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1. Introduction

In this short note we consider a class of functional differential equations (and
systems) that can be used to describe complex evolutionary phenomena in which the
future behaviour depends not only on the present state but also on the past history.
The model problem is an initial value problem (IVP) associated with a modified
logistic equation which contains the maximum of the square of the unknown function
over a past interval: {

ẋ(t) = x(t)−max[0,t] x
2(s) t ≥ 0;

x(0) = x0
(1.1)

where x0 ∈ R.
As it is emphasized in the book [3], the application of the classical logistic equa-

tions in the setting of experimental sciences entails two order of difficulties: on one
hand the necessity of experimentally setting some of the parameters appearing in the
equation, and on the other hand the fact that the derivative changes sign exactly
when a certain value of the function is reached. To tackle with the second problem,
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often an apriori set delay τ is considered in the equation. It is evident that there
are situations in which neither the delay nor the parameters can be determined on
an experimental base. The problem (1.1) seems to be more appropriate to deal with
those cases.

Analizing (1.1), it is obvious that, if x0 = 0 (resp. x0 = 1), then the constant
function x ≡ 0 (resp. x ≡ 1) is a solution. Moreover, if x ∈ C1([0, T ]) is a solution of
(1.1), we observe that:

• if x0 < 0 or x0 > 1, then ẋ(0) < 0. Therefore, in a neighbourhood of 0, ẋ(t) < 0
and the equation reduces to ẋ(t) = x(t)− x20.

• if 0 < x0 < 1, then ẋ(0) > 0. Therefore, in a neighbourhood of 0, ẋ(t) > 0 and
the equation reduces to the well know equation ẋ(t) = x(t)− x2(t).

These easy considerations show that the problem (1.1) somehow ”contains” two
different types of problems, on the basis of the initial value.

Moreover the IVP (1.1) features also the following strange behaviour. Let t0 > 0
and assume that 0 < x1 < 1: then a solution of the following IVP

ẋ(t) = x(t)−max
[0,t]

x2(s) t0 ≤ t; x(t0) = x1 (1.2)

could be an extension of a solution either of the IVP

ẋ(t) = x(t)−max
[0,t]

x2(s) 0 ≤ t; x(0) = y0 (1.3)

or of the IVP

ẋ(t) = x(t)−max
[0,t]

x2(s) 0 ≤ t; x(0) = z0 (1.4)

for suitable 0 < y0 < 1, 1 < z0. This ”uncertainty” situation for a solution x = x(t)
could appear at all time t > 0 for which 0 < x(t) < 1.

More generally, we are going to consider the systemẋ(t) = f
(
t, x(t), max

s∈[0,t]
g1(x1(s)), . . . , max

s∈[0,t]
gm(xm(s))

)
, t ≥ 0

x(0) = x0
(1.5)

where x0 ∈ Rm, f ∈ C([0,+∞[×R2m,Rm) and is locally Lipschitz with respect to
the second variable and the functions gi ∈ C(R) are locally Lipschitz on R, for every
i = 1, . . . ,m.

This type of systems belongs to the class of systems of differential equations with
”maxima”. Much attention has been paid to this type of equations and systems in
the last years. Without any pretensions to being exhaustive, we recall only the recent
papers [1, 4, 6, 5, 7], while we refer to the monograph [2] for a survey of motivations
and techniques on the subject. In particular, Section 3.3 of [2] is devoted to the study
of IVP associated with scalar differential equations of the type{

ẋ(t) = f(t, x(t),maxs∈[0,t] x(s)) t ≥ 0

x(0) = x0
(1.6)

Clearly, even in the scalar case, the class of problems (1.5) is wider than (1.6).
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Our aim is to provide first, via fixed point theory, a local esistence and uniqueness
result for the general system (1.5). Afterwards, in particular situations as (1.1) and
for systems of the type{

ẋ(t) = x(t)−maxs∈[0,t] y(s)

ẏ(t) = y(t)−maxs∈[0,t] x(s)
or

{
ẋ(t) = x(t)−maxs∈[0,t] y

2(s)

ẏ(t) = y(t)−maxs∈[0,t] x
2(s)

,

we will provide more precise existence results by the use of Peano-Picard’s approxi-
mation.

2. Local existence results via contraction theorem

We start with two remarks that will help along the proofs of our results.

Remark 2.1. Let g, h ∈ C([a, b]). Then

|max
[a,b]

g −max
[a,b]

h| ≤ max
[a,b]
|g − h|.

Indeed, assume that max[a,b] g ≥ max[a,b] h and let x0 ∈ [a, b] such that

max
[a,b]

g = g(x0).

Then,

|max
[a,b]

g −max
[a,b]

h| = g(x0)−max
[a,b]

h ≤ g(x0)− h(x0) = |g(x0)− h(x0)| ≤ max
[a,b]
|h− g|.

Remark 2.2. Let g ∈ C([a, b]). Then the function

h(s) = max
τ∈[0,s]

g(τ), s ∈ [a, b]

is continuous. Indeed let s0 ∈ [a, b]. Fix ε > 0 and consider δ > 0 such that

|g(τ)− g(s)| < ε if |τ − s| < δ.

For any s0 < s < s0 + δ, it can happen that h(s) = h(s0) or that h(s) = g(τ) for some
τ ∈ [s0, s]. In the first case obviously h(s)− h(s0) < ε, while in the second case

|h(s)− h(s0)| = h(s)− h(s0) ≤ g(τ)− g(s0) < ε.

Therefore lims→s+0
h(s) = h(s0).

If s0 − δ < s < s0, then h(s0) = h(s) or h(s0) = g(τ) for some τ ∈ [s, s0]. In the
last case,

|h(s)− h(s0)| = h(s0)− h(s) ≤ g(τ)− g(s) < ε.

So we get that lims→s−0
h(s) = h(s0).

Theorem 2.3. Let x0 ∈ Rm, f ∈ C([0,+∞[×R2m,Rm) and locally Lipschitz with
respect to the second variable and gi ∈ C(R) locally Lipschitz on R, for every i =
1, . . . ,m.
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Given α > 0 and T > 0, set

Mα,T :=

= max

{
||f(t, u, v)|| : t ∈ [0, T ], u ∈ [x0 − α, x0 + α]m, v ∈

m∏
i=1

gi([x0 − α, x0 + α])

}
and assume Mα,T > 0. Let Lα,T > 0 and Lα > 0 be such that for every t ∈ [0, T ],
u1, u2 ∈ [x0 − α, x0 + α]m, v1, v2 ∈

∏m
i=1 gi([x0 − α, x0 + α]) and for every x, y ∈

[x0 − α, x0 + α]

||f(t, u1, v1)− f(t, u2, v2)|| ≤ Lα,T (||u1 − v1||+ ||u2 − v2||)
|gi(x)− gi(y)| ≤ Lα|x− y|.

Then, for every

0 < T < min

{
α

Mα,T
,

1

Lα,T (1 + Lα
√
m)

, T

}
there exists x ∈ C1([0, T ];Rm) unique solution of the IVP (1.5).

Proof. We will apply the Banach Fixed Point Theorem.
Indeed, observe first that the existence of a C1 solution of problem (1.5) is

equivalent to the existence of a continuous solution of the integral problem

x(t) = x0 +

∫ t

0

f
(
s, x(s), max

τ∈[0,s]
g1(x1(τ)), . . . , max

τ∈[0,s]
gm(xm(τ))

)
ds. (2.1)

Fix

0 < T < min

{
α

Mα,T
,

1

Lα,TLα
√
m
,T

}
and consider the map F : C([0, T ];Rm)→ C([0, T ];Rm) defined by

F (x)(t) = x0 +

∫ t

0

f
(
s, x(s), max

τ∈[0,s]
g1(x1(τ)), . . . , max

τ∈[0,s]
gm(xm(τ))

)
ds

and the ball

X :=
{
x ∈ C([0, T ];Rm) | ||x(t)− x0|| ≤ α ∀t ∈ [0, T ]

}
.

Clearly X is a complete metric space, with respect the the distance induced by the
norm of C([0, T ];Rm):

||x||∞ := sup
t∈[0,T ]

||x(t)||, x ∈ C([0, T ];Rm).

If x ∈ X, then

||F (x)− x0||∞

≤ sup
0≤t≤T

∫ t

0

∥∥∥∥f(s, x(s), max
τ∈[0,s]

g1(x1(τ)), . . . , max
τ∈[0,s]

gm(xm(τ))
)∥∥∥∥ ds

≤ TMα,T ≤ α.
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Hence F (X) ⊆ X. On the other hand, for every x, y ∈ X, it holds

||F (x)− F (y)||∞
≤ TLα,T (||x− y||∞

+ max
s∈[0,T ]

||
(

max
τ∈[0,s]

g1(x1(τ)), . . . , max
τ∈[0,s]

gm(xm(τ))
)

−
(

max
τ∈[0,s]

g1(y1(τ)), . . . , max
τ∈[0,s]

gm(ym(τ))
)
||

≤ TLα,T
(
||x− y||∞ +

√
m max
s∈[0,T ]

m
max
i=1
| max
τ∈[0,s]

gi(xi(τ)))− max
τ∈[0,s]

gi(yi(τ)))|
)

≤ TLα,T
(
||x− y||∞ +

√
m

m
max
i=1

max
τ∈[0,T ]

|gi(xi(τ))− gi(yi(τ))|
)

≤ TLα,T (1 +
√
mLα)||x− y||∞.

Therefore F is a contraction on X and it has a unique fixed point. �

Remark 2.4. The previous result applies, for example, to the following types of prob-
lems

ẋ(t) = α(t)x(t)− β(t) max
s∈[0,t]

x2(s) 0 ≤ t; x(0) = x0;

ẋ(t) = α(t)x(t)− β(t) max
s∈[0,t]

x(s) 0 ≤ t; x(0) = x0;

ẋ(t) = α(t)x(t)− β(t) max
s∈[0,t]

|x(s)| 0 ≤ t; x(0) = x0.

under suitable conditions on the functions α, β.

3. Existence proofs with approximations

Theorem 3.1. Consider the following problem{
ẋ(t) = x(t)−maxs∈[0,t] x

2(s) t ≥ 0;

x(0) = x0
(3.1)

with x0 6= 1. Let α > 1 and

0 < T ∗ <
α− 1

α(1 + α|x0|)
.

Then there exists a unique solution x ∈ C1([0, T ∗]) of (3.1).

Proof. We prove the existence of a solution via Peano-Picard’s approximations. Set
x0(t) = x0 for every t ≥ 0 and define

xn(t) = x0 +

∫ t

0

xn−1(s)ds−
∫ t

0

max
η∈[0,s]

x2n−1(η)ds t ∈ [0, T ∗], n ≥ 1

It immediate to prove that

xn(t) = x0gn(t) ∀n ∈ N, t ≥ 0 (3.2)
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where g0 ≡ 1 and

gn(t) = [1 +

∫ t

0

gn−1(s)ds− x0
∫ t

0

max
[0,s]

[gn−1(η)]2ds].

By induction, using the choice of T ∗, we easily get that

∀n ∈ N, t ∈ [0, T ∗] |gn(t)| ≤ α,

and, as a consequence, that

|gn+1(t)− gn(t)| ≤ |1− x0|
1 + 2α|x0|

(1 + 2α|x0|)n+1tn+1

(n+ 1)!
.

Then the sequence (gn)n is uniformly convergent on [0, T ∗] and therefore also the
sequence (xn)n is uniformly convergent on [0, T ]. It is immediate that its uniform
limit is the solution of the problem (3.1). �

Remark 3.2. It is worth noticing that

T ∗ < max
α≥1

α− 1

α(1 + α|x0|)
.

We consider now the following system
ẋ(t) = x(t)−maxs∈[0,t] y(s)

ẏ(t) = y(t)−maxs∈[0,t] x(s)

x(0) = x0 y(0) = y0

(3.3)

with x0, y0 ∈ R. We remark that (3.3) is equivalent to the functional system{
x(t) = x0 +

∫ t
0
x(s)ds−

∫ t
0

maxτ∈[0,s] y(τ)ds,

y(t) = y0 +
∫ t
0
y(s)ds−

∫ t
0

maxτ∈[0,s] x(τ)ds,
(3.4)

The following theorem holds.

Theorem 3.3. Assume that x0 > 0, y0 > 0 and x0 6= y0. Then for all T > 0 there
exists a unique solution (x(t), y(t)) ∈ C1([0, T ])2 of the system (3.3).

Proof. Assume 0 < y0 < x0 and consider the sequences of functions (xn) and (yn)
defined on [0,+∞[ by

x0(t) = x0 y0(t) = y0

xn+1(t) = x0 +

∫ t

0

(xn(s)− y0)ds

yn+1(t) = y0 +

∫ t

0

(yn(s)− xn(s))ds

It holds that, for every n ∈ N and for every t ≥ 0, xn(t) ≥ y0 and yn(t) ≤ xn(t).
Indeed, the assertion is obviously true if n = 0. Assuming that xn(t) ≥ y0 and
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yn(t) ≤ xn(t) for every t ≥ 0, we get that

xn+1(t)− y0 = x0 − y0 +

∫ t

0

(xn(s)− y0)ds ≥ 0,

xn+1(t)− yn+1(t) = x0 − y0 +

∫ t

0

(xn(s)− yn(s))ds ≤ 0.

As a consequence we get that, for every n ∈ N, ẋn ≥ 0 and ẏn ≤ 0 and consequently

max
[0,s]

x(τ) = x(s), max
[0,s]

yn(τ) = yn(0) = y0.

Therefore, for the sequences (xn) and (yn), it holds that

xn+1(t) = x0 +

∫ t

0

xn(s)ds−
∫ t

0

max
[0,s]

yn(τ)ds,

yn+1(t) = y0 +

∫ t

0

yn(s)ds−
∫ t

0

max
[0,s]

xn(τ)ds,

By induction, one can prove that for every n ∈ N and every t ≥ 0

|xn+1(t)− xn(t)| ≤ |x0 − y0|
tn+1

(n+ 1)!

|yn+1(t)− yn(t)| ≤ |x0 − y0|T
tn+1

n!

Hence the sequences (xn) and (yn) are uniformly convergent on [0, T ] to continuous
functions x∞ = x∞(t) and y∞ = y∞(t) and the couple (x∞, y∞) is the unique solution
of the functional system (3.4). �

Remark 3.4. It is worth observing that the proof fails if x0 = y0. Moreover the proof
highlights the difference with the system{

ẋ(t) = x(t)− y(t)

ẏ(t) = y(t)− x(t).

Remark 3.5. More interesting seems to be the study of the following general system
ẋ(t) = a(t)x(t)− b(t) maxs∈[0,t] y(s)

ẏ(t) = c(t)y(t)− d(t) maxs∈[0,t] x(s)

x(0) = x0 > 0, y(0) = y0 > 0

where the functions a, b, c, d are continuous, non negative and defined on the interval
[0, T ].

If the functions a, b, c, d are constant, one can prove the following partial results.

If A = ax0 − by0 < 0, B = cy0 − dx0 < 0 and a > 0, c > 0, then a solution is
the following couple of functions

x(t) = x0 +A
1

a
[eat − 1] y(t) = y0 +B

1

c
[ect − 1].
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and therefore more information follow. For example we have that

x(t) = 0⇔ t =
1

a
log

by0
|A|

y(t) = 0⇔ t =
1

c
log

dx0
|B|

.

For different situations, such as A > 0, B < 0, or A < 0, B > 0, or A > 0, B > 0 an
explicit representation for the solution is not available.

Next we consider the following problem, for t ≥ 0


ẋ(t) = x(t)−maxs∈[0,t] y

2(s)

ẏ(t) = y(t)−maxs∈[0,t] x
2(s)

x(0) = x0 > 0,

y(0) = y0 > 0.

(3.5)

Theorem 3.6. If T, c0 > 0 satisfy

|x0|+ |x0 − y20 |T ≤ c0, |y0|+ |y0 − x20|T ≤ c0;

|x0|+ c0T + c20T ≤ c0, |y0|+ c0T + c20T ≤ c0.

then there exists (x, y) ∈ C1([0, T ];R2) unique solution of the IVP (3.5)

Proof. The initial problem (3.5) is equivalent to the following functional system:
x(t) = x0 +

∫ t

0

x(s)ds−
∫ t

0

max
η∈[0,s]

y2(η)ds;

y(t) = y0 +

∫ t

0

y(s)ds−
∫ t

0

max
η∈[0,s]

x2(η)ds.

As usual, we define the sequences of functions (xn) and (yn) on [0,+∞[ by:

x0(t) = x0, y0(t) = y0

xn+1 = x0 +

∫ t

0

xn(s)ds−
∫ t

0

max
η∈[0,s]

y2n(η)ds

yn+1 = x0 +

∫ t

0

xn(s)ds−
∫ t

0

max
η∈[0,s]

x2n(η)ds.

Under the assumptions, it is immediate to prove by induction that

|xn(t)| ≤ c0, |yn(t)| ≤ c0 ∀n ∈ N, t ≥ 0.

Consequently

|xn+1(t)− xn(t)| ≤ c0
T

(1 + 2c0)n
tn+1

(n+ 1)!
;

|yn+1(t)− yn(t)| ≤ c0
T

(1 + 2c0)n
tn+1

(n+ 1)!
.
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Indeed, the last assertion is immediately true if n = 0. Assuming it for n, we get that

|xn+1(t)− xn(t)|

≤
∫ t

0

|xn(t)− xn−1(t)|dt+

∫ t

0

∣∣∣∣ max
η∈[0,s]

y2n(η)− max
η∈[0,s]

y2n−1(η)

∣∣∣∣ ds
≤c0
T

(1 + 2c0)n−1
tn+1

(n+ 1)!
+

∫ t

0

max
[0,s]

∣∣y2n − y2n−1∣∣ ds
≤c0
T

(1 + 2c0)n−1
tn+1

(n+ 1)!
+ 2c0

∫ t

0

max
[0,s]
|yn − yn−1| ds

≤c0
T

(1 + 2c0)n
tn+1

(n+ 1)!
.

Hence the sequences (xn) and (yn) are uniformly convergent to continuous functions
x∞, y∞ defined in the interval [0, T ], that solve the functional system. �

Remark 3.7. The methods we have considered could also be applied to investigate
a version of Lotka-Volterra systems (see [8, 9] for the first steps in the study of the
classical situation) with ”maxima”, namely

ẋ(t) = x(t)− max
s∈[0,t]

x(s)y(s); ẏ(t) = y(t) + max
s∈[0,t]

x(s)y(s).

or other analogous equations and systems.
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