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Differential subordination implications
for certain Carathéodory functions

Meghna Sharma, Sushil Kumar and Naveen Kumar Jain

Abstract. In this article, we wish to establish some first order differential sub-
ordination relations for certain Carathéodory functions with nice geometrical
properties. Moreover, several implications are determined so that the normalized
analytic function belongs to various subclasses of starlike functions.
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1. Introduction

Denote the collection of all functions f which are analytic on the open unit
disc by H . Let A ⊂ H be the subclass consisting of analytic functions given by

f(z) = z +
∞∑
n=2

anz
n and normalised by the conditions f(0) = 0 and f ′(0) − 1 = 0.

Further, let S∗ and C denote the subclasses of univalent function consisting of starlike
and convex functions, characterized by the quantities zf ′(z)/f(z) and 1+zf ′′(z)/f ′(z)
lying in the interior of the right half plane respectively. Let f and g be members
of H . We say f is subordinate to g (written as f ≺ g) if there exists a function
w ∈ H with w(0) = 0 and |w(z)| < 1 such that f(z) = g(w(z)). Equivalently,
if g is univalent in D, then the conditions f(0) = g(0) and f(D) ⊂ g(D) together
gives f ≺ g. For more details, see [15]. The unified class of starlike functions S∗ϕ :=
{f ∈ A : zf ′(z)/f(z) ≺ ϕ(z); for all z ∈ D} where ϕ is analytic, univalent, ϕ(D) is
starlike with respect to ϕ(0)=1 and Re(ϕ) > 0, was introduced and studied by Ma and
Minda [13]. Various subclasses of starlike functions have been studied by considering
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different choices of ϕ in recent years. For ϕ(z) := (1+Az)/(1+Bz), (−1 ≤ B < A ≤ 1),
the class S∗ϕ reduces to the class S∗[A,B], introduced by Janowski [9]. A function
f ∈H is said to be a Carathéodory function if f(0) = 1 and Re(f(z)) > 0. The class
of such functions is denoted by P. On taking some Carathéodory functions ϕ(z) :=
ez, φq(z), φ0(z), φc(z), φlim(z), Q(z), φSG, φs(z), the class S∗ϕ reduce to subclasses
S∗e [14], S∗q [19], S∗R [11], S∗c [20], S∗LC [22], S∗B [5], S∗SG [8], S∗s [4] respectively, where

φq(z) := z +
√

1 + z2, φ0(z) := 1 +
z

k
.
k + z

k − z
; k = 1 +

√
2,

φc(z) := 1 +
4z

3
+

2z2

3
, φlim(z) := 1 +

√
2z +

z2

2
, φs(z) := 1 + sin z.

Recently, Kumar et al.[5] introduced and studied differential subordination relations
and radius estimates for the class S∗B := S∗(Q(z), where

Q(z) := ee
z−1 (1.1)

In 2020, Goel and Kumar [8] studied the subclass S∗SG := S∗(φSG), where

φSG(z) = 2/(1 + e−z) for all z ∈ D. (1.2)

These subclasses of starlike functions are well associated with the right half plane of
the complex plane.

In 1989, for p ∈ P, Nunokawa et al. [17] proved that the differential subordination
1 + zp′(z) ≺ 1 + z implies p(z) ≺ 1 + z. Further, authors [18] established sufficient
conditions for starlike functions discussed by Silverman [21] to be strongly convex and
strongly starlike in D. In 2006, Kanas [10] determined the conditions for the functions
to map D onto hyperbolic and parabolic regions using the concept of differential
subordination. In 2007, Ali et al. [2] obtained conditions on β ∈ R for which 1 +
βzp′(z)/pj(z) ≺ (1 + Dz)/(1 + Ez), j = 0, 1, 2 implies p(z) ≺ (1 + Az)/(1 + Bz),
where A,B,D,E ∈ [−1, 1]. Later, Kumar and Ravichandran [12] determined sharp
upper bounds on β such that 1 + βzp′(z)/pj(z), j = 0, 1, 2 is subordinate to some
Carathéodory functions like ez, φ0(z) etc. implies p(z) ≺ ez and (1 + Az)/(1 + Bz).
For more such results, we refer [1, 3, 7, 6].

In the present paper, we determine sharp estimate on β so that p(z) ≺ φq(z),
Q(z), φc(z), φ0(z), φlim(z), φs(z), φSG(z) whenever 1 + βzp′(z)/pj(z) ≺ Q(z) and
φSG(z); (j = 0, 1, 2). Further the best possible bound on β is computed such that
p(z) ≺ Q(z) whenever 1 + βzp′(z)/pj(z) ≺ φc(z); (j = 0, 1, 2). At last, the upper
bound on β is estimated so that the subordination 1+βzp′(z)/pj(z) ≺ φ0(z) and φc(z)
implies p(z) ≺ φSG(z). Moreover, sufficient conditions are obtained for an analytic
function f to be a member of a certain subclass of starlike function.

2. Main results

First, we recall following lemma which plays a vital role in our proofs.

Lemma 2.1. [16, Theorem 3.4h, p.132] Let q : D → C be analytic, and ψ and v be
analytic in a domain U ⊇ q(D) with ψ(w) 6= 0 whenever w ∈ q(D). Set

Q(z) := zq′(z)ψ(q(z)) and h(z) := v(q(z)) +Q(z), z ∈ D.
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Suppose that

(i) either h(z) is convex, or Q(z) is starlike univalent in D and

(ii) Re
(
zh′(z)
Q(z)

)
> 0, z ∈ D.

If p is analytic in D, with p(0) = q(0), p(D) ⊂ U and

v(p(z)) + zp′(z)ψ(p(z)) ≺ v(q(z)) + zq′(z)ψ(q(z))

then p ≺ q, and q is the best dominant.

Throughout this paper, the following notations will be used:

Ψβ(z, p(z)) = 1 + βzp′(z), Λβ(z, p(z)) = 1 + β
zp′(z)

p(z)
, and

Θβ(z, p(z)) = 1 + β
zp′(z)

p2(z)
.

Theorem 2.2. Let Q(z) ∈ P be defined by (1.1) and further

L =

∫ 0

−1

ee
t−1 − 1

t
dt and U =

∫ 1

0

ee
t−1 − 1

t
dt. (2.1)

Assume p to be an analytic function in D with p(0) = 1. If Ψβ(z, p(z)) ≺ Q(z), then

(a) p(z) ≺ φq(z) for β ≥ 1√
2
U ≈ 1.49762.

(b) p(z) ≺ Q(z) for β ≥ 1

1−e(e−1−1)
L ≈ 1.446103.

(c) p(z) ≺ φc(z) for β ≥ 1
2U ≈ 1.05898.

(d) p(z) ≺ φ0(z) for β ≥
(
3 + 2

√
2
)
L ≈ 3.94906.

(e) p(z) ≺ φlim(z) for β ≥ 2
2
√

2+1
U ≈ 1.10643.

(f) p(z) ≺ φs(z) for β ≥ 1
sin 1U ≈ 2.51696.

(g) p(z) ≺ φSG(z) for β ≥ e+1
e−1U ≈ 4.583145.

The bounds in each case are sharp.

Proof. The analytic function qβ : D→ C defined by

qβ(z) = 1 +
1

β

∫ z

0

ee
t−1 − 1

t
dt

is a solution of the first order linear differential equation 1 + βzq′β(z) = ee
z−1. For

w ∈ C, define the functions v(w) = 1 and ψ(w) = β. Now, the function Q : D → C
defined by

Q(z) = zq′β(z)ψ(qβ(z)) = βzq′β(z) = ee
z−1 − 1

is starlike in D. Also, note that by analytic characterization of starlike functions, the
function h : D→ C defined by h(z) := v(qβ(z)) +Q(z) satisfies the inequality

Re

(
zh′(z)

Q(z)

)
= Re

(
zQ′(z)

Q(z)

)
> 0.

Therefore, the subordination 1+βzp′(z) ≺ 1+βzq′β(z) implies p ≺ qβ by Lemma 2.1.

For suitable P(z), as r → 1, qβ(z) ≺ P(z) holds if the following inequalities holds:

P(−1) < qβ(−1) < qβ(1) < P(1). (2.2)
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By the transitivity property, the required subordination p(z) ≺ P(z) holds if qβ(z) ≺
P(z). The condition (2.2) turns out to be both necessary and sufficient for the sub-
ordination p ≺ P to hold.

(a) Consider P(z) = φq(z). Then the inequalities

qβ(−1) > −1 +
√

2 and qβ(1) < 1 +
√

2

reduce to β ≥ β1 and β ≥ β2, where

β1 =
1

2−
√

2
L and β2 =

1√
2
U

respectively.
Thus, the subordination qβ ≺ φq holds whenever β ≥ max{β1, β2} = β2.

(b) For P(z) = Q(z), the inequalities qβ(−1) > Q(−1) and qβ(1) < Q(1) give β ≥ β1

and β ≥ β2, where

β1 =
1

1− ee−1−1
L and β2 =

1

ee−1 − 1
U

respectively. Therefore, qβ ≺ Q whenever β ≥ max{β1, β2} = β1.
(c) On taking P(z) = φc(z), a simple calculation shows that the inequalities

qβ(−1) > φc(−1) and qβ(1) < φc(1) give β ≥ β1 and β ≥ β2, where
β1 = (3/2)L and β2 = (1/2)U respectively. Therefore, qβ ≺ φc holds whenever
β ≥ max{β1, β2} = β2.

(d) On substituting P(z) = φ0(z), the inequalities

qβ(−1) > φ0(−1) and qβ(1) < φ0(1)

give β ≥ β1 and β ≥ β2, where β1 = (1/(3 − 2
√

2))L and β2 = U respectively.
Therefore, the subordination qβ ≺ φ0 holds if β ≥ max{β1, β2} = β1.

(e) Take P(z) = φlim(z). Then the inequalities

qβ(−1) >
3

2
−
√

2 and qβ(1) <
3

2
+
√

2

reduce to β ≥ β1 and β ≥ β2, where

β1 = (2/(2
√

2− 1)L and β2 = 2/(2
√

2 + 1)U

respectively.
Thus, the required subordination qβ ≺ φlim holds if β ≥ max{β1, β2} = β2.

(f) Take P(z) = φs(z). Then the inequalities

qβ(−1) > 1 + sin(−1) and qβ(1) < 1 + sin(1)

give β ≥ β1 and β ≥ β2, where β1 = L/sin 1 and β2 = U/sin 1 respectively. This
shows that the subordination qβ ≺ φs holds if β ≥ max{β1, β2} = β2.

(g) Set P(z) = 2/(1 + e−z). Then qβ(−1) > 2/(e+ 1) and qβ(1) < 2e/(e+ 1) gives

β1 =
e+ 1

e− 1
L and β2 =

e+ 1

e− 1
U.

Hence, the subordination holds true for β ≥ β2 since max{β1, β2} = β2.

Thus, we get the required result. �
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Figure 1. Sharpness for the case (a) and (b).

As an application of Theorem 2.2, we have the following sufficient conditions for
starlikeness:

Corollary 2.3. Set M(z) := 1 − zf ′(z)/f(z) + zf ′′(z)/f ′(z). If the function f ∈ A
satisfies 1 + β zf

′(z)
f(z) M(z) ≺ Q(z), then

(a) f ∈ S∗q if β ≥
(
1/
√

2
)
U,

(b) f ∈ S∗B if β ≥
(

1/(1− e(e−1−1))
)
L,

(c) f ∈ S∗c if β ≥ (1/2)U,

(d) f ∈ S∗R if β ≥
(
3 + 2

√
2
)
L,

(e) f ∈ S∗LC if β ≥
(
2/(2
√

2 + 1)
)
U,

(f) f ∈ S∗s if β ≥ (1/(sin 1))U
(g) f ∈ S∗SG if β ≥ ((e+ 1)/(e− 1))U,

where U and L are given by (2.1).

Theorem 2.4. Let U and L be given by (2.1) and Q(z) be given by (1.1). Let p be an
analytic function in D with p(0) = 1. If Λβ(z, p(z)) ≺ Q(z), then

(a) p(z) ≺ φq(z) for β ≥ 1
log(1+

√
2)
U ≈ 2.40301.

(b) p(z) ≺ Q(z) for β ≥ 1
e−1U ≈ 1.23260.

(c) p(z) ≺ φc(z) for β ≥ 1
log 3U ≈ 1.92784.

(d) p(z) ≺ φ0(z) for β ≥ 1

log
(

1+
√

2
2

)L ≈ 3.59966.

(e) p(z) ≺ φlim(z) for β ≥ 1
log(
√

2+3/2)
U ≈ 1.98013.

(f) p(z) ≺ φs(z) for β ≥ 1
log(1+sin 1)U ≈ 3.4688.

(g) p(z) ≺ φSG(z) for β ≥ 1
1+log 2−log(1+e)U ≈ 5.57523.

The bounds on β are best possible.

Proof. Consider the first order differential equation given by

1 + β
zq̆′β(z)

q̆β(z)
= ee

z−1. (2.3)
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It is easy to verify that the analytic function q̆β : D→ C defined by

q̆β(z) = exp

(
1

β

∫ z

0

ee
t−1 − 1

t
dt

)
is a solution of differential equation (2.3). On taking v(w) = 1 and ψ(w) = β/w, the
functions Q, h : D→ C reduces to

Q(z) = zq̆′β(z)ψ(q̆β(z)) = βzq̆′β(z)/q̆β(z) = ee
z−1 − 1

and
h(z) = v(q̆β(z)) +Q(z) = 1 +Q(z) = ee

z−1.

It is seen that the function Q is starlike and Re (zh′(z)/Q(z)) > 0, for z ∈ D. Hence,

1 + β
zp′(z)

p(z)
≺ 1 + β

zq̆′β(z)

q̆β(z)
implies p(z) ≺ q̆β(z)

which follows from Lemma 2.1. Proceeding as Theorem 2.2, proof is completed. �

Theorem 2.5. Let U and L be given by (2.1) and Q(z) be given by (1.1). Assume p
to be an analytic function in D with p(0) = 1. If Θβ(z, p(z)) ≺ Q(z), then each of the
following subordination holds:

(a) p(z) ≺ φq(z) for β ≥ 1
2−
√

2
U ≈ 3.61556.

(b) p(z) ≺ Q(z) for β ≥ ee−1

ee−1−1U ≈ 2.58089.

(c) p(z) ≺ φc(z) for β ≥ 3
2U ≈ 3.17692.

(d) p(z) ≺ φ0(z) for β ≥ 2U ≈ 4.2359.

(e) p(z) ≺ φlim(z) for β ≥ 5+4
√

2
7 U ≈ 3.22438.

(f) p(z) ≺ φs(z) for β ≥ 1+sin 1
sin 1 U ≈ 4.63491.

(g) p(z) ≺ φSG(z) for β ≥ 2e
e−1U ≈ 6.7011.

The estimates on β cannot be improved further.

Proof. The function

q̂β(z) =

(
1− 1

β

∫ z

0

ee
t−1 − 1

t
dt

)−1

is the analytic solution of the differential equation

β
zq̂′β(z)

q̂2
β(z)

= ee
z−1 − 1.

Consider the functions v(w) = 1 and ψ(w) = β/w2. Moreover, the function Q(z) =
zq̂′β(z)ψ(q̂β(z)) = ee

z−1 − 1 is starlike in D. Simple computation shows that the

function h(z) := 1 +Q(z) satisfies the inequality Re (zh′(z)/Q(z)) > 0, (z ∈ D). Now,
by Lemma 2.1, we see that the subordination

1 + β
zp′(z)

p2(z)
≺ 1 + β

zq̂′β(z)

q̂2
β(z)

implies p(z) ≺ q̂β(z). Proceeding as Theorem 2.2, we conclude the proof. �
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Theorem 2.6. Let φSG be given by (1.2) and further

I− =

∫ 0

−1

et − 1

t(et + 1)
dt and I+ =

∫ 1

0

et − 1

t(et + 1)
dt. (2.4)

Assume p to be an analytic function in D with p(0) = 1. If the subordination

Ψβ(z, p(z)) ≺ φSG(z)

holds, then each of the following subordination inclusion hold:

(a) p(z) ≺ φq(z) for β ≥ 1
2−
√

2
I− ≈ 0.83117.

(b) p(z) ≺ φc(z) for β ≥ 3
2I− ≈ 0.730335.

(c) p(z) ≺ φ0(z) for β ≥ (3 + 2
√

2)I− ≈ 2.837797.
(d) p(z) ≺ Q(z) for β ≥ 1

1−ee−1−1
I− ≈ 1.039170.

(e) p(z) ≺ φlim(z) for β ≥ 2
2
√

2−1
I− ≈ 0.53257.

(f) p(z) ≺ φs(z) for β ≥ 1
sin 1I− ≈ 0.578616

(g) p(z) ≺ φSG(z) for β ≥ e+1
e−1I− ≈ 1.05361.

The bounds in each of the above case are sharp.

Proof. Consider the functions v and ψ defined as in Theorem 2.2. Define the function
qβ : D→ C by

qβ(z) = 1 +
1

β

∫ z

0

et − 1

t(et + 1)
dt

Note that the function qβ(z) is analytic solution of the differential equation

1 + βzq′β(z) = 2/(1 + e−z).

The function Q(z) = zq′β(z)ψ(qβ(z)) = (ez − 1)/(ez + 1) is starlike in D and h(z) =

1 +Q(z) satisfies the inequality Re (zh′(z)/Q(z)) > 0, z ∈ D. Thus, applying Lemma
2.1, it follows that the subordination 1 + βzp′(z) ≺ 1 + βzq′β(z) implies p(z) ≺ qβ(z).

Each of the subordination p(z) ≺ P(z), for appropriate P, from (a) to (g) holds if
qβ(z) ≺ P(z) holds. This subordination holds provided

P(−1) < qβ(−1) < qβ(1) < P(1).

These inequalities yield necessary and sufficient condition for the required subordina-
tion.

(a) Take P(z) = φq(z). Then, the inequalities qβ(−1) > −1+
√

2 and qβ(1) < 1+
√

2
reduce to β ≥ β1 and β ≥ β2, where

β1 =
1

2−
√

2
I− and β2 =

1√
2
I+

respectively. Therefore, qβ ≺ φq whenever β ≥ max{β1, β2} = β1.
(b) Consider P(z) = φc(z). A simple calculation shows that the inequalities

qβ(−1) > φc(−1) and qβ(1) < φc(1) gives β ≥ β1 and β ≥ β2, where

β1 =
3

2
I− and β2 =

1

2
I+

respectively.
Therefore, the subordination qβ ≺ φc holds if β ≥ max{β1, β2} = β1.
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(c) On taking P(z) = φ0(z), the inequalities qβ(−1) > φ0(−1) and qβ(1) < φ0(1)
give β ≥ β1 and β ≥ β2, where

β1 =
1

3− 2
√

2
I− and β2 = I+

respectively. Therefore, qβ ≺ φ0 if β ≥ max{β1, β2} = β1.
(d) Consider P(z) = Q(z). From the inequalities qβ(−1) > Q(−1) and qβ(1) < Q(1),

we note that β ≥ β1 and β ≥ β2, where

β1 =
1

1− ee−1−1
I− and β2 =

1

ee−1 − 1
I+

respectively. Thus, qβ ≺ Q if β ≥ max{β1, β2}.
(e) Take P(z) = φlim(z). Then, the inequalities qβ(−1) > 3

2−
√

2 and qβ(1) < 3
2 +
√

2
reduce to β ≥ β1 and β ≥ β2, where

β1 =
2

2
√

2− 1
I− and β2 =

2

2
√

2 + 1
I+

respectively. Thus, qβ ≺ φlim whenever β ≥ max{β1, β2} = β1.
(f) Take P(z) = φs(z). Then, the inequalities qβ(−1) > 1 + sin(−1) and

qβ(1) < 1 + sin(1) give β ≥ β1 and β ≥ β2, where

β1 =
1

sin 1
I− and β2 =

1

sin 1
I+

respectively.
Therefore, the subordination qβ ≺ φs holds if β ≥ max{β1, β2} = β1.

(g) Let P(z) = φSG(z). On simplifying the inequalities qβ(−1) > 2/(e + 1) and
qβ(1) < 2e/(e+ 1), we get β1 and β2, where

β1 =
e+ 1

e− 1
I− and β2 =

e+ 1

e− 1
I+

respectively and thus, qβ ≺ φSG whenever β ≥ max{β1, β2} = β1.
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Figure 2. Sharpness for the case (b) and (f).

Hence, the result holds. �
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As an application of Theorem 2.6, we have the following sufficient conditions for
starlikeness:

Corollary 2.7. Let f ∈ A be analytic function which satisfies

1 + β
zf ′(z)

f(z)
M(z) ≺ φSG(z).

Then,

(a) f ∈ S∗q if β ≥
(
1/(2−

√
2)
)
I−,

(b) f ∈ S∗c if β ≥ (3/2) I−,

(c) f ∈ S∗R if β ≥ (3 + 2
√

2)I−,

(d) f ∈ S∗B if β ≥
(

1/(1− ee−1−1)
)
I−,

(e) f ∈ S∗LC if β ≥
(
2/(2
√

2− 1)
)
I−,

(f) f ∈ S∗s if β ≥ (1/(sin 1)) I−,

where M(z) is defined in Corollary 2.3.

Theorem 2.8. Let I+ and I− be given by 2.4 and φSG be given by (1.2). Assume p to
be an analytic function in D with p(0) = 1. If Λβ(z, p(z)) ≺ φSG(z), then each of the
following holds.

(a) p(z) ≺ φq(z) for β ≥ 1
log(1+

√
2)
I− ≈ 0.55242.

(b) p(z) ≺ φc(z) for β ≥ 1
log 3I− ≈ 0.443185.

(c) p(z) ≺ φ0(z) for β ≥ 1

log
(

1+
√

2
2

)I− ≈ 2.58671.

(d) p(z) ≺ Q(z) for β ≥ 1
1−e−1 I− ≈ 0.77024.

(e) p(z) ≺ φlim(z) for β ≥ 1
log(
√

2+3/2)
I+ ≈ 0.455206.

(f) p(z) ≺ φs(z) for β ≥ 1
log(1+sin 1)I+ ≈ 0.79744.

(g) p(z) ≺ φSG(z) for β ≥ 1
1+log 2−log(1+e)I+ ≈ 1.28167.

The estimates on β are best possible.

Proof. Let the functions v and ψ be defined as in Theorem 2.4. Define the analytic
function q̆β : D→ C by

q̆β(z) = exp

(
1

β

∫ z

0

et − 1

t(et + 1)
dt

)
,

which satisfies the differential equation

dq̆′β(z)

dz
=

1

βz

(
1− e−z

1 + e−z

)
q̆β(z).

Now, observe that the function Q(z) = zq̆′β(z)ψ(q̆β(z)) = 1−e−z
1+e−z is starlike in D. Also,

it can be easily seen that the function h defined by h(z) := v(q̆β(z))+Q(z) = 1+Q(z)
satisfies the inequality Re (zh′(z)/Q(z)) > 0, z ∈ D. Therefore, the Lemma 2.1 states

that the subordination 1 +β zp
′(z)
p(z) ≺ 1 +β

zq̆′β(z)

q̆β(z) implies p(z) ≺ q̆β(z). As in the proof

of Theorem 2.6, we conclude the result. �
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Theorem 2.9. Let I+ and I− be given by (2.4). Assume p to be an analytic function
in D with p(0) = 1. If Θβ(z, p(z)) ≺ φSG(z), then

(a) p(z) ≺ φq(z) for β ≥ 1
2−
√

2
I+ ≈ 0.83117.

(b) p(z) ≺ φc(z) for β ≥ 3
2I+ ≈ 0.73033.

(c) p(z) ≺ φ0(z) for β ≥ (2 + 2
√

2)I− ≈ 2.35090.

(d) p(z) ≺ Q(z) for β ≥ ee−1

ee−1−1I+ ≈ 0.59331.

(e) p(z) ≺ φlim(z) for β ≥ 5+4
√

2
7 I+ ≈ 0.74124.

(f) p(z) ≺ φs(z) for β ≥ 1+sin 1
sin 1 I+ ≈ 1.06550.

(g) p(z) ≺ φSG(z) for β ≥ 2e
e−1I+ ≈ 1.54049.

All these estimates are sharp.

Proof. The function q̂β : D→ C defined by

q̂β(z) =

(
1− 1

β

∫ z

0

et − 1

t(et + 1)
dt

)−1

is clearly analytic in D. It is noted that the function q̂β(z) is a solution of the differ-
ential equation

1 + β
zq̂′β(z)

q̂2
β(z)

=
2

1 + e−z
.

We take the functions v and ψ as in Theorem 2.5. Note that the function Q defined
by Q(z) = zq̂′β(z)ψ(q̂β(z)) = (1 − e−z)/(1 + e−z) is starlike in D and the function h

defined as h(z) := v(q̂β(z))+Q(z) = 1+Q(z) follows the inequality Re (zh′(z)/Q(z)) =
Re (zQ′(z)/Q(z)) > 0. Therefore, as in view of Lemma 2.1, the subordination

1 + β
zp′(z)

p2(z)
≺ 1 + β

zq̂′β(z)

q̂2
β(z)

implies p(z) ≺ q̂β(z). Proceeding as in Theorem 2.6, proof is completed. �

Theorem 2.10. Let p be an analytic function in D with p(0) = 1. Then each of the
following subordination implies p(z) ≺ Q(z) := ee

z−1:

(a) Ψβ(z, p(z)) ≺ φc(z) if β ≥ 1

1−e(e−1−1)
≈ 2.13430.

(b) Λβ(z, p(z)) ≺ φc(z) if β ≥ e
e−1 ≈ 1.581976.

(c) Θβ(z, p(z)) ≺ φc(z) if β ≥ 5ee−1

3(ee−1−1) ≈ 2.030970.

The bounds in each case are sharp.

Proof. (a) Define the analytic function qβ : D→ C by

qβ(z) = 1 +
1

β

(
4z

3
+
z2

3

)
It is easy to see that the function qβ satisfies the differential equation βzq′(z) =
φc(z)−1. Proceeding as similar lines in Theorem 2.2, the required subordination
holds if and only if,

ee
−1−1 < qβ(−1) < qβ(1) < ee−1. (2.5)
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Simplifying the condition (2.5), we obtain the inequalities

β ≥ 1

1− e(e−1−1)
= β1 and β ≥ 5e

3 (ee − e)
= β2.

Thus, the required subordination holds if β ≥ max{β1, β2} = β1.
(b) Define the analytic function q̆β(z) by,

q̆β(z) = exp

(
1

β

(
4z

3
+
z2

3

))
which is a solution of the equation

dq̆′β(z)

dz
=

2(2 + z)

3β
q̆β(z).

Proceeding as similar lines in Theorem 2.4, the subordination p(z) ≺ eez−1 holds

if β ≥ max{β̆1, β̆2}, where

β̆1 =
e

e− 1
and β̆2 =

5

3(e− 1)

are obtained from the inequalities q̆β(−1) > ee
−1−1 and q̆β(1) < ee−1 respec-

tively.
(c) The differential equation

dq̂′β(z)

dz
=

2(2 + z)

3β
q̂2
β(z)

has an analytic solution

q̂β(z) =

(
1− 1

β

(
4z

3
+
z2

3

))−1

in D. Therefore, proceeding as in Theorem 2.5, the required subordination p(z) ≺
ee
z−1 holds if β ≥ max{β̂1, β̂2} = β̂2, where

β̂1 =
e

1
e−1

1− e 1
e−1

and β̂2 =
5ee−1

3(ee−1 − 1)
.

�

Corollary 2.11. Let f ∈ A be given by f(z) = z +
∞∑
n=2

anz
n. If one of the following

subordinations holds

(a) 1 + β zf
′(z)

f(z) M(z) ≺ φc(z) for β ≥ 1

1−e(e−1−1)
,

(b) 1 + βM(z) ≺ φc(z) for β ≥ e
e−1 ,

(c) 1 + β
(
zf ′(z)
f(z)

)−1

M(z) ≺ φc(z) for β ≥ 5ee−1

3(ee−1−1) ,

then f ∈ S∗B, where M(z) is defined in Corollary 2.3.

The next results provide best possible bound on β so that the subordination
1+βzp′(z)/pj(z) ≺ φc(z), φ0(z)(j = 0, 1, 2) implies the subordination p(z) ≺ φSG(z).
Proofs of the following results are omitted as similar to the previous Theorem 2.10.



786 Meghna Sharma, Sushil Kumar and Naveen Kumar Jain

Theorem 2.12. Let p be an analytic function in D with p(0) = 1. Then the following
subordinations hold for p(z) ≺ φSG(z) := 2/(1 + e−z).

(a) Ψβ(z, p(z)) ≺ φ0(z) if β ≥ (e+1)(1−
√

2−2 log(2−
√

2))
e−1 ≈ 1.418226.

(b) Λβ(z, p(z)) ≺ φ0(z) if β ≥ 1−
√

2−2 log(2−
√

2)
1+log 2−log(1+e) ≈ 1.725221.

(c) Θβ(z, p(z)) ≺ φ0(z) if β ≥ 2e(1−
√

2−2 log(2−
√

2))
e−1 ≈ 2.073612.

The bounds on β in each case are sharp.

Theorem 2.13. Let p be an analytic function in D which satisfies p(0) = 1. Then each
of the following subordination is sufficient for p(z) ≺ φSG(z).

(a) Ψβ(z, p(z)) ≺ φc(z) if β ≥ 5(e+1)
3(e−1) ≈ 3.60659.

(b) Λβ(z, p(z)) ≺ φc(z) if β ≥ 5
3(1+log 2−log(1+e)) ≈ 4.387286.

(c) Θβ(z, p(z)) ≺ φc(z) if β ≥ 10e
3(e−1) ≈ 5.27326.

The bounds on β in each case are sharp.
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