Global solution for a diffusive epidemic model (HIV/AIDS) with an exponential behavior of source

El Hachemi Daddiouaissa

Abstract

We consider the question of global existence and uniform boundedness of nonnegative solutions of a system of reaction-diffusion equations with exponential nonlinearity, without any restriction on initial data, using maximum principle and Lyapunov function techniques.

Mathematics Subject Classification (2010): 35K57, 35K45.
Keywords: Reaction-diffusion systems, Lyapunov function, global solution.

1. Introduction

In this paper we consider the following reaction-diffusion system

$$
\begin{array}{cc}
\frac{\partial u}{\partial t}-a \Delta u=\Pi-f(u, v)-\alpha u & (x, t) \in \Omega \times \mathbb{R}_{+} \\
\frac{\partial v}{\partial t}-b \Delta v=f(u, v)-\sigma \kappa(v) & (x, t) \in \Omega \times \mathbb{R}_{+} \tag{1.2}
\end{array}
$$

with the boundary conditions

$$
\begin{equation*}
\frac{\partial u}{\partial \eta}=\frac{\partial v}{\partial \eta}=0 \quad \text { on } \partial \Omega \times \mathbb{R}_{+} \tag{1.3}
\end{equation*}
$$

and the initial data

$$
\begin{equation*}
u(0, x)=u_{0}(x) \geq 0 ; \quad v(0, x)=v_{0}(x) \geq 0 \quad \text { in } \Omega \tag{1.4}
\end{equation*}
$$

where Ω is a smooth open bounded domain in \mathbb{R}^{n}, with boundary $\partial \Omega$ of class C^{1} and

[^0]@๑ఆ囚 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
η is the outer normal to $\partial \Omega$. The constants of diffusion a, b are positive and such that $a \neq b$ and Π, α, σ are positive constants, κ and f are nonnegative functions of class $C^{1}\left(\mathbb{R}_{+}\right)$and $C^{1}\left(\mathbb{R}_{+} \times \mathbb{R}_{+}\right)$respectively.

The reaction-diffusion system (1.1) - (1.4) arises in the study of physical, chemical, and various biological processes including population dynamics (especially AIDS, see C. Castillo-Chavez et al. [4], for further details see [6] [11] [17] [21] [22]).

The case $\Pi=0, \alpha=0, \sigma=0$ and $f(u, v)=h(u) Q(v)$, with $h(u)=u$ (for simplicity), has been studied by many authors. Alikakos [1] established the existence of global solutions when $Q(v) \leq C\left(1+|v|^{(n+2) / n}\right)$. Then Massuda [18] obtained a positive result for the case $Q(v) \leq C\left(1+|v|^{\alpha}\right)$ with arbitrary $\alpha>0$. The question when $Q(v)=e^{\alpha v^{\beta}}, 0<\beta<1, \alpha>0$ was positively answered by Haraux and Youkana [13], using Lyapunov function techniques, see also Barabanova [2] for $\beta=1$, with some conditions and later on by Kanel [16], using useful properties inherent to the Green function. For $Q(v)=e^{\alpha v^{\beta}}, \beta>1$, Rebiai [3] proved the global existence. The idea behind the Lyapunov functional stems from Zelenyak's article [23], which has also been used by Crandall et al. [5] for other purposes.
The case $\Pi>0, \alpha>0, \sigma>0 \mathrm{~L}$. Melkemi et al. [19] established the existence of global solutions, when $f(\xi, \tau) \leq \psi(\xi) \varphi(\tau)$ such that

$$
\lim _{\tau \rightarrow+\infty} \frac{\ln (1+\varphi(\tau))}{\tau}=0 .
$$

For $f(v)=e^{\alpha v^{\beta}}, \beta>1$, Djebara et al [9] showed the global existence.
The goal of this work is to generalize the existing result in [7], where it is proved the existence of global solutions with following exponential nonlinearity

$$
\begin{equation*}
0 \leq f(\xi, \tau) \leq \varphi(\xi)(\tau+1)^{\lambda} e^{r \tau} \tag{1.5}
\end{equation*}
$$

with restriction on initial data

$$
\begin{equation*}
\max \left(\left\|u_{0}\right\|_{\infty}, \frac{\Pi}{\alpha}\right)<\frac{\theta^{2}}{2-\theta} \quad \frac{8 a b}{r n(a-b)^{2}} \tag{1.6}
\end{equation*}
$$

Hence, the main purpose of this paper is to give a positive answer, concerning the global existence and the uniform boundedness in time, of solutions of system (1.1) - (1.4), with out any restriction on inital data u_{0} and v_{0} and same exponential nonlinearity, i.e,
(S1) $\forall \tau \geq 0, f(0, \tau)=0$,
(S2) $\forall \xi \geq 0, \forall \tau \geq 0,0 \leq f(\xi, \tau) \leq \varphi(\xi)(\tau+1)^{\lambda} e^{r \tau}$,
(S3) $\kappa(\tau)=\tau^{\mu}, \mu \geq 1$,
where r, λ are positive constants, such that $\lambda \geq 1, \varphi$ is a nonnegative function of class $C\left(\mathbb{R}^{+}\right)$.
For this end we use maximum principle and Lyapunov function techniques, and an idea inspired from [8].

2. Existence of local solutions

The usual norms in spaces $L^{p}(\Omega), L^{\infty}(\Omega)$ and $C(\bar{\Omega})$ are respectively denoted by

$$
\|u\|_{p}^{p}=\frac{1}{|\Omega|} \int_{\Omega}|u(x)|^{p} d x, \quad\|u\|_{\infty}=\max _{x \in \Omega}|u(x)| .
$$

Concerning a local existence, we can conclude directly from the theory of abstract semilinear equations (see A. Friedman [10], D. Henry [14], A. Pazy [20]), that for nonnegative functions u_{0} and v_{0} in $L^{\infty}(\Omega)$, there exists a unique local nonnegative solution (u, v) of system $(1.1)-(1.4)$ in $C(\bar{\Omega})$ on $] 0, T^{*}\left[\right.$, where T^{*} is the eventual blowing-up time.

3. Existence of global solutions

Using the comparison principle, one obtains

$$
\begin{equation*}
0 \leq u(t, x) \leq \max \left(\left\|u_{0}\right\|_{\infty}, \frac{\Pi}{\alpha}\right)=M \tag{3.1}
\end{equation*}
$$

from which it remains to establish the uniform boundedness of v.
According to the results of [12], it is enough to show that

$$
\begin{equation*}
\|f(u, v)-\sigma \kappa(v)\|_{p} \leq C \tag{3.2}
\end{equation*}
$$

(where C is a nonnegative constant independent of t) for some $p>\frac{n}{2}$. To reach this goal, let us start with this preliminaries results.
We consider the following reaction-diffusion system:

$$
\begin{gather*}
\frac{\partial u_{1}}{\partial t}-a_{1} \Delta u_{1}=1-h\left(u_{1}, u_{2}\right)-u_{1} \quad(x, t) \in \Omega_{1} \times \mathbb{R}_{+} \tag{3.3}\\
\frac{\partial u_{2}}{\partial t}-(2-\sqrt{3}) a_{1} \Delta u_{2}=h\left(u_{1}, u_{2}\right)-\delta u_{2} \quad(x, t) \in \Omega_{1} \times \mathbb{R}_{+} \tag{3.4}\\
\frac{\partial u_{1}}{\partial \eta}=\frac{\partial u_{2}}{\partial \eta}=0 \quad \text { on } \partial \Omega_{1} \times \mathbb{R}_{+}, \tag{3.5}\\
u_{1}(0, x)=u_{1,0}(x) \geq 0 ; \quad u_{2}(0, x)=u_{2,0}(x) \geq 0 \quad \text { in } \Omega_{1} \tag{3.6}
\end{gather*}
$$

where Ω_{1} is a smooth open bounded domain in \mathbb{R}^{2}, with boundary $\partial \Omega_{1}$ of class C^{1} and η is the outer normal to $\partial \Omega_{1}$ and $a_{1}>0$ is the diffusion constant, δ is a positive constant and $\left\|u_{1,0}\right\|_{\infty}=\frac{1}{2}, h$ is differentiable nonnegative function such that:
(A1) $\forall \tau \geq 0, \quad h(0, \tau)=0$,
(A2) $\forall \xi \geq 0, \forall \tau \geq 0, \quad 0 \leq h(\xi, \tau)=\xi \varphi(\tau) \leq \xi\left(\tau+\alpha_{1}\right) e^{\frac{1}{16} \tau}$,
where φ is differentiable nonnegative function and

$$
\begin{equation*}
\alpha_{1}=\max \left(\frac{48}{5},\left(\frac{3}{2} \frac{M}{\left|\Omega_{1}\right|}\right)^{\frac{1}{4}}\right) \tag{3.7}
\end{equation*}
$$

Using the maximum principle, we obtain

$$
\begin{equation*}
0 \leq u_{1}(t, x) \leq 1 \tag{3.8}
\end{equation*}
$$

To establish the boundness of u_{2}, we use the results of $[14,15]$, where it is enough to show that

$$
\begin{equation*}
\left\|h\left(u_{1}, u_{2}\right)-\delta u_{2}\right\|_{4} \leq C \tag{3.9}
\end{equation*}
$$

where C is a nonnegative constant independent of t. For this end we need the following
Lemma 3.1. Let ϕ be a nonnegative function of class $C\left(\mathbb{R}^{+}\right)$, such that

$$
\lim _{\tau \rightarrow+\infty} \frac{\phi(\tau)}{\tau}=0
$$

and let A be positive constant. Then there exists $\Pi_{2}>0$, such that

$$
\begin{equation*}
\left[\frac{\phi(\tau)}{\tau}-A\right] \tau h_{1}(\tau) \leq \Pi_{2} \tag{3.10}
\end{equation*}
$$

for all $\tau>0 ; h_{1}$ is a nonnegative function of class $C\left(\mathbb{R}^{+}\right)$.
Proof. Since

$$
\lim _{\tau \rightarrow+\infty} \frac{\phi(\tau)}{\tau}=0
$$

there exists $\tau_{0}>0$, such that for all $\tau>\tau_{0}$, we have

$$
\left[\frac{\phi(\tau)}{\tau}-A\right] \tau h_{1}(\tau) \leq 0
$$

Now if τ is in the compact interval $\left[0, \tau_{0}\right]$, then the continuous function

$$
[\phi(\tau)-A \tau] h_{1}(\tau)
$$

is bounded.
Lemma 3.2. Assume that (A1) and (A2) hold and let $\left(u_{1}, u_{2}\right)$ be a solution of (3.3)(3.6) on $] 0, T^{*}\left[\right.$, with arbitrary $u_{2,0}$. Let

$$
\begin{equation*}
G_{1}(t)=\int_{\Omega_{1}}\left(\frac{1}{\frac{3}{2}-u_{1}}\right)\left(u_{2}+\alpha_{1}\right)^{4} e^{\frac{1}{4} u_{2}} d x \tag{3.11}
\end{equation*}
$$

Then there exist a positive constant Π_{1} such that

$$
\begin{equation*}
\frac{d G_{1}}{d t}(t) \leq-\sigma_{1} G_{1}(t)+\Pi_{1} \tag{3.12}
\end{equation*}
$$

where σ_{1} is a positive constant.
Proof. We put $q\left(u_{1}\right)=\left(\frac{1}{\frac{3}{2}-u_{1}}\right)$, so that

$$
G_{1}(t)=\int_{\Omega_{1}} q\left(u_{1}\right)\left(u_{2}+\alpha_{1}\right)^{4} e^{\frac{1}{4} u_{2}} d x
$$

Differentiating G_{1} with respect to t and a simple use of Green's formula gives

$$
G_{1}^{\prime}(t)=I_{1}+J_{1},
$$

where

$$
\begin{aligned}
I_{1} & =-a_{1} \int_{\Omega_{1}} q^{\prime \prime}\left(u_{1}\right)\left(u_{2}+\alpha_{1}\right)^{4} e^{\frac{1}{4} u_{2}}\left|\nabla u_{1}\right|^{2} d x \\
& -(3-\sqrt{3}) a_{1} \int_{\Omega_{1}} q^{\prime}(u)\left[4+\frac{1}{4}\left(u_{2}+\alpha_{1}\right)\right]\left(u_{2}+\alpha_{1}\right)^{3} e^{\frac{1}{4} u_{2}} \nabla u_{1} \nabla u_{2} d x \\
& -(2-\sqrt{3}) a_{1} \int_{\Omega_{1}} q(u)\left[12+2\left(u_{2}+\alpha_{1}\right)+\frac{1}{16}\left(u_{2}+\alpha_{1}\right)^{2}\right]\left(u_{2}+\alpha_{1}\right)^{2} e^{\frac{1}{4} u_{2}}\left|\nabla u_{2}\right|^{2} d x \\
J_{1} & =\int_{\Omega_{1}} q^{\prime}\left(u_{1}\right)\left(u_{2}+\alpha_{1}\right)^{4} e^{\frac{1}{4} u_{2}} d x-\int_{\Omega_{1}} q^{\prime}\left(u_{1}\right) u_{1}\left(u_{2}+\alpha_{1}\right)^{4} e^{\frac{1}{4} u_{2}} d x \\
& +\int_{\Omega_{1}}\left(q\left(u_{1}\right)\left[4+\frac{1}{4}\left(u_{2}+\alpha_{1}\right)\right]-q^{\prime}\left(u_{1}\right)\left(u_{2}+\alpha_{1}\right)\right)\left(u_{2}+\alpha_{1}\right)^{3} h\left(u_{1}, u_{2}\right) e^{\frac{1}{4} u_{2}} d x \\
& -\int_{\Omega_{1}} \delta\left[4+\frac{1}{4}\left(u_{2}+\alpha_{1}\right)\right] u_{2}\left(u_{2}+\alpha_{1}\right)^{3} e^{\frac{1}{4} u_{2}} d x .
\end{aligned}
$$

I_{1} involves a quadratic form with respect to ∇u_{1} and ∇u_{2}, which is nonnegative if

$$
\begin{gathered}
(3-\sqrt{3})^{2}\left[4+\frac{1}{4}\left(u_{2}+\alpha_{1}\right)\right]^{2}-8(2-\sqrt{3})\left[12+2\left(u_{2}+\alpha_{1}\right)+\frac{1}{16}\left(u_{2}+\alpha_{1}\right)^{2}\right] \\
=\left[-2\left[4+\frac{1}{4}\left(u_{2}+\alpha_{1}\right)\right]^{2}+32\right](2-\sqrt{3})=\left[1-\left[1+\frac{1}{16}\left(u_{2}+\alpha_{1}\right)\right]^{2}\right] 32(2-\sqrt{3}) \leq 0 .
\end{gathered}
$$

Concerning the second term J_{1}, we can observe that

$$
\begin{aligned}
J_{1} & \leq \int_{\Omega_{1}}\left(2-\frac{1}{4} \delta u_{2}\right) \frac{1}{\frac{3}{2}-u_{1}}\left(u_{2}+\alpha_{1}\right)^{4} e^{\frac{1}{4} u_{2}} d x \\
& +\int_{\Omega_{1}}\left(\left[4+\frac{1}{4}\left(u_{2}+\alpha_{1}\right)\right]-\frac{1}{\frac{3}{2}-u_{1}}\left(u_{2}+\alpha_{1}\right)\right) \frac{1}{\frac{3}{2}-u_{1}}\left(u_{2}+\alpha_{1}\right)^{3} h\left(u_{1}, u_{2}\right) e^{\frac{1}{4} u_{2}} d x
\end{aligned}
$$

Now we introduce a positive constant σ_{1}, such that

$$
\begin{aligned}
J_{1} & \leq \int_{\Omega_{1}}-\sigma_{1} \frac{1}{\frac{3}{2}-u_{1}}\left(u_{2}+\alpha_{1}\right)^{4} e^{\frac{1}{4} u_{2}}+\left(\frac{2+\sigma_{1}}{u_{2}}-\frac{1}{4} \delta\right) \frac{1}{\frac{3}{2}-u_{1}} u_{2}\left(u_{2}+\alpha_{1}\right)^{4} e^{\frac{1}{4} u_{2}} d x \\
& +\int_{\Omega_{1}}\left(4-\frac{5}{12} \alpha_{1}\right) \frac{1}{\frac{3}{2}-u_{1}}\left(u_{2}+\alpha_{1}\right)^{3} h\left(u_{1}, u_{2}\right) e^{\frac{1}{4} u_{2}} d x .
\end{aligned}
$$

using the Lemma 3.1 and the choice in the formula 3.7, let us get

$$
J_{1} \leq-\sigma_{1} G_{1}(t)+\Pi_{2}\left|\Omega_{1}\right| .
$$

It follows that

$$
\frac{d G_{1}(t)}{d t} \leq-\sigma_{1} G_{1}(t)+\Pi_{1}
$$

where $\Pi_{1}=\Pi_{2}\left|\Omega_{1}\right|$.
Theorem 3.3. Under the assumptions (A1) and (A2), the solutions of (3.3) - (3.6) are global and uniformly bounded on $[0,+\infty[$.

Proof. Multiplying (3.12) by $e^{\sigma_{1} t}$ and integrating the inequality on $(0, t)$, it implies the existence of a positive constant $C_{3}>0$ independent of t such that

$$
\begin{equation*}
G_{1}(t) \leq C_{3} \tag{3.13}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\int_{\Omega_{1}} h^{4}\left(u_{1}, u_{2}\right) d x \leq \frac{3}{2} G_{1}(t) \leq \frac{3}{2} C_{3} . \tag{3.14}
\end{equation*}
$$

Remark 3.4. From the choice (3.7) we have for all $t \geq 0$

$$
\begin{equation*}
G_{1}(t) \geq \int_{\Omega_{1}} \frac{2}{3} \alpha_{1}^{4} d x \geq M \tag{3.15}
\end{equation*}
$$

3.1. Main result

Now, we will state the main result
Theorem 3.5. Under the assumptions $(S 1)-(S 3)$, the solutions of (1.1)-(1.4) are global and uniformly bounded on $[0,+\infty[$.

The key result needed to prove the Theorem 3.5 is the following
Proposition 3.6. Assume that $(S 1)-(S 3)$ hold and let (u, v) be a solution of (1.1)-(1.4) on $] 0, T^{*}\left[\right.$, with arbitrary v_{0} and u_{0}. Let

$$
\begin{equation*}
G(t)=\int_{\Omega}\left(\frac{M}{(2-\theta) M-u}\right)^{\beta}(v+\omega)^{\gamma p} e^{p r v} d x+G_{1}(\psi(t)) \tag{3.16}
\end{equation*}
$$

where ω, β, γ and θ are positive constants such that $\omega \geq 1, \theta<1$ and

$$
\begin{equation*}
\beta=\theta \frac{4 a b}{(a-b)^{2}}, \quad \gamma=\max \left(\lambda, \mu, \frac{(\beta+1)(2-\theta) M r}{\beta \theta(1-\theta)}\right) \tag{3.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi(t)=\int_{0}^{t} \int_{\Omega} f(u, v) g(u)(v+\omega)^{\gamma p} e^{p r v} d x d s \tag{3.18}
\end{equation*}
$$

Then, there exist $p>n / 2$ and positive constant Γ such that

$$
\begin{equation*}
\frac{d G}{d t} \leq-s G+\Gamma \tag{3.19}
\end{equation*}
$$

where s is a positive constant.
It's very important to state this lemma, before proving this proposition,
Lemma 3.7. For all $\tau \geq 0$ we have

$$
\begin{equation*}
\left[\frac{\Pi \beta}{(1-\theta) M}-\sigma p \kappa(\tau)\left(\frac{\gamma}{\tau+\omega}+r\right)\right](\tau+\omega)^{\gamma p} e^{p r \tau} \leq-s(\tau+\omega)^{\gamma p} e^{p r \tau}+B_{1} \tag{3.20}
\end{equation*}
$$

where B_{1} and s are positive constants.

Proof. Let us put

$$
\begin{gathered}
\xi=\frac{\Pi \beta}{(1-\theta) M}+s \\
\\
\frac{\Pi \beta}{(1-\theta) M}(\tau+\omega)^{p \gamma} e^{p r \tau}-\sigma p \kappa(\tau)\left[\gamma(\tau+\omega)^{\gamma p-1}+r(\tau+\omega)^{\gamma p}\right] e^{p r \tau} \\
= \\
\left(\frac{\Pi \beta}{(1-\theta) M}-\xi\right)(\tau+\omega)^{p \gamma} e^{p r \tau}+\left(\frac{\xi}{\kappa(\tau)}-\sigma r p\right) \kappa(\tau)(\tau+\omega)^{\gamma p} e^{p r \tau},
\end{gathered}
$$

then, using Lemma 3.1 we can conclude the result.
Proof. (of Proposition 3.2). Let

$$
g(u)=\left(\frac{M}{(2-\theta) M-u}\right)^{\beta}
$$

so that

$$
G(t)=\int_{\Omega} g(u)(v+\omega)^{\gamma p} e^{p r v} d x+G_{1}(\psi(t))
$$

Differentiating G with respect to t and a simple use of Green's formula gives

$$
G^{\prime}(t)=I+J
$$

where

$$
\begin{aligned}
I & =-a \int_{\Omega} g^{\prime \prime}(u)(v+\omega)^{\gamma p} e^{p r v}|\nabla u|^{2} d x \\
& -(a+b) \int_{\Omega} g^{\prime}(u)\left[\gamma p(v+\omega)^{\gamma p-1}+p r(v+\omega)^{\gamma p}\right] e^{p r v} \nabla u \nabla v d x \\
& -b \int_{\Omega} g(u)\left[\gamma p(\gamma p-1)(v+\omega)^{\gamma p-2}+2 \gamma p^{2} r(v+\omega)^{\gamma p-1}+p^{2} r^{2}(v+\omega)^{\gamma p}\right] e^{p r v}|\nabla v|^{2} d x \\
J & =\int_{\Omega} \Pi g^{\prime}(u)(v+\omega)^{\gamma p} e^{p r v} d x-\int_{\Omega} \alpha g^{\prime}(u) u(v+\omega)^{\gamma p} e^{p r v} d x \\
& +\int_{\Omega}\left(g(u)\left[\gamma p(v+\omega)^{\gamma p-1}+r p(v+\omega)^{\gamma p}\right]-g^{\prime}(u)(v+\omega)^{\gamma p}\right) f(u, v) e^{p r v} d x \\
& -\int_{\Omega} \sigma\left[\gamma p(v+\omega)^{\gamma p-1}+r p(v+\omega)^{\gamma p}\right] \kappa(v) g(u) e^{p r v} d x+\psi^{\prime}(t) G_{1}^{\prime}(\psi(t))
\end{aligned}
$$

We can see that I involves a quadratic form with respect to ∇u and ∇v, which is nonnegative if

$$
\begin{aligned}
\delta & =\left(p(a+b) g^{\prime}(u)\left[\gamma(v+\omega)^{\gamma p-1}+r(v+\omega)^{\gamma p}\right]\right)^{2} \\
& -4 a b \gamma p(\gamma p-1) g^{\prime \prime}(u) g(u)(v+\omega)^{2 \gamma p-2} \\
& -4 a b g^{\prime \prime}(u) g(u)(v+\omega)^{\gamma p}\left[2 \gamma p^{2} r(v+\omega)^{\gamma p-1}+p^{2} r^{2}(v+\omega)^{\gamma p}\right] \leq 0 .
\end{aligned}
$$

Indeed

$$
\begin{aligned}
\delta & =\left[(p \gamma)^{2}(a+b)^{2} \beta^{2}-4 a b \beta(\beta+1) p \gamma(p \gamma-1)\right] \frac{g(u)^{2}(v+\omega)^{2 p \gamma-2}}{((2-\theta) M-u)^{2}} \\
& +\left[(a+b)^{2} \beta^{2}-4 a b \beta(\beta+1)\right] \frac{r p^{2} g(u)^{2}(v+\omega)^{2 p \gamma-1}}{((2-\theta) M-u)^{2}}[2 \gamma+r(v+\omega)],
\end{aligned}
$$

the choice of β and γ gives

$$
\begin{aligned}
\delta & \leq[\beta+1-p \gamma(1-\theta)] \frac{4 a b \beta p \gamma g(u)^{2}(v+\omega)^{2 p \gamma-2}}{((2-\theta) M-u)^{2}} \\
& +4 a b(\theta-1) \frac{r p \beta g(u)^{2}(v+\omega)^{2 p \gamma-1}}{((2-\theta) M-u)^{2}}[2+(r p)(v+\omega)] \leq 0
\end{aligned}
$$

it follows that

$$
I \leq 0
$$

Concerning the second term J, we use (3.12), we can observe that

$$
\begin{aligned}
J & \leq \int_{\Omega}\left(\frac{\Pi \beta}{(1-\theta) M}-\sigma p \kappa(v)\left[\frac{\gamma}{v+\omega}+r\right]\right) g(u)(v+\omega)^{p \gamma} e^{p r v} d x \\
& +\int_{\Omega}\left(p\left[\frac{\gamma}{v+\omega}+r\right]-\frac{\beta}{(2-\theta) M-u}\right) f(u, v) g(u)(v+\omega)^{\gamma p} e^{p r v} d x \\
& +\psi^{\prime}(t)\left(-\sigma_{1} G_{1}(\psi(t))+\Pi_{1}\right)
\end{aligned}
$$

Using Lemma 3.7 and by choosing $\sigma_{1}=\frac{1}{M}\left(r p+\Pi_{1}\right)$, we get

$$
\begin{aligned}
J & \leq \int_{\Omega}\left[-s(v+\omega)^{p \gamma} e^{p r v}+B_{1}\right] g(u) d x \\
& +\int_{\Omega}\left(\frac{p \gamma}{v+\omega}-\frac{\theta}{2-\theta} \frac{4 a b}{(a-b)^{2} M}\right) f(u, v) g(u)(v+\omega)^{\gamma p} e^{p r v} d x
\end{aligned}
$$

Since f is continuous function, applying the Lemma 3.1, it follows that there exist a positive constant N_{1} such that

$$
\begin{aligned}
J & \leq \int_{\Omega}\left[-s(v+\omega)^{p \gamma} e^{p r v}+B_{1}\right] g(u) d x \\
& +N_{1} \int_{\Omega} g(u) d x
\end{aligned}
$$

In addition

$$
g(u) \leq\left(\frac{1}{1-\theta}\right)^{\beta}
$$

then

$$
J \leq-s G(t)+\left(|\Omega| B_{1}+N_{1}\right)\left(\frac{1}{1-\theta}\right)^{\beta}+s C_{3}
$$

it follows that

$$
\frac{d G}{d t} \leq-s G+\Gamma
$$

where $\Gamma=\left(|\Omega| B_{1}+N_{1}\right)\left(\frac{1}{1-\theta}\right)^{\beta}+s C_{3}$.

Proof. (of Theorem 3.5)

Multiplying (3.19) by $e^{s t}$ and integrating the inequality, it implies the existence of a positive constant $C_{1}>0$ independent of t such that

$$
G(t) \leq C_{1}
$$

Since

$$
\begin{aligned}
g(u) & \geq\left(\frac{1}{2-\theta}\right)^{\beta} \\
\int_{\Omega}(v+\omega)^{\gamma p} e^{p r v} d x & \leq(2-\theta)^{\beta} G(t) \leq C_{1}(2-\theta)^{\beta}
\end{aligned}
$$

Since $\omega \geq 1$ and (3.17) we have also,

$$
\begin{aligned}
\int_{\Omega}(v+1)^{\lambda p} e^{p r v} d x & \leq \int_{\Omega}(v+\omega)^{\gamma p} e^{p r v} d x \leq C_{1}(2-\theta)^{\beta} \\
\int_{\Omega} v^{\mu p} d x & \leq \int_{\Omega}(v+\omega)^{\gamma p} d x \leq C_{1}(2-\theta)^{\beta}
\end{aligned}
$$

We put

$$
A=\max _{0 \leq \xi \leq M} \varphi(\xi)
$$

according to $(S 1)-(S 3)$, we have

$$
\int_{\Omega} f(u, v)^{p} d x \leq \int_{\Omega} A^{p}(v+1)^{\lambda p} e^{p r v} d x \leq A^{p} C_{1}(2-\theta)^{\beta}=A^{p} H^{p}
$$

we conclude

$$
\|f(u, v)-\sigma \kappa(v)\|_{p} \leq\|f(u, v)\|_{p}+\|\sigma \kappa(v)\|_{p} \leq H(A+\sigma)
$$

By the preliminary remarks (introduction of section 3), we conclude that the solution of (1.1)-(1.4) is global and uniformly bounded on $[0,+\infty[\times \Omega$.

References

[1] Alikakos, N., L^{p}-Bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4(1979), 827-868.
[2] Barabanova, A., On the global existence of solutions of reaction-diffusion equation with exponential nonlinearity, Proc. Amer. Math. Soc., 122(1994), 827-831.
[3] Benachour, S., Rebiai, B., Global classical solutions for reaction-diffusion systems with nonlinearities of exponential growth, J. Evol. Equ., 10(2010), no. 3, 511-527.
[4] Castillo-Chavez, C., Cooke, K., Huang, W., Levin, S.A., On the role of long incubation periods in the dynamics of acquires immunodeficiency syndrome, AIDS, J. Math. Biol., 27(1989), 373-398.
[5] Crandall, M., Pazy, A., Tartar, L., Global existence and boundedness in reaction-diffusion systems, SIAM J. Math. Anal., 18(1987), 744-761.
[6] Cussler, E.L., Diffusion, Cambridge University Press, Second Edition, 1997.
[7] Daddiouaissa, E.H., Existence of global solutions for a system of reaction-diffusion equations with exponential nonlinearity, Electron. J. Qual. Theory Differ. Equ., 73(2009), 1-7.
[8] Daddiouaissa, E.H., Global solution for a diffusive epidemic model (HIV/AIDS) with a strong exponential source, Jour. Abstr. Differ. Equ. Appl., 9(2018), no. 1, 30-40.
[9] Djebara, L., Abdelmalek, S., Bendoukha, S., Global existence and asymptotic behavior of solutions for some coupled systems via Lyapunov functional, Acta Math. Sci. Ser. B., 39B(6)(2019), 1538-1550.
[10] Friedman, A., Partial Differential Equation of Parabolic Type, Prentice Hall, 1964.
[11] Hamaya, Y., On the asymptotic behavior of a diffusive epidemic model (AIDS), Nonlinear Anal., 36(1999), 685-696.
[12] Haraux, A., Kirane, M., Estimation C^{1} pour des problemes paraboliques semi-lineaires, Ann. Fac Sci. Toulouse Math., 5(1983), 265-280.
[13] Haraux, A., Youkana, A., On a result of K. Masuda concerning reaction-diffusion equations, Tohoku Math. J., 40(1988), 159-163.
[14] Henry, D., Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics 840, Springer-Verlag, New York, 1981.
[15] Hollis, S.L., Martin, R.H., Pierre, M., Global existence and boundedness in reactiondiffusion systems, SIAM J. Math. Anal., 18(1987), no. 3, 744-761.
[16] Kanel, J.I., On global initial boundary-value problems for reaction-diffusion systems with balance conditions, Nonlinear Anal., 37(1999), 971-995.
[17] Kirane, M., Global bounds and asymptotics for a system of reaction-diffusion equations, J. Math Anal. Appl., 138(1989), 1172-1189.
[18] Masuda, K., On the global existence and asymptotic behaviour of reaction-diffusion equations, Hokkaido Math. J., 12(1983), 360-370.
[19] Melkemi, L., Mokrane, A.Z., Youkana, A., Boundedness and large-time behavior results for a diffusive epidemic model, J. Appl. Math., (2007), 1-15.
[20] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Verlag, New York, 1983.
[21] Webb, G.F., A reaction-diffusion model for a deterministic diffusive epidemic, J. Math. Anal. Appl., 84(1981), 150-161.
[22] Zeidler, E., Nonlinear Functional Analysis and its Applications, Tome II/b, Springer Verlag, 1990.
[23] Zelenyak, T.I., Stabilization of solutions to boundary value problems for second order parabolic equations in one space variable, Differ. Uravn. Protsessy Upr., 4(1968), 34-45.

El Hachemi Daddiouaissa
Faculty of New Technologies of Information and Communication,
Kasdi Merbah University, UKM,
Route de Ghardaia, BP.511,
Ouargla 30000, Algeria
e-mail: dmhbsdj@gmail.com

[^0]: Received 14 March 2021; Accepted 03 June 2021.
 (C) Studia UBB MATHEMATICA. Published by Babeş-Bolyai University

