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New hybrid conjugate gradient method
as a convex combination of PRP and RMIL+
methods

Ghania Hadji, Yamina Laskri, Tahar Bechouat and Rachid Benzine

Abstract. The Conjugate Gradient (CG) method is a powerful iterative ap-
proach for solving large-scale minimization problems, characterized by its sim-
plicity, low computation cost and good convergence. In this paper, a new hy-
brid conjugate gradient HLB method (HLB: Hadji-Laskri-Bechouat) is pro-
posed and analysed for unconstrained optimization. We compute the param-
eter βHLB

k as a convex combination of the Polak-Ribière-Polyak
(
βPRP
k

)
and

the Mohd Rivaie-Mustafa Mamat and Abdelrhaman Abashar
(
βRMIL+
k

)
i.e.

βHLB
k = (1 − θk)βPRP

k + θkβ
RMIL+
k . By comparing numerically CGHLB with

PRP and RMIL+ and by using the Dolan and More CPU performance, we deduce
that CGHLB is more efficient.
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1. Introduction

Consider the nonlinear unconstrained optimization problem

min
x∈Rn

f (x) (1.1)

where f : Rn → R is a continuously differentiable function, bounded from below.
The gradient of f is denoted by g (x) . To solve this problem, we start from an initial
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point x0 ∈ Rn. Nonlinear conjugate gradient methods generate sequences {xk} of the
following form:

xk+1 = xk + αkdk, k = 0, 1, 2, ...., (1.2)

where xk is the current iterate point and αk > 0 is the step size which is obtained by
line search [7].

The iterative formula of the conjugate gradient method is given by (1.2), where
dk is the search direction defined by

dk+1 =

{
−gk si k = 1
−gk+1 + βkdk si k ≥ 2

(1.3)

where βk is a scalar and g (x) denotes ∇f (x) [10]. If f is a strictly convex quadratic
function, namely,

f(x) =
1

2
xTHx+ bTx, (1.3bis)

where H is a positive definite matrix and if αk is the exact one-dimensional minimizer
along the direction dk, i.e.

αk = arg min
α>0
{f(x+ αdk)} (1.3tris)

then (1.2), (1.3), (1.3bis), (1.3tris) is called the linear conjugate gradient method.
Otherwise, (1.2), (1.3) is called the nonlinear conjugate gradient method. Conjugate
gradient methods can broadly be classified based on the used strategies of the way in
which the search direction is updated and the algorithms dealing with the step size
minimization along a direction [6]. In [12], a convex combination of LS and FR ([1])
is proposed with a newton descent direction.

The line search in the non linear conjugate gradient methods is often based on
the standard Wolfe conditions [23]:

f (xk + αkdk)− f (xk) ≤ ραkgtkdk (1.4)

gtk+1dk ≥ δgtkdk (1.5)

where 0 < ρ ≤ δ < 1.
Conjugate gradient methods differ in their way of defining the scalar parameter

βk. In the literature, there have been proposed several choices for βk which give rise
to distinct conjugate gradient methods [16], [27]. The most well known conjugate gra-
dient methods are the Hestenes–Stiefel (HS) method [17], the Fletcher-Reeves (FR)
method [1], [13], the Polak-Ribière-Polyak (PRP) method [20], [19], the Conjugate De-
scent method(CD) [13], the Liu-Storey (LS) method [18], the Dai-Yuan (DY) method
[08], [09], Hager and Zhang (HZ) method [15] and the RMIL+ method [21], [22]. The
update parameters of these methods are respectively specified as follows:

βHSk =
gTk+1yk

dTk yk
, βFRk =

‖gk+1‖2

‖gk‖2
, βPRPk =

gTk+1yk

‖gk‖2
, βCDk = −‖gk+1‖2

dTk gk

βLSk = −
gTk+1yk

dTk gk
, βDYk =

‖gk+1‖2

dTk yk
, βHZk =

(
yk − 2dk

‖yk‖2

dTk yk

)T
gk+1

dTk yk
,
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βRMIL+
k =

gTk+1(gk+1 − gk − dk)

‖dk‖2
.

Some of these methods, such as Fletcher and Reeves (FR) [13], Dai and Yuan
(DY) [8] and Conjugate Descent (CD) [13] have strong convergence properties, but
they may have modest practical performance due to jamming. On the other hand,
the methods of Polak and Ribière and Polyak (PRP) [20], Hestenes and Stiefel (HS)
[17] or Liu and Story (LS) [18] may not generally be convergent, but they often have
better computational performance.

In the process of obtaining more robust and efficient conjugate gradient methods,
some researchers suggested the hybrid conjugate gradient algorithm which combined
the good features of the methods involve in the hybridization. Even though conjugate
gradient improvement using hybridization is a classic deeply investigated problem; it
still an attractive topic for the research community due to its contemporary use in
numerous prominent disciplines [25].

The first hybrid conjugate gradient method was given by Touati-Ahmed and
Storey (1990) [24] to avoid jamming phenomenon.

The researchers were motivated by the works of Andrei [5], [4]; Dai and Yuan
[9]; Zhang and Zhou [26]. Their parameter βNk is computed as a convex combination
of βFRk and β∗k other algorithms, i.e.

βNk = (1− θk)βFRk + θkβ
∗
k

The Wolfe line search was employed to determine the step length αk > 0 and the
new method proved to be more robust numerical wise as compared to FR and other
methods. The global convergence was established under some suitable conditions.

In [4] Andrei has proposed a new hybrid conjugate gradient algorithm where the
parameter βAk is computed as a convex combination of the Polak-Ribière-Polyak and
the Dai-Yuan conjugate gradient algorithms i.e.

βAk = (1− θk)βPRPk + θkβ
DY
k

and θk is presented to satisfy the conjugacy condition

θk = θCCOMB
k =

(ytkgk+1) (ytksk)− (ytkgk+1) (gtkgk)

(ytkgk+1) (ytksk)− ‖gk+1‖2 ‖gk‖2

where sk = xk+1 − xk. To satisfy Newton direction he takes

θk = θNDOMB
k =

(ytkgk+1 − stkgk+1) ‖gk‖2 − (ytkgk+1) (ytksk)

‖gk+1‖2 ‖gk‖2 − (ytkgk+1) (ytksk)

but in the combination of HS and DY from Newton direction, he puts

θk =
−stkgk+1

gtkgk+1
.

On the other hand, from Newton direction with modified secant condition (Hybrid
M-Andrei), Andrei has proposed another method

βHYBRIDMk = (1− θk)βHSk + θkβ
DY
k
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where

θk =

(
δηk
stksk
− 1
)
stkgk+1 − ytkgk+1

ytksk
δηk

gtkgk+1 +
gtkgk+1

ytksk
δηk

δ is parameter. In [14] Salah Gazi Shareef and Hussein Ageel Khatab have introduced
a new hybrid CG method

βNewk = (1− θk)βPRPk + θkβ
BA
k

where βBAk is selected in [2].
Recently Delladji et al. [11] proposed a hybridazation of PRP and HZ schemes

using the congugacy condition.

In this paper, we present another hybrid CG algorithm noted CGHLB (HLB
is an abbreviation to Hadji; Laskri and Bechouat), witch is a convex combination of
the PRP ([20]) and RMIL+ ([21]) conjugate gradient algorithms.We are interested
to combine these two methods in a hybrid CG algorithm because PRP has good
computational properties and RMIL+ has strong convergence properties. In section
2, we introduce our hybrid CG method and prove that it generates descent directions.
In Section 3 we present and prove global convergence results. Numerical results and a
conclusion are presented in section 4. By comparing numerically CGHLB with PRP
and RMIL+ and by using the Dolan and More CPU performance, we deduce that
CGHLB is more efficient.

2. HLB conjugate gradient method

The iterates x0, x1, ........ of the proposed HLB algorithm are computed by means
of the recurrence (1.2) where the step size αk > 0 is determined according to the wolfe
line search conditions (1.4), (1.5). The directions dk are generated by the rule:

dk =

{
−g0 if k = 0
−gk + βHLBK−1 dk−1 if k ≥ 1

(2.1)

where

βHLBk = (1− θk)βPRPk + θkβ
RMIL+
k

i.e.

βHLBk = (1− θk)
gtk+1yk

‖gk‖2
+ θk

gtk+1 (gk+1 − gk − dk)

‖dk‖2
(2.2)

HLB is an abbreviation to Hadji; Laskri and Bechouat; θk is a scalar parameter which
will be determined in a specific way to be described in the following section. Observe
that if θk = 0 then βHLBk = βPRPk and if θk = 1, then βHLBk = βRMIL+

k . On the other

hand if 0 < θk < 1, then βHLBk is a convex combination of βPRPk and βRMIL+
k . The

parameter θk is selected in such away that at every iteration the conjugacy condition
is satisfied. It can be noted that,

dk+1 = −gk+1 + (1− θk)
gtk+1yk

‖gk‖2
dk + θk

gtk+1 (gk+1 − gk − dk)

‖dk‖2
dk (2.3)
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so multiply both sides of above equation by yk and by using the conjugacy condition(
dtk+1yk = 0

)
we have:

0 = −gtk+1yk + (1− θk)
gtk+1yk

‖gk‖2
dtkyk + θk

gtk+1 (gk+1 − gk − dk)

‖dk‖2
dtkyk (2,4)

After a simple calculation we get

θk =
gtk+1yk ‖gk‖

2 ‖dk‖2 −
(
gtk+1yk

)
(dtkyk) ‖dk‖2((

gtk+1 (yk − dk)
)
‖gk‖2 −

(
gtk+1yk

)
‖dk‖2

)
(dtkyk)

(2.5)

So, to ensure the convergence of this method when the parameter θk goes out of
interval ]0, 1[, i.e. when θk ≤ 0 or θk ≥ 1, we prefer to take βHLBk as following:

βHLBk =

 (1− θk)βPRPk + θkβ
RMIL+
k if 0 < θk < 1

βPRPk if θk ≤ 0

βRMIL+
k if θk ≥ 1

(2.5(bis))

We are now able to present our new algorithm, the Conjugate Gradient CGHLB
Algorithm:

CGHLB Algorithm
Step 1: Initialization:

Set k = 0, select the initial point xo ∈ Rn.select the parameters 0 < ρ ≤ δ < 1,
and ε > 0.

Compute f (x0), and g0 = ∇ f (x0). Consider d0 = −g0.
Step 2: Test for continuation of iterations:

If ‖gk‖ ≤ ε then stop else set. dk = −gk
Step 3: Line search:

Compute αk > 0 satisfying the Wolfe line search condition (1,4) and (1,5) and
update the variables, xk+1 = xk +αkdk; compute f (xk+1), gk+1 and sk = xk+1−xk;
yk = gk+1 − gk.
Step 4: θk Parameter computation:

If
((
gtk+1 (yk − dk)

)
‖gk‖2 −

(
gtk+1yk

)
‖dk‖2

)
(dtkyk) = 0;

then set θk = 0, otherwise, compute θk as in (2.5).
Step 5: βHLBk Conjugate gradient parameter computation:

If 0 < θk < 1, then compute βHLBk as in (2.2).

If θk ≥ 1, then set βHLBk = βRMIL+
k .

If θk ≤ 0, then set βHLBk = βPRPk .
Step 6: Direction computation:

Compute dk+1 = −gk+1 + βHLBk dk.
Set k=k+1 and go to step 3.
The following theorem shows that our method assures the descent condition,

when 0 < θk < 1.

Theorem 2.1. In the algorithm (1.2), (1.3) and (2.5) assume that dk is a descent
direction (gtkdk < 0), and αk is determined by the Wolfe line search (1.4); (1.5). If
0 < θk < 1 then the direction dk+1given by (2.3) is a descent direction.
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Proof. Multiply both sides of (2,3) by gk+1 we have:

gTk+1dk+1 = −‖gk+1‖2 + (1− θk)
gtk+1yk

‖gk‖2
dtkgk+1

+θk
gtk+1 (gk+1 − gk − dk)

‖dk‖2
dtkgk+1

gTk+1dk+1 = − (1− θk + θk) ‖gk+1‖2 + (1− θk)
gtk+1yk

‖gk‖2
dtkgk+1

+θk
gtk+1 (gk+1 − gk − dk)

‖dk‖2
dtkgk+1

gTk+1dk+1 =

[
− (1− θk) ‖gk+1‖2 + (1− θk)

gtk+1yk

‖gk‖2
dtkgk+1

]

+

[
− (θk) ‖gk+1‖2 + θk

gtk+1 (gk+1 − gk − dk)

‖dk‖2
dtkgk+1

]

gTk+1dk+1 = (1− θk)

[
−‖gk+1‖2 +

gtk+1yk

‖gk‖2
dtkgk+1

]

+ (θk)

[
−‖gk+1‖2 +

gtk+1 (gk+1 − gk − dk)

‖dk‖2
dtkgk+1

]
since 0 < θk < 1 then

gTk+1dk+1 ≤

[
−‖gk+1‖2 +

gtk+1yk

‖gk‖2
dtkgk+1

]

+

[
−‖gk+1‖2 +

gtk+1 (gk+1 − gk − dk)

‖dk‖2
dtkgk+1

]
(2.6)

If the step length αk is chosen by an exact line search. Then gTk+1dk = 0.

If the step length αk is chosen by an inexact line search
(
gTk+1dk 6= 0

)
then we have:

gTk+1dk+1 < 0

because the algorithms of (PRP ) and (RMIL+) satisfied the descent property.
The proof is completed. �

3. Global convergence properties

The following assumptions are often needed to prove the convergence of the
nonlinear CG:
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Assumption 1
The level set Ω = {x ∈ Rn/f (x) ≤ f (x0)} is bounded, where x0 is the starting

point.
Assumption 2

In some neighborhood N of Ω, the objective function is continuously differen-
tiable and its gradient is Lipschitz continuous, namely, there exists a constant l > 0
such that:

‖g (x)− g (y)‖ ≤ l ‖x− y‖ for any x, y ∈ N
Under these assumptions on f there exists a constant µ such that ‖g (x)‖ ≤ µ, for all
x ∈ Ω.

Lemma 3.1. [28] Suppose Assumption 1 and 2 hold, and consider any conjugate gra-
dient method (1.2) and (1.3), where dk is a descent direction and αk is obtained by
the strong Wolfe line search. If

∞∑
k=1

1

‖dk‖2
= +∞ (3.1)

then

lim inf
k→∞

‖gk‖ = 0 (3.2)

Assume that the function f is uniformly convex function, i.e. there exists a
constant Γ ≥ 0 such that,

for all x, y ∈ Ω : (∇f (x)−∇f (y))
t
(x− y) ≥ Γ ‖x− y‖2 (3.3)

and the steplength αk is given by the strong Wolfe line search.

f (xk + αkdk)− f (xk) ≤ σ1αkgtkdk (3.4)∣∣gtk+1dk
∣∣ ≤ −σ2gtkdk (3.5)

For uniformly convex function which satisfies the above assumptions, we can prove
that the norm of dk+1 given by (2.3) is bounded above.

Using the above lemma, we obtain the following theorem.

Theorem 3.2. Suppose that Assumption 1 and 2 hold. Consider the algorithm (1.2),
(2.3) and (2.5), where 0 ≤ θk ≤ 1 and αk is obtained by the strong Wolfe line search
(3.4) and (3.5).

If dk tends to zero and there exists non negative constants η1 and η2 such that:

‖gk‖2 ≥ η1 ‖sk‖2 and ‖gk+1‖2 ≤ η2 ‖sk‖ (3.6)

and f is uniformly convex function, then

lim
k→∞

gk = 0 (3.7)

Proof. From (3,3) it follows that

ytksk ≥ Γ ‖sk‖2
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since 0 ≤ θk ≤ 1, from uniform convexity and (3.6) we have

∣∣βHLBk

∣∣ ≤ ∣∣∣∣∣gtk+1yk

‖gk‖2

∣∣∣∣∣+

∣∣∣∣∣gtk+1 (gk+1 − gk − dk)

‖dk‖2

∣∣∣∣∣
≤
∣∣gtk+1yk

∣∣
‖gk‖2

+

∣∣gtk+1yk
∣∣

‖dk‖2
+

∣∣gtk+1dk
∣∣

‖dk‖2

≤ ‖gk+1‖ ‖yk‖
‖gk‖2

+
‖gk+1‖ ‖yk‖
‖dk‖2

+
‖gk+1‖ ‖dk‖
‖dk‖2

from Lipschitz condition

‖yk‖ ≤ l ‖sk‖∣∣βHLBk

∣∣ ≤ ‖gk+1‖ ‖yk‖
η1 ‖sk‖2

+
‖gk+1‖ ‖yk‖
‖dk‖2

+
‖gk+1‖
‖dk‖

≤ µl ‖sk‖
η1 ‖sk‖2

+
µl ‖sk‖α2

k

‖sk‖2
+
µαk
‖sk‖

=
µl

η1 ‖sk‖
+
µlα2

k

‖sk‖
+
µαk
‖sk‖

Hence

‖dk+1‖ ≤ ‖gk+1‖+
∣∣βHLBk

∣∣ ‖dk‖
≤ µ+

µl ‖sk‖
η1αk ‖sk‖

+
µl ‖sk‖α2

k

αk ‖sk‖
+
µαk ‖sk‖
αk ‖sk‖

= 2µ+ µlαk +
µl

η1αk

which implies that (3.1) is true. Therefore, by Lemma 1 we have (3.2), which for
uniformly convex functions is equivalent to (3.7). �

4. Numerical results and discussion

In the present numerical experiments, we analyze the efficiency of βHLB , as
compared to the classic methods: βPRP and βRMIL+. These comparisons are based
on the number of iterations and CPU time per second to reach the optimum. All the
comparisons are done with two or three different initial points and different number
of variables ranging from 2 to 20000. All variables have been experimented to each
function test [3]. For the numerical tests, the strong Wolfe line searches parameters
have been experimentally fixed to ρ = 10−3 and δ = 10−4. All tests were terminated
when the stopping criteria ‖gk‖ ≤ ε is fulfilled, where ε = 10−6. When the iteration
number exceeds 2000 or the CPU execution time exceeded 500 seconds, the test is
considered as failed.
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Figure 1. Performance Profile based on the CPU time

Figures 1 and 2 show that the method of βHLB is superior when compared to
βPRP and βRMIL+ with the least duration of CPU time. The highest percentage
of successful comparison is with βHLB at 98.34%, followed by βRMIL+ with 93.72%.
However, the successful rate comparison for βPRP is low at 90.05%. Hence, our method
(βHLB) successfully solves the test problems, and it is competitive with the well-
known conjugate gradient methods for unconstrained optimization.

Figure 2. Performance Profile based on the iteration number
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Table 1. A list of test problems

No. Function Dimension Initial points
01 Alpine 1 4, 5, 7, 10, 12, 30, 100 (1, ..., 1)
02 Beale 2 (−1,−1) ; (0, 0) ; (1, 1)
03 Booth 2 (−1,−1) ; (1, 1) ; (3, 3)
04 Branin 2 (−1,−1) ; (0, 0) ; (1, 1)
05 Diagonal 1 2, 4, 6, 8, 10, 20, 100, 200 (1, ..., 1) ; (2, ..., 2) ; (3, ..., 3)
06 Diagonal 2 2, 4, 10, 100, 200, 400, 500, 600, 1000 (−1, ...,−1) ; (0, ..., 0) ; (1, ..., 1)
07 Diagonal 4 1000, 5000, 8000, 10000, 14000, 16000, 20000 (2, ..., 2) ; (5, ..., 5) ; (10, ..., 10)
08 Exponential 2, 4, 6, 8, 10, 12, 14, 15, 16, 20 (1, ..., 1)
09 Griewank 10, 100, 500, 1000, 2000, 5000, 10000 (−2, ...,−2) ; (2, ..., 2)
10 Hager 2, 4, 10, 100, 200, 500, 800, 1000 (−1, ...,−1) ; (0, ..., 0)
11 Himmelblau 2, 4, 10, 100, 1000, 5000, 10000, 20000 (−5, ...,−5) ; (5, ..., 5)
12 Leon 2 (−0.5,−0.5) ; (0, 0) ; (0.5, 0.5)
13 Matyas 2 (1, 1) ; (2, 2) ; (5, 5)
14 Penalty 2, 10, 100, 500, 1000, 2500, 4000, 5000, 10000 (−1, ...,−1) ; (0, ..., 0) ; (1, ..., 1)
15 Perquadratic 2, 4, 8, 10, 20, 50, 200 (−5, ...,−5) ; (3, ..., 3) ; (5, ..., 5)
16 Power 2, 4, 8, 10, 20, 50, 100, 500 (−2, ...,−2) ; (2, ..., 2)
17 Qing 2, 10, 100, 200, 300, 400, 500, 1000, 2000 (−2, ...,−2) ; (2, ..., 2)
18 Quadratic 2, 10, 100, 200, 500, 750, 1000 (2, ..., 2) ; (4, ..., 4)
19 Quartic 2, 4, 10, 100, 200, 500 (1, ..., 1) ; (2, ..., 2)
20 Rastrigin 2, 10, 100, 200, 500 (−5, ...,−5) ; (5, ..., 5)
21 Raydan 1 2, 4, 10, 20, 50, 80, 90, 100 (−2, ...,−2) ; (2, ..., 2)
22 Raydan 2 2, 10, 100, 500, 1000, 2000, 3000 (−2, ...,−2) ; (2, ..., 2)
23 Rosenbrock 2, 10, 10, 50, 100, 200, 1000, 2000, 5000, 10000 (0, ..., 0)
24 Schwefel 2. 20 2, 4, 10, 20 (−1, ...,−1) ; (2, ..., 2)
25 Schwefel 2. 21 5, 10, 15, 20 (1, ..., 1) ; (2, ..., 2)
26 Schwefel 2. 23 2, 5, 10, 20 (−1, ...,−1) ; (1, ..., 1)
27 Sphere 2, 10, 20, 100, 1000, 5000, 20000 (−4, ...,−4) ; (4, ..., 4)
28 Styblinski 2, 10, 100, 500, 1000, 2000, 5000 (0, ..., 0) ; (2, ..., 2)
29 Sumsquares 2, 10, 20, 100, 300, 500, 1000 (5, ..., 5) ; (10, ..., 10)

5. Conclusion

Numerous studies have been devoted to develop and improve hybrid conjugate
gradient methods. In this paper we have presented a new convex hybridation of the
PRP and the RMIL+ conjugate gradient algorithms; HLB. The global convergence
of our method is demonstrated for 0 < θ < 1. Numerical experiments reveal that our
method is reaching the optimum in less iteration number and CPU time comparing
to RMIL+ and PRP.
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