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Implicit Caputo-Fabrizio fractional differential
equations with delay

Salim Krim, Säıd Abbas, Mouffak Benchohra and Juan J. Nieto

Abstract. This article deals with some existence and uniqueness results for several
classes of implicit fractional differential equations with delay. Our results are
based on some fixed point theorems. To illustrate our results, we present some
examples in the last section.
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1. Introduction

Functional differential equations and inclusions of fractional order have recently
been applied in various areas of sciences; see the monographs [1, 2, 3, 20, 24, 28, 25],
the papers [5, 8, 26, 27], and the references therein.

The study of implicit differential equations has received great attention in the
last years; see [1, 5, 6, 8, 9, 10, 7, 22, 27].

Functional differential equations with delay have received significant attention
in recent years. Several authors studied differential equations with delay [1, 4, 8, 13,
14, 15, 16, 17, 18, 19].

In this paper, first we investigate the following class of Caputo-Fabrizio fractional
differential equation with finite delay{

℘(t) = ζ(t); t ∈ [−h, 0],

(CFDr
0℘)(t) = f(t, ℘t, (

CFDr
0℘)(t)); t ∈ I := [0, T ],

(1.1)
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where h > 0, T > 0, ζ ∈ C, f : I × C × R→ R is a given continuous function, CFDr
0

is the Caputo-Fabrizio fractional derivative of order r ∈ (0, 1], and C := C([−h, 0],R)
is the space of continuous functions on [−h, 0]. Here, for any t ∈ I, we define ℘t by

℘t(s) = ℘(t+ s); for s ∈ [−h, 0].

Next, we consider the following infinite delay problem{
℘(t) = ζ(t); t ∈ R− := (−∞, 0],

(CFDr
0℘)(t) = f(t, ℘t, (

CFDr
0℘)(t)); t ∈ I,

(1.2)

where ζ : R− → R, f : I ×B ×R→ R are given continuous functions, and B is called
a phase space that will be specified later. In this case, for any t ∈ I, we let ℘t ∈ B be
such that

℘t(s) = ℘(t+ s); for s ∈ R−.
In the third section, we investigate the following state-dependent finite delay problem{

℘(t) = ζ(t); t ∈ [−h, 0],

(CFDr
0℘)(t) = f(t, ℘ρ(t,℘t), ((

CFDr
0℘)(t)); t ∈ I,

(1.3)

where ζ ∈ C, ρ : I × C → R, f : I × C × R→ R are given continuous functions.

Finally, we study the following class of Caputo-Fabrizio fractional differential
equations with state dependent infinite delay{

℘(t) = ζ(t); t ∈ R−,
(CFDr

0℘)(t) = f(t, ℘ρ(t,℘t), ((
CFDr

0℘)(t)); t ∈ I,
(1.4)

where ζ : R− → R, f : I × B × R→ R are given continuous functions.

In the last section, we present some examples illustrating our presented results.

2. Preliminaries

Let (C(I), ‖ · ‖∞) be the Banach space of continuous real functions on I with

‖ξ‖∞ := sup
t∈I
|ξ(t)|.

As usual, AC(I) denotes the space of absolutely continuous real functions on I, and
by L1(I) we denote the space of measurable real functions on I which are Lebesgue
integrable with the norm

‖ξ‖1 =

∫
I

|ξ(t)|dt.

Definition 2.1. [11, 23] The Caputo-Fabrizio fractional integral of order 0 < r < 1 for
a function w ∈ L1(I) is defined by

CF Irw(τ) =
2(1− r)

M(r)(2− r)
w(τ) +

2r

M(r)(2− r)

∫ τ

0

w(x)dx, τ ≥ 0

where M(r) is normalization constant depending on r.
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Definition 2.2. [11, 23] The Caputo-Fabrizio fractional derivative for a function w ∈
C1(I) of order 0 < r < 1, is defined by

CFDrw(τ) =
(2− r)M(r)

2(1− r)

∫ τ

0

exp(− r

1− r
(τ − x))w′(x)dx; τ ∈ I.

Note that (CFDr)(w) = 0 if and only if w is a constant function.

Example 2.3. [11]
1- For h(t) = t and 0 < r ≤ 1, we have

(CFDrh)(t) =
M(r)

r

(
1− exp

(
− r

1− r
t

))
.

2- For g(t) = eλt, λ ≥ 0 and 0 < r ≤ 1, we have

(CFDrg)(t) =
λM(r)

r + λ(1− r)
eλt
(

1− exp

(
−λ− r

1− r
t

))
.

Lemma 2.4. [21] Let h ∈ L1(I). Then the linear problem{
(CFDr

0℘)(t) = h(t); t ∈ I := [0, T ]
℘(0) = ℘0,

(2.1)

has a unique solution given by

℘(t) = ℘0 − arh(0) + arh(t) + br

∫ t

0

h(s)ds, (2.2)

where

ar =
2(1− r)

(2− r)M(r)
, br =

2r

(2− r)M(r)
.

3. Existence of solutions with finite delay

In this section, we establish the existence results for problem (1.1). Consider the
Banach space

C = {℘ : (−h, T ]→ R, ℘|[−h,T ] ≡ ζ, ℘|I ∈ C(I)}.
with the norm

‖℘‖C = max{‖ζ‖[−h,0], ‖℘‖∞}.
Definition 3.1. By a solution of problem (1.1), we mean a function ℘ ∈ C such that

℘(t) =

{
ζ(t); t ∈ [−h, 0],

ζ(0)− arg(0) + arg(t) + br
∫ t
0
g(s)ds; t ∈ I,

where g ∈ C(I) with g(t) = f(t, ℘t, g(t)).

The following hypotheses will be used in the sequel.

• (H1) There exist constants ω1 > 0, 0 < ω2 < 1 such that:

|f(t, ℘1,=1)− f(t, ℘2,=2)| ≤ ω1‖℘1 − ℘2‖[−h,0] + ω2|=1 −=2|,
for any ℘1, ℘2 ∈ C, =1,=2 ∈ R, and each t ∈ I.
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• (H2) For any bounded set B ⊂ C, the set:

{t 7→ f(t, ℘t, (
CFDr

0℘)(t)) : ℘ ∈ B};

is equicontinuous in C.

Theorem 3.2. If (H1) holds, and

` :=
ω1(2ar + Tbr)

1− ω2
< 1, (3.1)

then problem (1.1) has a unique solution on [−h, T ].

Proof. Consider the operator N : C → C defined by:

(N℘)(t) =

{
ζ(t); t ∈ [−h, 0],

ζ(0)− arg(0) + arg(t) + br
∫ t
0
g(s)ds; t ∈ I,

(3.2)

where g ∈ C(I) such that g(t) = f(t, ℘t, g(t)).

Let u, v ∈ C(I). Then, for each t ∈ [−h, 0], we have

|(N℘)(t)− (N=)(t)| = 0,

and for each t ∈ I, we have

|(N℘)(t)− (N=)(t)| ≤ ar|g(0)− h(0)|+ ar|g(t)− h(t)|
+br

∫ t
0
|g(s)− h(s)|ds

where g, h ∈ C(I) such that

g(t) = f(t, ℘t, g(t)) and h(t) = f(t,=t, h(t)).

From (H1), we have

|g(t)− h(t)| = |f(t, ℘t, g(t))− f(t,=t, h(t))|
≤ ω1‖℘t −=t‖[−h,0] + ω2|g(t)− h(t)|.

This gives,

|g(t)− h(t)| ≤ ω1

1− ω2
‖℘t −=t‖[−h,0].

Thus, for each t ∈ I, we get

|(N℘)(t)− (N=)(t)| ≤ 2ar
ω1

1−ω2
‖℘t −=t‖[−h,0]

+br
∫ t
0

ω1

1−ω2
‖℘s −=s‖[−h,0]ds

≤ 2ar
ω1

1−ω2
‖℘−=‖C + Tbr

ω1

1−ω2
‖℘−=‖C

≤ ω1(2ar+Tbr)
1−ω2

‖℘−=‖C
≤ `‖℘−=‖C .

Hence, we get

‖N(℘)−N(=)‖C ≤ `‖℘−=‖C .
Since ` < 1, the Banach contraction principle implies that problem (1.1) has a unique
solution.
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Theorem 3.3. If (H1) and (H2) hold, and
ω1

1− ω2
(2ar + Tbr) < 1,

then problem (1.1) has at least one solution on [−h, T ].

Proof. Consider the operator N : C → C defined in (3.2).
Let R > 0 such that

R ≥ max

{
‖ζ‖C([−h,0]),

|ζ(0)|+ f∗

1−ω2
(2ar + Tbr)

1− ω1

1−ω2
(2ar + Tbr)

}
, (3.3)

where f∗ := sup
t∈I
|f(t, 0, 0)|.

Define the ball
BR = {x ∈ C(I,R), ‖x‖C ≤ R}.

Step 1. N is continuous .
Let {℘n}n be a sequence such that ℘n → ℘ on BR. For each t ∈ [−h, 0], we have

|(N℘n)(t)− (N℘)(t)| = 0,

and for each t ∈ I, we have

|(N℘n)(t)− (N℘)(t)| ≤ ar|gn(0)− g(0)|+ ar|gn(t)− g(t)|
+br

∫ t
0
|gn(s)− g(s)|ds, (3.4)

where gn, g ∈ C(I) such that

gn(t) = f(t, ℘nt, gn(t)) and g(t) = f(t, ℘t, g(t)).

Since ‖℘n − ℘‖C → 0 as n → ∞ and f, g and gn are continuous, then the Lebesgue
dominated convergence theorem, implies that

‖N(℘n)−N(℘)‖C → 0 as n→∞.
Hence, N is continuous.
Step 2. N(BR) ⊂ BR.
Let ℘ ∈ BR, If t ∈ [−h, 0] then ‖(N℘)(t)‖ ≤ ‖ζ‖C ≤ R. From (H1), for each t ∈ I,
we have

|g(t)| = |f(t, ℘t, g(t))|
≤ |f(t, 0, 0)|+ ω1‖℘t‖[−h,0] + ω2|g(t)|
≤ f∗ + ω1‖℘‖C + ω2‖g‖∞
≤ f∗ + ω1R+ ω2‖g‖∞.

Then

‖g‖∞ ≤
f∗ + ω1R

1− ω2
.

Thus,

|(N℘)(t)| ≤ |ζ(0)− arg(0) + arg(t) + br
∫ t
0
g(s)ds|

≤ |ζ(0)|+ ar|g(0)|+ ar|g(t)|+ br
∫ t
0
|g(s)|ds

≤ |ζ(0)|+ f∗+ω1R
1−ω2

(2ar + br
∫ t
0
ds)

≤ |ζ(0)|+ f∗+ω1R
1−ω2

(2ar + Tbr)

≤ R.
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Hence

‖N(℘)‖C ≤ R.
Consequently, N(BR) ⊂ BR.

Step 3. N(BR) is equicontinuous.
For 1 ≤ t1 ≤ t2 ≤ T, and u ∈ BR, we have

|N(℘)(t1)−N(℘)(t2)| ≤ ar|g(t2)− g(t1)|+ br
∫ t2
t1
|g(s)|ds|

≤ ar|g(t2)− g(t1)|+ RKbr
1−L (t2 − t1).

Thus, from (H2), ar|g(t2) − g(t1)| + RKbr
1−L (t2 − t1) → 0; as t2 → t1. This gives the

equicontinuity of N(BR).

From the above steps and the Arzelá-Ascoli theorem, we conclude that N is
continuous and compact. Consequently, from Schauder’s theorem [12] we deduce that
problem (1.1) has at least one solution.

4. Existence of solutions with infinite delay

In this section, we establish some existence results for problem (1.2). Let the
space (B, ‖ · ‖B) is a seminormed linear space of functions mapping (−∞, T ] into
R, and satisfying the following fundamental axioms which were adapted from those
introduced by Hale and Kato [13] for ordinary differential functional equations:

(A1). If ℘ : (−∞, T ]→ R, and ℘0 = ζ(0) ∈ B, then there exist constants L,M,H >
0, such that for each t ∈ I; we have:

(i). ℘t is in B,
(ii). ‖℘t‖B ≤ K‖℘0‖B +M sups∈[0,t] |℘(s)|,
(iii). ‖℘(t)‖ ≤ H‖℘t‖B.

(A2). For the function ℘(·) in (A1), ut is a B− valued continuous function on I.
(A3). The space B is complete.

Consider the space

Ω = {℘ : (−∞, T ]→ R, ℘|R− ∈ B, ℘|I ∈ C(I)}.

Definition 4.1. By a solution of problem (1.2), we mean a continuous function ℘ ∈ Ω

℘(t) =

{
ζ(t); t ∈ R−,
ζ(0)− arg(0) + arg(t) + br

∫ t
0
g(s)ds; t ∈ I,

(4.1)

where g ∈ C such that g(t) = f(t, ℘t, g(t)).

Let us introduce the following hypotheses:

• (H01) The function f satisfies the Lipschitz condition:

|f(t, ℘1,=1)− f(t, ℘2,=2)| ≤ b1‖℘1 − ℘2‖B + b2|=1 − ℘2|,
for any ℘1,=1 ∈ B, ℘2,=2 ∈ R, and each t ∈ I, where b1 > 0 and 0 < b2 < 1.
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• (H02) For any bounded set B1 ⊂ Ω, the set:

{t 7→ f(t, ℘t, (
CFDr

0℘)(t)) : ℘ ∈ B1};
is equicontinuous in Ω.

First, we prove an existence and uniqueness result by using the Banach’s fixed point
theorem.

Theorem 4.2. Assume that the hypothesis (H01) holds. If

λ := (2ar + Tbr)
b1

1− b2
< 1, (4.2)

then problem (1.2) has a unique solution on (−∞, T ].

Proof. Consider the operator N1 : Ω→ Ω defined by:

(N1℘)(t) =

{
ζ(t); t ∈ R−,
ζ(0)− arg(0) + arg(t) + br

∫ t
0
g(s)ds; t ∈ I,

(4.3)

where g ∈ C(I) such that g(t) = f(t, ℘t, g(t)).
Let x(·) : (−∞, T ]→ R be a function defined by

x(t) =

{
ζ(t); t ∈ R−,
ζ(0)− t ∈ I.

Then x0 = ζ, For each z ∈ C(I), with z(0) = 0, we denote by z the function defined
by

z =

{
0; t ∈ t ∈ R−,
z(t), t ∈ I.

If ℘(·) satisfies the integral equation

℘(t) = ζ(0)− arg(0) + arg(t) + br
∫ t
0
g(s)ds.

We can decompose ℘(·) as ℘(t) = z(t)+x(t); for t ∈ I, which implies that ℘t = zt+xt
for every t ∈ I, and the function z(·) satisfies

z(t) = −arg(0) + arg(t) + br

∫ t

0

g(s)ds,

where

g(t) = f(t, zt + xt, g(t)); t ∈ I.
Set

C0 = {z ∈ C(I); z0 = 0},
and let ‖ · ‖T be the norm in C0 defined by

‖z‖T = ‖z0‖B + sup
t∈I
|z(t)| = sup

t∈I
|z(t)|; z ∈ C0.

C0 is a Banach space with norm ‖ · ‖T . Define the operator P : C0 → C0; by

(Pz)(t) = −arg(0) + arg(t) + br

∫ t

0

g(s)ds, (4.4)



734 Salim Krim, Säıd Abbas, Mouffak Benchohra and Juan J. Nieto

where

g(t) = f(t, zt + xt, g(t)); t ∈ I.
We shall show that P : C0 → C0 is a contraction map. Let z, z′ ∈ C0, then we have
for each t ∈ I

|P (z)(t)− P (z′)(t)| ≤ ar|g(0)− h(0)|+ ar|g(t)− h(t)|+ br
∫ t
0
|g(s)− h(s)|ds,

(4.5)
where g, h ∈ C(I) such that

g(t) = f(t, zt + xt, g(t)) and h(t) = f(t, z′t + xt, h(t)).

Since, for each t ∈ I, we have

|g(t)− h(t)| ≤ b1
1− b2

‖zt − z′t‖B.

Then, for each t ∈ I; we get

|P (z)(t)− P (z′)(t)| ≤ (2ar + br
∫ t
0
ds) b1

1−b2 ‖zt − z
′
t‖B

≤ (2ar + Tbr)
b1

1−b2 ‖zt − z
′
t‖B

= λ‖z − z′‖T .

Thus, we get

‖P (z)(t)− P (z′)(t)‖T ≤ λ‖z − z′‖T .

Hence, from the Banach contraction principle, the operator P has a unique
fixed point. Consequently, N has a unique fixed point which is the unique solution of
problem (1.2).

Now, we prove an existence result by using Schaefer’s fixed point theorem.

Theorem 4.3. Assume that the hypotheses (H01) and H02 hold. Then problem (1.2)
has at least one solution on (−∞, T ].

Proof. Let P : C0 → C0 defined as in (4.4), For each given R > 0, we define the ball

BR = {x ∈ C0, ‖x‖T ≤ R}.

Step 1. N is continuous.
Let zn be a sequence such that zn → z in C0. For each t ∈ I, we have

|(Pzn)(t)− (Pz)(t)| ≤ ar|gn(0)− g(0)|+ ar|gn(t)− g(t)|

+br
∫ t
0
|gn(s)− g(s)|ds,

(4.6)

where gn, g ∈ C(I) such that

gn(t) = f(t, znt + xt, gn(t)) and g(t) = f(t, zt + xt, g(t)).

Since ‖zn − z‖T → 0 as n→∞ and f, g and gn are continuous, then

‖P (℘n)− P (℘)‖T → 0 as n→∞.

Hence, P is continuous.
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Step 2. P (BR) is bounded.
Let z ∈ BR, for each t ∈ I, we have

|g(t)| ≤ |f(t, zt + xt, g(t))|
≤ |f(t, 0, 0)|+ b1‖zt + xt‖B + b2|g(t)|
≤ f∗ + b1 [‖zt‖B + ‖xt‖B] + b2‖g‖∞
≤ f∗ + b1MR+ b1K‖ζ‖B + b2‖g‖∞.

Then

‖g‖∞ ≤
f∗ + b1MR+ b1K‖ζ‖B

1− b2
.

Thus,

|(Pz)(t)| ≤ ar|g(0)|+ ar|g(t)|+ br
∫ t
0
|g(s)|ds

≤ (2ar + br
∫ t
0
ds) f

∗+b1MR+b1K‖ζ‖B
1−b2

≤ (2ar + Tbr)
f∗+b1MR+b1K‖ζ‖B

1−b2
:= `.

Hence

‖P (z)‖T ≤ `.
Consequently, P maps bounded sets into bounded sets in C0.

Step 3. P (BR) is equicontinuous.
For 1 ≤ t1 ≤ t2 ≤ T, and z ∈ BR, we have

|P (z)(t1)− P (z)(t2)| ≤ ar|g(t2)− g(t1)|+ br
∫ t2
t1
|g(s)|ds

≤ ar|g(t2)− g(t1)|+ br(t2 − t1) f
∗+b1MR+b1K‖ζ‖B

1−b2 .

By (H02), as t2 → t1 the right-hand side of the above inequality tends to zero, we
conclude that P maps bounded sets into equicontinuous sets in C0.

Step 4. The priori bounds.
We prove that the set

E = {℘ ∈ C0 : = = λP (℘); for some λ ∈ (0, 1)}

is bounded. Let z ∈ C0. Let u ∈ C0, such that z = λP (z); for some λ ∈ (0, 1). Then
for each t ∈ I, we have

z(t) = λ(Pz)(t) = λζ(0) + λar(g(t)− g(0)) + λbr

∫ t

0

g(s)ds.

From (H01) we have

|g(t)| ≤ |f(t, zt + xt, g(t))|
≤ f∗ + b1‖zt + xt‖B + b2|g(t)|
≤ f∗ + b1 [‖zt‖B + ‖xt‖B] + b2‖g‖∞
≤ f∗ + b1M‖z‖T + b1K‖ζ‖B + b2‖g‖∞.

This gives,

‖g‖∞ ≤
f∗ + b1M‖z‖T + b1K‖ζ‖B

1− b2
:= η.
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Thus, for each t ∈ I, we obtain

|z(t)| ≤ |ζ(0)|+ ar|g(0)|+ arg(t) + br
∫ t
0
|g(s)|ds

≤ |ζ(0)|+ η(2ar + Tbr)
:= η′.

Hence

‖z‖T ≤ η′.
This shows that the set E is bounded. As a consequence of Schaefer’s theorem [12],
the operator N has a fixed point which is a solution of problem (1.2).

5. Existence results with state-dependent delay

5.1. The finite delay case

In this section, we establish the existence results for problem (1.3).

Definition 5.1. By a solution of problem (1.3), we mean a continuous function ℘ ∈ C
such that

℘(t) =

{
ζ(t); t ∈ [−h, 0],

ζ(0)− arg(0) + arg(t) + br
∫ t
0
g(s)ds; t ∈ I,

where g ∈ C(I) with g(t) = f(t, ℘ρ(t,℘t), g(t)).

• (H4) The function f satisfies the Lipschitz condition:

|f(t, ℘1,=1)− f(t, ℘2,=2)| ≤ ω3‖℘1 − ℘2‖[−h,0] + ω4|=1 −=2|,

for any ℘1,=1 ∈ C, ℘2,=2 ∈ R, and each t ∈ I,
where ω3 > 0, 0 < ω4 < 1.
• (H5) For any bounded set B2 ⊂ C, the set:

{t 7→ f(t, ℘t, (
CFDr

0℘)(t)) : ℘ ∈ B2};

is equicontinuous in C.

As in Theorems 3.2 and 3.3, we give without prove, the following results:

Theorem 5.2. Assume that the hypothesis (H4) holds. If

(2ar + Tbr)
ω3

1− ω4
< 1,

then problem (1.2) has a unique solution on [−h, T ].

Theorem 5.3. Assume that the hypotheses (H4) and (H5) hold. If

a1
1− a2

(2ar + Tbr) < 1,

then problem (1.3) has at least one solution on [−h, T ].
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5.2. The infinite delay case

Now, we establish the last problem (1.4).

Definition 5.4. By a solution of problem (1.4), we mean a continuous ℘ ∈ Ω

℘(t) =

{
ζ(t); t ∈ R−,
ζ(0)− arg(0) + arg(t) + br

∫ t
0
g(s)ds; t ∈ I,

(5.1)

where g ∈ C(I) such that g(t) = f(t, ℘ρ(t,℘t), g(t)).

Set

R′ := R′ρ− = {ρ(t, ℘) : t ∈ I, ℘ ∈ B ρ(t, ℘) < 0}

We always assume that ρ : I × B → R is continuous and the function t → ℘t is
continuous from R′ into B. We will need the following hypothesis:

(Hζ) There exists a continuous bounded function L : R′ρ− → (0,∞) such that

‖ζt‖B ≤ L(t)‖ζ‖B, for any t ∈ R′.

Lemma 5.5. If ℘ ∈ Ω then

‖℘t‖B = (M + L′)‖ζ‖B +K sup
θ∈[0,max{0,t}]

‖℘(θ)‖,

where

L′ = sup
t∈R′

L(t).

• (H04) The function f satisfies the Lipschitz condition:

|f(t, ℘1,=1)− f(t, ℘2,=2)| ≤ b3‖℘1 − ℘2‖B + b4|=1 −=2|,

for any ℘1,=1 ∈ B, ℘2,=2 ∈ R, and each t ∈ I, where b3 > 0 and 0 < b4 < 1.
• (H05) For any bounded set B2 ⊂ Ω, the set:

{t 7→ f(t, ℘t, (
CFDr

0℘)(t)) : u ∈ B2};

is equicontinuous in Ω.

As in Theorems 4.2 and 4.3, we give without prove, the following results:

Theorem 5.6. Assume that the hypothesis (H04) holds. If

(2ar + Tbr)
b3

1− b4
< 1,

then problem (1.4) has a unique solution on (−∞, T ].

Theorem 5.7. Assume that the hypotheses (Hζ), (H04) and (H05) hold. Then problem
(1.4) has at least one solution on (−∞, T ].
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6. Some examples

Example 6.1. Consider the following problem℘(t) = 1 + t2; t ∈ [−1, 0],

(CFD
1/2
0 ℘)(t) = ς

90(1+‖℘t‖) + 1

30
(
1+|(CFD1/2

0 ℘(t))|
) ; t ∈ [0, 2], (6.1)

where ς < 87
2a 1

2
+2b 1

2

.

Set

f(t, ℘,=) =
ς

90 (1 + ‖℘‖)
+

1

30 (1 + |=|)
; t ∈ [1, e], ℘ ∈ C, = ∈ R.

Clearly, the function f is continuous. For any ℘, ℘̃ ∈ C, ℘, ℘̃ ∈ R, and t ∈ [0, 2], we
have

|f(t, ℘,=)− f(t, ℘̃, =̃)| ≤ ς

90
‖℘− ℘̃‖[−1,0] +

1

30
|= − =̃|.

Hence hypothesis (H1) is satisfied with

ω1 =
ς

90
and ω2 =

1

30
.

Next, condition (3.1) is satisfied with T = 2 and r = 1
2 . Indeed,

ω1(2ar+Tbr)
1−ω2

=
ς

(
2a 1

2
+2b 1

2

)
87

< 1.

Theorem 3.2 implies that problem (6.1) has a unique solution defined on [−1, 2].
Example 6.2. Consider now the following problem℘(t) = t; t ∈ R−,

(CFD
2/3
0 ℘)(t) = ℘te

−γt+t

180(et−e−t)(1+‖℘t‖) + ℘(t)e−γt+t

60(et−e−t)
(
1+|(CFD2/3

0 ℘(t))|
) ; t ∈ [0, 1].

(6.2)
Let γ be a positive real constant and

Bγ = {℘ ∈ C((−∞, 1],R, ) : lim
θ→−∞

eγθθ℘(θ) exists in R}. (6.3)

The norm of Bγ is given by

‖℘‖γ = sup
θ∈(−∞,1]

eγθ|℘(θ)|.

Let ℘ : R− → R be such that ℘0 ∈ Bγ . Then

limθ→−∞ eγθ℘t(θ) = limθ→−∞ eγθ℘(t+ θ − 1) = limθ→−∞ eγ(θ−t+1)℘(θ)

= eγ(−t+1) limθ→−∞ eγ(θ)℘1(θ) <∞.

Hence ℘t ∈ Bγ . Finally we prove that

‖℘t‖γ ≤ K‖℘1‖γ +M sup
s∈[0,t]

|℘(s)|,
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where K = M = 1 and H = 1. We have

‖℘t(θ)‖ = |℘(t+ θ)|.

If t+ θ ≤ 1, we get

‖℘t(β)‖ ≤ sup
s∈R−

|℘(s)|.

For t+ θ ≥ 0, then we have

‖℘t(β)‖ ≤ sup
s∈[0,t]

|℘(s)|.

Thus for all t+ θ ∈ I, we get

‖℘t(β)‖ ≤ sup
s∈R−

|℘(s)|+ sup
s∈[0,t]

|℘(s)|.

Then

‖℘t‖γ ≤ ‖℘0‖γ + sup
s∈[0,t]

|℘(s)|.

It is clear that (Bγ , ‖ · ‖) is a Banach space. We can conclude that Bγ a phase space.
Set

f(t, ℘,=) =
e−γt+t

180 (et − e−t)
(
1 + ‖℘‖Bγ

) +
e−γt+t

60 (et − e−t) (1 + |=|)
;

t ∈ [0, 1], ℘ ∈ Bγ ,= ∈ R.
We can verify that the hypothesis (H01) is satisfied with

B1 =
1

180
and B2 =

1

60
.

Theorem 4.3 ensures that problem (6.2) has a solution defined on (−∞, 1].
Example 6.3. We consider the following problem℘(t) = 1 + t2; t ∈ [−1, 0],

(CFD
1/2
0 ℘)(t) = 1

90(1+|℘(t−σ(℘(t)))|) + 1

30
(
1+|(CFD1/2

0 ℘(t))|
) ; t ∈ [0, 1], (6.4)

where σ ∈ C(R, [0, 1]). Set

ρ(t, ζ) = t− σ(ζ(0)), (t, ζ) ∈ [0, e]× C([−1, 0],R),

f(t, ℘,=) =
1

90(1 + |℘(t− σ(℘(t)))|)
+

1

30 (1 + |=(t)|)
; t ∈ [1, e], ℘ ∈ C, = ∈ R.

Clearly, the function f is jointly continuous. For any ℘, ℘̃ ∈ C, =, =̃ ∈ R and t ∈ [0, 1],
we have

|f(t, ℘,=)− f(t, ℘̃, =̃)| ≤ 1

90
‖℘− ℘̃‖[−1,0] +

1

30
|= − =̃|.

Hence hypothesis (H04) is satisfied with

ω3 =
1

90
and ω4 =

1

30
.

From Theorem 5.2, problem (6.4) has a unique solution on [−1, 1].
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Example 6.4. Consider now the problem℘(t) = t2; t ∈ R−,
(CFD

1/4
0 ℘)(t) = ℘(t−λ(℘(t)))e−γt+t

180(et−e−t)(1+|℘(t−σ(℘(t))|) + ℘(t)e−γt+t

60(et−e−t)
(
1+|(CFD1/4

0 ℘(t))|
) ; t ∈ [0, 3].

(6.5)
Let γ be a positive real constant and the phase space Bγ defined in Example 6.2.
Define

ρ(t, ζ) = t− λ(ζ(0)), (t, ζ) ∈ [0, 3]×Bγ ,
and set

f(t, ℘,=) =
e−γt+t

180 (et − e−t)
(
1 + ‖℘‖Bγ

) +
e−γt+t

60 (et − e−t) (1 + |=|)
;

t ∈ [0, 3], ℘ ∈ Bγ , = ∈ R.
By Theorem 4.3, problem (6.5) has a solution defined on (−∞, 3].
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