follows:

a ∈ A−1b ⇐⇒ b ∈ Aa.
If ∀ ai ∈ Dom(A) and b ∈ Aai for i = 1, 2, ∃  ∈ J(a1 − a2) 3 〈b1 − b2, 〉 ≥ 0,

then the operator is known as accretive.
An accretive operator is the negation of a dissipative operator. If there is

no proper accretive extension of A, it is known as “maximal accretive”, and if
Ran(I + A) = B, where I symbolizes the identity operator on B. If A is
“m−accretive”, then it is maximally accretive. For accretive A, the single-valued
nonexpansive mapping ∀ ∆ > 0 is

JA∆ : Ran(I + ∆A)→ Dom(A), JA∆ = (I + ∆A)−1,



Asymptotic behavior of generalized CR−iteration algorithm 403

and is said to be the resolvent of A. The resolvent for an m−accretive operator on B

JA∆ = (I + ∆A)−1

is a multi-valued nonexpansive mapping whereby the domain is the entire space B,
∀ ∆ > 0.

Lemma 3.6. [7] Let A : B→ 2B be an m−accretive operator. Then A is the maximal
accretive, where B is a real Banach space.

Lemma 3.7. [1] If A : Hs → 2Hs is a monotone operator, then A is the maximal
monotone iff Ran(I + ∆A) = H ∀ ∆ > 0.

As a result, if A : Hs → 2Hs is a maximum monotone operator and ∆ > 0, we
may define the resolvent of A, JA∆ : Hs →: Hs, using Lemma 3.7. Also, JA∆ satisfies
the following inequality

||JA∆ − aJA∆b||2 ≤ ||a− b||2 − ||(I − JA∆ )a− (I − JA∆ )b||,

∀ a, b ∈ Hs.

For a function ℘ : Hs → (∞,∞],the domain is defined by:

dom(℘) = {a ∈ Hs : ℘(a) <∞}.

Lemma 3.8. [3] Let ℘ ∈ Γ0(H). Then, ℘ is maximal monotone.

4. Main results

The CR−iteration approach allows us to compute the common FPs of two oper-
ators. Our objective is to analyze the asymptotic behaviour of our designed algorithm
in Banach spaces. Let Υ1, Υ2 : B → Bs be mappings with at least one common
FP between Υ1 and Υ2. The collection of common FPs of mappings Υ2 and Υ1 is
denoted by z(Υ2,Υ1).
We now present the G− CR−iteration algorithm, which is as follows:

a0 ∈ Bs,

aη+1 = QBs
[(1− κ1

η)bη + κ1
ηΥ1bη],

bη = QBs
[(1− κ2

η)Υ2aη + κ2
ηΥ1cη],

cη = QBs
[(1− κ3

η)aη + κ3
ηΥ2aη],

(G− CR)

where the sequences {κ1
η}, {κ2

η}, {κ3
η} ∈ (0, 1). The sequence {aη} defined by G−CR is

called the generalized CR−iteration algorithm for mappings Υ1 and Υ2. If Υ1 = Υ2,
then G− CR iterative algorithm is defined as follows:

a0 ∈ Bs,

aη+1 = QBs
[(1− κ1

η)bη + κ1
ηΥ1bη],

bη = QBs
[(1− κ2

η)Υ1aη + κ2
ηΥ1cη],

cη = QBs
[(1− κ3

η)aη + κ3
ηΥ1aη],
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where {κ1
η}. {κ2

η} and {κ3
η} are sequences in (0, 1). To prove the main results, we start

with the following lemma.

Lemma 4.1. Let QBs be the sunny nonexpansive retraction and Υ1, Υ2 : Bs → B be
QNEM 3 z(Υ2, Υ1) 6= ∅. Let {κ1

η}, {κ2
η}, and {κ3

η} be sequences of real numbers 3
0 < κ1

η, κ
2
η, κ

3
η < 1, ∀ η ∈ N∪ {0}. Let the sequence {aη} be generated from a0 ∈ Bs

and be defined by G−CR. Then, for each σ ∈ z(Υ2,Υ1), limη→∞ ||aη − σ|| exists and

||bη − σ|| ≤ ||aη − σ||, and

||cη − σ|| ≤ ||aη − σ||, ∀η ∈ N ∪ {0}. (4.1)

Proof. Let σ be a common FP of Υ1 and Υ2. Then, for η ∈ N ∪ {0}, the following
inequalities hold:

||aη+1 − σ|| = ||QBs [(1− κ1
η)bη + κ1

ηΥ1bη]−QBs [σ]||
≤ ||(1− κ1

η)(bη − σ) + κ1
η(Υ1bη − σ)||

≤ (1− κ1
η)||bη − σ||+ κ1

η||Υ1bη − σ||
≤ (1− κ1

η)||bη − σ||+ κ1
η||bη − σ||

= ||bη − σ||. (4.2)

Also,

||bη − σ|| = ||QBs [(1− κ2
η)Υ2aη + κ2

ηΥ1cη]−QBs [σ]||
≤ ||(1− κ2

η)(Υ2aη − σ) + κ2
η(Υ1cη − σ)||

≤ ||(1− κ2
η)(aη − σ) + κ2

η(cη − σ)||
≤ (1− κ2

η)||aη − σ||+ κ2
η||cη − σ||. (4.3)

Similarly,

||cη − σ|| = ||QBs
[(1− κ3

η)aη + κ3
ηΥ2aη]−QBs

[σ]||
≤ ||(1− κ3

η)(aη − σ) + κ3
η(Υ2aη − σ)||

≤ (1− κ3
η)||aη − σ||+ κ3

η||Υ2aη − σ||
≤ (1− κ3

η)||aη − σ||+ κ3
η||aη − σ||

= ||aη − σ||. (4.4)

Using inequality (4.4) in (4.3), we have

||bη − σ|| ≤ ||aη − σ||. (4.5)

Hence, the inequality (4.2) results

||aη+1 − σ|| ≤ ||aη − σ||. (4.6)

Considering (4.6) and (4.2), we calculate the following result

||aη+1 − σ|| ≤ ||aη − σ|| ≤ ||aη−1 − σ|| ≤ . . . ≤ ||a0 − σ||, (4.7)

∀ η ∈ N∪ {0}. Since {||aη − σ||} is monotonically decreasing, it confirms the conver-
gence of {||aη − σ||}. �
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The convergence behaviour forQNEMs is now studied by the following theorem.

Theorem 4.2. Let ∅ 6= Bs ⊆ B, with QBs
as the sunny nonexpansive retraction. Let

Υ1, Υ2 : Bs → B be QNEMs 3 z(Υ1,Υ2) 6= ∅. Let the real sequences {κ1
η}, {κ2

η}
and {κ3

η} 3 0 < a ≤ κ1
η ≤ a < 1, 0 < b ≤ κ2

η ≤ b < 1 and 0 < c ≤ κ3
η ≤ c < 1 ∀

η ∈ N ∪ {0}. Let a0 ∈ Bs and Pz(Υ1,Υ2)
(a0) = a∗. Let {aη} be the sequence defined

by (G− CR). Then, we have

1. {aη} is in a closed convex bounded set CBr[a∗] ∩ Bs, where r ∈ (0,∞) 3
||a0 − a∗|| ≤ r.

2. If Υ be uniformly continuous, then

lim
η→∞

||aη −Υ1aη|| = 0 and lim
η→∞

||aη −Υ2aη|| = 0,

then ℘c : [0,∞)→ [0,∞), ℘(0) = 0, where error bounds are as follows-

a(1− a)

η∑
i=0

℘c(||bi −Υ1bi||) ≤ ||a0 − a∗||2 − ||aη+1 − a∗||2, (4.8)

b(1− b)
η∑
i=0

℘c(||Υ2ai −Υ1ci||) ≤ ||a0 − a∗||2 − ||aη+1 − a∗||2

−
η∑
i=0

κ1
i (1− κ1

i )℘c(||bi −Υ1bi||), (4.9)

bc(1− c)
η∑
i=0

℘c(||ai −Υ2ai||) ≤ ||a0 − a∗||2 − ||aη+1 − a∗||2

−
η∑
i=0

κ2
i (1− κ2

i )℘c(||Υ2ai −Υ1ci||)

−
η∑
i=0

κ1
i (1− κ1

i )℘c(||bi −Υ1bi||), (4.10)

∀ η ∈ N ∪ {0}.

3. If I − Υ2 and I − Υ1 are demiclosed at 0 and B satisfies the Opial condition,
then {aη} → ` where ` ∈ z(Υ2,Υ1) ∩ CBr[a∗], where the convergence is weak.

Proof. (1) Let a∗ ∈ z(Υ2,Υ1). From inequality (4.7) the following holds for all η ∈
N ∪ {0}.

||aη+1 − a∗|| ≤ ||aη − a∗|| ≤ ||aη−1 − a∗|| ≤ . . . ≤ ||a0 − a∗||.
Hence, {aη} ∈ CBr[a∗] ∩Bs.

(2) Let Υ2 be uniformly continuous. By Lemma 4.1, we have that {aη}, {bη} and
{cη} ∈ CBr[a∗] ∩Bs, and hence, from inequality (4.1), we have

||Υ2aη − a∗|| ≤ r, ||Υ1aη − a∗|| ≤ r, ||Υ1bη − a∗|| ≤ r and ||Υ1cη − a∗|| ≤ r,
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∀ η ∈ N ∪ {0}.
Let ℘c be the function as defined in Lemma 1 for m = 2 and r1 = r. Benefiting

from inequality (4.1) as well, we have

||aη+1 − a∗||2 = ||QBs [(1− κ1
η)bη + κ1

ηΥ1bη]−QBs [a
∗]||2

≤ ||(1− κ1
η)(bη − a∗) + κ1

η(Υ1bη − a∗)||2

≤ (1− κ1
η)||bη − a∗||2 + κ1

η||Υ1bη − a∗||2 − κ1
η(1− κ1

η)℘c(||bη −Υ1bη||)
≤ (1− κ1

η)||bη − a∗||2 + κ1
η||bη − a∗||2 − κ1

η(1− κ1
η)℘c(||bη −Υ1bη||)

= ||bη − a∗||2 − κ1
η(1− κ1

η)℘c(||bη −Υ1bη|| (4.11)

≤ ||aη − a∗||2 − κ1
η(1− κ1

η)℘c(||bη −Υ1bη||,

∀ η ∈ N ∪ {0}. By the bounds of sequence {κ1
η}, we have

κ1
η(1− κ1

η)℘c(||bη −Υ1bη||) ≤ ||aη − a∗||2 − ||aη+1 − a∗||2.q
Observe that

a(1− a)

∞∑
η=0

℘c(||bη −Υ1bη||) ≤ ||a0 − a∗|| <∞.

We obtain that lim
η→∞

||bη −Υ1bη|| = 0. Using (G− CR), we have

||bη − a∗||2 = ||QBs [(1− κ2
η)Υ2aη + κ2

ηΥ1cη]−QBs [a
∗]||2

≤ ||(1− κ2
η)(Υ2aη − a∗) + κ2

η(Υ1cη − a∗)||2

≤ (1− κ2
η)||Υ2aη−a∗||2+κ2

η||Υ1cη−a∗||2−κ2
η(1− κ2

η)℘c(||Υ2aη −Υ1cη||).
≤ (1− κ2

η)||aη − a∗||2 + κ2
η||cη − a∗||2 − κ2

η(1− κ2
η)℘c(||Υ2aη −Υ1cη||)

≤ ||aη − a∗||2 − κ2
η(1− κ2

η)℘c(||Υ2aη −Υ1cη||). (4.12)

Using inequality(4.11), we have

||aη+1 − a∗||2

≤
[
||aη − a∗||2 − κ2

η(1− κ2
η)℘c(||Υ2aη −Υ1cη||)

]
− κ1

η(1− κ1
η)℘c(||bη −Υ1bη||)

≤
[
||aη − a∗||2 − κ1

ηκ
2
η(1− κ2

η)℘c(||Υ2aη −Υ1cη||)
]
− κ1

η(1− κ1
η)℘c(||bη −Υ1bη||).

Noticeably a b(1− b) ≤ κ1
ηκ

2
η(1− κ2

η) ∀ η ∈ N ∪ {0}. We obtain that

a b

η∑
i=0

℘c(||Υ2ai −Υ1ci||) ≤ ||a0 − a∗||2 − ||aη+1 − a∗||2

−
η∑
i=0

κ1
η(1− κ1

η)℘c(||bi −Υ1bi||).
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Now, we have

a b

∞∑
η=0

℘c(||Υ2aη −Υ1cη||) ≤ ||a0 − a∗||2 <∞.

It results in that
lim
η→∞

||Υ2aη −Υ1cη|| = 0.

Using the inequality (4.12), we have

||bη − a∗|| ≤ (1− κ2
η)||aη − a∗||2 + κ2

η

[
||(1− κ3

η)(aη − a∗)− κ3
η(Υ2aη − a∗)||2

]
− κ2

η(1− κ2
η)℘c(||Υ2aη −Υ1cη||)

≤ (1− κ2
η)||aη − a∗||2 + κ2

η

[
(1− κ3

η)||aη − a∗||2 + κ3
η||Υ2aη − a∗)||2

− κ3
η(1− κ3

η)℘c(||aη −Υ2aη||)
]
− κ2

η(1− κ2
η)℘c(||Υ2aη −Υ1cη||).

≤ ||aη−a∗|| − κ2
ηκ

3
η(1−κ2

η)℘c(||aη−Υ2aη||)− κ2
η(1− κ2

η)(||Υ2aη −Υ1cη||),
∀ η ∈ N ∪ {0}. On the other hand, from inequality (4.11), we have

||aη+1−a∗||
= ||bη − a∗||2 − κ1

η(1− κ1
η)℘c(||bη −Υ1bη||

=

[
||aη−a∗|| − κ2

ηκ
3
η(1−κ2

η)℘c(||aη −Υ2cη||)− κ2
η(1− κ2

η)(||Υ2aη −Υ1cη||)
]

− κ1
η(1− κ1

η)℘c(||bη −Υ1bη||.
Therefore, b c(1− c) ≤ bηcη(1− cη), ∀ η ∈ N ∪ {0}. Noticeably

b c(1− c)
η∑
i=0

℘c(ai −Υ2ci) ≤ ||a0 − a∗||2 − ||aη+1 − a∗||2

−
η∑
i=0

κ2
i (1− κ2

i )℘c(||Υ2aη −Υ1cη||)

−
η∑
i=0

κ1
i (1− κ1

i )℘c(||bi −Υ1bi||),

which follows that limη→∞ ||aη −Υ2aη|| → 0. Note that

||cη − aη|| = ||QBs [(1− κ3
η)aη + κ3

ηΥ2aη]−QBs
[a∗]||

= ||Υ2aη − aη|| → 0 as η →∞.
It is given that Υ2 is uniformly continuous, so using Proposition (3.5)

lim
η→∞

||cη −Υ2cη|| = 0.

Therefore, from
lim
η→∞

||Υ2aη −Υ1cη|| = 0,
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we have

||aη −Υ2aη|| = 0.

(3) Let B satisfies the Opial condition and Υ1 and Υ2 with CFP ω, where
ω ∈ CBr[a∗] ∩Bs. Lemma 4.1 results that limη→∞ ||aη − ω|| exists. Let ∃ {aηp} and
{aθq} convergent to two distinct points ω1 and ω2 in CBr ∩ Bs, respectively. Since
both I −Υ1 and I −Υ2 are demiclosed at 0, we have

Υ1ω1 = Υ2ω1 = ω

and

Υ1ω2 = Υ2ω2 = ω.

Furthermore, the Opial condition results

lim
η→∞

||aη − ω1|| = lim
p→∞

||aηp − ω1|| < lim
q→∞

||aθq − ω2|| = lim
η→∞

||aη − ω2||.

In similar manner, we have

lim
η→∞

||aη − ω2|| < lim
η→∞

||aη − ω1||,

which is a contradiction. Hence, ω1 = ω2, which confirms the existence of the conver-
gent sequence {aη} which converges weakly to ω ∈ z(Υ1,Υ2) ∩ CBr[a∗]. �

Also, if any nonexpansive mapping is uniformly continuous, we may deduce a
convergence theorem for estimating the common FPs of two nonexpansive mappings
from Theorem 4.2 and Lemma 3.3.

Theorem 4.3. Let ∅ 6= Bs ⊆ B with QBs
as the sunny nonexpansive retraction. Let

Υ1,Υ2 : Bs → B be nonexpansive mappings such that z(Υ1,Υ2) 6= ∅. Let the real

sequences {κ1
η}, {κ2

η} and {κ3
η} 3 0 < a ≤ κ1

η ≤ a < 1, 0 < b ≤ κ2
η ≤ b < 1 and

0 < c ≤ κ3
η ≤ c < 1 ∀ η ∈ N ∪ {0}. Let a0 ∈ Bs and Pz(Υ1,Υ2)

(a0) = a∗. Let {aη} be

the sequence defined by (G− CR). Then, we have

1. {aη} is in a closed convex bounded set CBr[a∗] ∩Bs, where

r ∈ (0,∞) 3 ||a0 − a∗|| ≤ r.

2. limη→∞ ||aη − Υ1aη|| = 0 and limη→∞ ||aη − Υ2aη|| = 0 with the same error
bounds (2) defined in Theorem 4.2.

3. If I−Υ2 and I−Υ1 are demiclosed at 0 and B satisfies the Opial condition, then
{aη} is convergent to an element of z(Υ2,Υ1) ∩ CBr[a∗], where the convergence
is weak convergence.

We may restate condition (3) of Theorem 4.3 as if B meets the Opial condition,
{aη} weakly converges to an element of z(Υ1,Υ2), if Pz(Υ1,Υ2)

cannot be determined.
Therefore we can define the following:

Corollary 4.4. Let Υ1, Υ2 : Hs∗ → Hs∗ be nonexpansive mappings such that
z(Υ1,Υ2) 6= ∅. Let the real sequences {κ1

η}, {κ2
η} and {κ3

η} 3 0 < a ≤ κ1
η ≤ a < 1,
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0 < b ≤ κ2
η ≤ b < 1 and 0 < c ≤ κ3

η ≤ c < 1 ∀ η ∈ N ∪ {0}. Let the sequence {aη} is
defined as follows

a0 ∈ Bs,

aη+1 = (1− κ1
η)bη + κ1

ηΥ1bη,

bη = (1− κ2
η)Υ2aη + κ2

ηΥ1cη,

cη = (1− κη3)aη + κη3Υ2aη, η ∈ N ∪ 0.

(CR− PPA)

Then the sequence {aη} is convergent weakly to an element of z(Υ1,Υ2).

5. Application

It is important to note that various problems based on signal processing and
machine learning can be expressed in accordance with the following manner.

Problem 1. For an m−accretive operator A : B→ 2B, find an element that satisfies

a ∈ B such that 0 ∈ Aa. (5.1)

PPA, introduced by Martinet (see [15], [14]) and generalized by Rockafellar ([17], [18])
is one of the popular methods to solve this problem. Also, Rockafellar [17] studied
the weak convergence of the PPA, namely:

aη+1 = JA∆η
aη, for all η ∈ N ∪ 0, (5.2)

for the solution to Problem 5.1 and a0 ∈ B. The weak and strong convergences
of the sequence {xη} defined by equation ( 5.2) have been extensively studied in
various ambient spaces e.g. Hilbert and Banach spaces (see [23], [22], [24], [25] and
the references therein). The general form of Problem 1 is as follows:

Problem 2. Let the mappings A, A1 : B → 2B be m−accretive operators.
Find an element

a ∈ B 3 0 ∈ Aa ∩ A1a, (5.3)

when A and A1 are two maximal monotonic operators in a Hs.
We are now eligible to utilize our observations, which are primarily focused on

accretive operators’ common zeros. We name (G−CR) an iteration - based proximal

point algorithm when Υ1 = JA∆ and Υ2 = JA1

∆ . In a more generalized context, we
now analyze its convergence to solve Problem 2.

Theorem 5.1. Let ∅ 6= Bs be Opial condition. Let A : Dom(A) ⊆ Bs → 2B

and A1 : Dom(A1) ⊆ Bs → 2B be accretive operators 3 Dom(A) ⊆ Bs ⊆
∩λ>0Ran(I + λA), Dom(A1) ⊆ Bs ⊆ ∩λ>0Ran(I + λA1) and A−1(0) ∩ A−1

1 (0) 6= ∅.
Let {κ1

η}, {κ2
η}, and {κ3

η} be sequences of real numbers 3 0 < a ≤ κ1
η < a < 1,

b ≤ κ2
η < b, where b, b ∈ (0, 1) and c ≤ κ3

η < c, c, c ∈ (0, 1) ∀ η ∈ N ∪ 0. Let ∆ > 0,
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a0 ∈ Bs and PA−1(0)∩A10−1(a0) = a∗. Let the sequence {aη} be defined as follows:
a0 ∈ Bs,

aη+1 = (1− κ1
η)bη + κ1

ηJ
A
∆bη,

bη = (1− κ2
η)JA1

∆ aη + κ2
ηJ
A
∆ cη,

cη = (1− κ3
η)aη + κ3

ηJ
A1

∆ aη,

Then, we have

1. {aη} is in a closed convex bounded set CBr[a∗] ∩Bs, where

r ∈ (0,∞) 3 ||a0 − a∗|| ≤ r.

2. limη→∞ ||aη − JA∆aη|| = 0 and limη→∞ ||aη − JA1

∆ aη|| = 0 with the same error

bounds (2) defined in Theorem 4.2 where Υ1 = JA∆ and Υ2 = JA1

∆ .

3. {aη} is convergent to an element of A−1(0)∩A−1
1 (0)∩CB[a∗] and the convergence

is weak convergence.

Proof. As Dom(A) ⊆ Bs ⊆ ∩λ>0Ran(I + λA), it is to note that JA∆ : Bs → Bs is
nonexpansive. Also, JA∆ : Bs → Bs is nonexpansive. Also, Dom(A)∩Dom(B) ⊆ Bs,
hence we have

a ∈ A−1(0)A−1
1 (0) =⇒ a ∈ Dom(A) ∩Dom(A1) with 0 ∈ Aa and 0 ∈ A1a

=⇒ a ∈ Bs with JA∆a = a and JA1

∆ a = a

=⇒ a ∈ z
(JA∆ ,J

A1
∆ )

. (5.4)

Substitute Υ1 = JA∆ and Υ2 = JA1

∆ . As a result, Theorem 5.1 refers to the proof from
Theorem 4.3.

Example 5.2. For the problem given below, find the element which satisfies

α ∈
◦
J := ∂A−1(0) ∩ ∂A−1

1 (0),

where A,A1 : R× R× R→ R are defined as follows:

A(a) =
1

2
〈∇f (a),a)〉+ 〈a,β〉.

Also

A1(a) =
1

2
〈∇g(a),a)〉+ 〈a,γ〉

∀ a ∈ R× R× R and

∇f =

 1 2 −3
1 2 −3
−1 −1 3


and

∇g =

1 2 0
1 2 0
0 0 0

 ,
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β = (2, 6, 8) and γ = (2, 6, 0). Here, it easy to conclude that the functions ∇f and
∇g are convex and continuous as well on R× R× R → R with del∇f (·) = A(·) + β,
del∇g(·) = A1(·) + γ and

◦
J = {a, b, c : a + b = 8, c = 0}.

Let us define a sequence {aη, bη, cη} with initial value {a0, b0, c0} as follows:
a0 ∈ Bs,

(a1
η+1, b

1
η+1, c

1
η+1) = (1− κ1

η)(b1
η, b

2
η, b

3
η) + κ1

ηΥ1(b1
η, b

2
η, b

3
η),

(b1
η, b

2
η, b

3
η) = (1− κ2

η)Υ2(a1
η, b

1
η, c

1
η) + κ2

ηΥ1(c1η, c
2
η, c

2
η),

(c1η, c
2
η, c

2
η) = (1− κ3

η)(a1
η, b

1
η, c

1
η) + κ3

ηΥ2(a1
η, b

1
η, c

1
η),

(E)

where Υ1 = (I + del∇f )−1 and Υ2 = (I + del∇g)−1, 0 < κ1
η, κ

2
η, κ

3
η < 1. Using initial

value as (a0, b0, c0), ∀ a0, b0, c0 ∈ R in Theorem 4.2, we can find the solution for
distinct values of (a0, b0, c0).

Conclusion. Inspired by two well-known concepts, CR−iterative algorithm by Chug
et al. [5] and common zero of two accretive operators by Kim & Tuyen [10], in this
analysis we have introduced the Generalized G−CR iteration algorithm and analyzed
its convergence behaviour to find CFPs for nonself QNEMs in convex Banach spaces.
In order to understand the work, application of the the same is also analyzed.
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[16] Picard, E., Mémoire sur la théorie des équations aux derivés partielles et la method des
approximations successive, J. Math. Pures et Appl., 6(1890), 145-210.

[17] Rockafellar, R.T., Monotone operators and the proximal point algorithm, SIAM J. Con-
trol Optim., 14(1976), 877-898.

[18] Rockafellar, R.T., Augmented Lagrangians and applications of the proximal point algo-
rithm in convex programming, Math. Oper. Res., 1(1976), 97-116.

[19] Sahu, D.R., Applications of the S-iterative algorithm to constrained minimization prob-
lems and split feasibility problems, Fixed Point Theory, 12(2011), no. 1, 187-204.

[20] Sahu, D.R., Ansari, Q.H., Yao, J.C., The prox-Tikhonov-like forward-backward method
and applications, Taiwanese J. Math., 19(2015), 481-503.

[21] Xu, H.K., Inequalities in Banach spaces with applications, Nonlinear Anal., 16(1991),
1127-1138.

[22] Xu, H.K., Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 66(2002),
no. 2, 240-256.

[23] Xu, H.K., Strong convergence of an iterative method for nonexpansive and accretive
operators, J. Math. Anal. Appl., 314(2006), 631-643.

[24] Zegeye, H., Shahzad, N., Strong convergence theorems for a common zero of a finite
family of maccretive mappings, Nonlinear Anal., 66(2007), 1161-1169.

[25] Zhang, Q.N., Song, Y.S., Halpern type proximal point algorithm of accretive operators,
Nonlinear Anal., 75(2012), 1859-1868.

Aadil Mushtaq
Maulana Azad National Urdu University,
Department of Mathematics,
Gachibowlli, 500032 Hyderabad, India

e-mail: aadilmuhtaq456@gmail.com

Khaja Moinuddin
Maulana Azad National Urdu University,
Depatment of Mathematics,
Gachibowlli, 500032 Hyderabad, India

e-mail: kmoinuddin71@gmail.com



Asymptotic behavior of generalized CR−iteration algorithm 413

Nisha Sharma
Pt. J.L.N. Govt. College,
Department of Higher Education,
Harayana, India
e-mail: nnishaa.bhardwaj@gmail.com

Anita Tomar
Pt.L.M.S. Campus, Sridev Suman Uttarakhand University,
Rishikesh, Uttarakhand, India
e-mail: anitatmr@yahoo.com


	1. Introduction
	2. Tools and notations
	3. Preliminaries
	4. Main results
	5. Application
	. References

