On a Fredholm-Volterra integral equation

Alexandru-Darius Filip and Ioan A. Rus

Abstract

In this paper we give conditions in which the integral equation $$
x(t)=\int_{a}^{c} K(t, s, x(s)) d s+\int_{a}^{t} H(t, s, x(s)) d s+g(t), t \in[a, b],
$$ where $a<c<b, K \in C([a, b] \times[a, c] \times \mathbb{B}, \mathbb{B}), H \in C([a, b] \times[a, b] \times \mathbb{B}, \mathbb{B})$, $g \in C([a, b], \mathbb{B})$, with \mathbb{B} a (real or complex) Banach space, has a unique solution in $C([a, b], \mathbb{B})$. An iterative algorithm for this equation is also given. Mathematics Subject Classification (2010): 45N05, 47H10, 47H09, 54 H 25. Keywords: Fredholm-Volterra integral equation, existence, uniqueness, contraction, fiber contraction, Maia theorem, successive approximation, fixed point, Picard operator.

1. Introduction

The following type of integral equation was studied by several authors (see [11], [2], [3], [6], [1], [5], [10], [7], ...),

$$
\begin{equation*}
x(t)=\int_{a}^{c} K(t, s, x(s)) d s+\int_{a}^{t} H(t, s, x(s)) d s+g(t), t \in[a, b], \tag{1.1}
\end{equation*}
$$

where $a<c<b, K \in C([a, b] \times[a, c] \times \mathbb{B}, \mathbb{B}), H \in C([a, b] \times[a, b] \times \mathbb{B}, \mathbb{B}), g \in C([a, b], \mathbb{B})$, with $(\mathbb{B},|\cdot|)$ a (real or complex) Banach space.

The aim of this paper is to give some conditions on K and H in which the equation (1.1) has a unique solution in $C([a, b], \mathbb{B})$. To do this, we shall use the contraction principle, the fiber contraction principle ([9], [13], [10], [11]) and a variant of Maia fixed point theorem given in [8] (see also [4]).

2. Preliminaries

Let us recall some notions, notations and fixed point results which will be used in this paper.

2.1. Picard operators and weakly Picard operators

Let (X, \rightarrow) be an L-space $((X, d), \xrightarrow{d} ;(X, \tau), \stackrel{\tau}{\rightarrow} ;(X,\|\cdot\|), \xrightarrow{\|\cdot\|}, \rightarrow ; \ldots)$. An operator $A:(X, \rightarrow) \rightarrow(X, \rightarrow)$ is called weakly Picard operator $(W P O)$ if the sequence $\left(A^{n}(x)\right)_{n \in \mathbb{N}}$ converges for all $x \in X$ and the limit (which generally depends on x) is a fixed point of A.

If an operator A is $W P O$ and the fixed point set of A is a singleton, i.e.,

$$
F_{A}=\left\{x^{*}\right\}
$$

then, by definition, A is called Picard operator $(P O)$.
For a $W P O, A:(X, \rightarrow) \rightarrow(X, \rightarrow)$, we define the limit operator $A^{\infty}:(X, \rightarrow) \rightarrow$ (X, \rightarrow), by $A^{\infty}(x):=\lim _{n \rightarrow \infty} A^{n}(x)$. We remark that, $A^{\infty}(X)=F_{A}$, i.e., A^{∞} is a set retraction of X on F_{A}.

2.2. Fiber contraction principle

Regarding this principle, some important results were given in [12] and [13].
Fiber Contraction Theorem. Let (X, \rightarrow) be an L-space, (Y, d) be a metric space, $B: X \rightarrow X, C: X \times Y \rightarrow Y$ and $A: X \times Y \rightarrow X \times Y, A(x, y):=(B(x), C(x, y))$. We suppose that:
(i) (Y, d) is a complete metric space;
(ii) B is a WPO;
(iii) $C(x, \cdot): Y \rightarrow Y$ is an l-contraction, for all $x \in X$;
(iv) $C: X \times Y \rightarrow Y$ is continuous.

Then A is a $W P O$. Moreover, if B is a $P O$, then A is a $P O$.
Generalized Fiber Contraction Theorem. Let (X, \rightarrow) be an L-space and $\left(X_{i}, d_{i}\right), i=$ $\overline{1, m}, m \geq 1$ be metric spaces. Let $A_{i}: X_{0} \times \ldots \times X_{i} \rightarrow X_{i}, i=\overline{0, m}$, be some operators. We suppose that:
(i) $\left(X_{i}, d_{i}\right), i=\overline{1, m}$, are complete metric spaces;
(ii) A_{0} is a WPO;
(iii) $A_{i}\left(x_{0}, \ldots, x_{i-1}, \cdot\right): X_{i} \rightarrow X_{i}, i=\overline{1, m}$, are l_{i}-contractions;
(iv) $A_{i}, i=\overline{1, m}$, are continuous.

Then the operator $A: X_{0} \times \ldots \times X_{m} \rightarrow X_{0} \times \ldots \times X_{m}$, defined by

$$
A\left(x_{0}, \ldots, x_{m}\right):=\left(A_{0}\left(x_{0}\right), A_{1}\left(x_{0}, x_{1}\right), \ldots, A_{m}\left(x_{0}, \ldots, x_{m}\right)\right)
$$

is a WPO. Moreover, if A_{0} is a PO, then A is a PO.

2.3. A variant of Maia fixed point theorem

We recall here the following variant of Maia fixed point theorem, given by I.A. Rus in [8]:

Theorem 2.1. Let X be a nonempty set, d and ρ be two metrics on X and $A: X \rightarrow X$ be an operator. We suppose that:
(1) there exists $c>0$ such that $d(A(x), A(y)) \leq c \rho(x, y)$, for all $x, y \in X$;
(2) (X, d) is a complete metric space;
(3) $A:(X, d) \rightarrow(X, d)$ is continuous;
(4) $A:(X, \rho) \rightarrow(X, \rho)$ is an l-contraction.

Then:
(i) $F_{A}=\left\{x^{*}\right\}$;
(ii) $A:(X, d) \rightarrow(X, d)$ is $P O$.

3. Operatorial point of view on equation (1.1)

Let $X:=C([a, b], \mathbb{B})$ and $T: X \rightarrow X$ be defined by

$$
T(x)(t):=\int_{a}^{c} K(t, s, x(s)) d s+\int_{a}^{t} H(t, s, x(s)) d s+g(t), t \in[a, b] .
$$

For $x \in X$, we denote by $u:=\left.x\right|_{[a, c]}$ and $v:=\left.x\right|_{[c, b]}$. If x is a solution of the equation (1.1) (i.e. a fixed point of T), then

$$
\begin{equation*}
u(t)=\int_{a}^{c} K(t, s, u(s)) d s+\int_{a}^{t} H(t, s, u(s)) d s+g(t), t \in[a, c] \tag{3.1}
\end{equation*}
$$

and

$$
\begin{align*}
v(t) & =\int_{a}^{c} K(t, s, u(s)) d s+\int_{a}^{c} H(t, s, u(s)) d s \\
& +\int_{c}^{t} H(t, s, v(s)) d s+g(t), t \in[c, b] . \tag{3.2}
\end{align*}
$$

Let $X_{1}:=C([a, c], \mathbb{B}), X_{2}:=C([c, b], \mathbb{B})$ and
$T_{1}: X_{1} \rightarrow X_{1}, T_{1}(u)(t):=$ the second part of (3.1),
$T_{2}: X_{1} \times X_{2} \rightarrow X_{2}, T_{2}(u, v)(t):=$ the second part of (3.2).
The mappings T_{1} and T_{2} allow us to construct the triangular operator

$$
\tilde{T}: X_{1} \times X_{2} \rightarrow X_{1} \times X_{2}, \tilde{T}(u, v):=\left(T_{1}(u), T_{2}(u, v)\right), \text { for all }(u, v) \in X_{1} \times X_{2}
$$

Remark 3.1. If $\left(u^{*}, v^{*}\right) \in F_{\tilde{T}}$, then $u^{*}(c)=v^{*}(c)$. So the function $x^{*} \in X$, defined by

$$
x^{*}(t):=\left\{\begin{array}{l}
u^{*}(t), t \in[a, c] \\
v^{*}(t), t \in[c, b]
\end{array}\right.
$$

is a fixed point of T, i.e., a solution of (1.1).
Remark 3.2. For $\left(u_{0}, v_{0}\right) \in X_{1} \times X_{2}$ we consider the successive approximations corresponding to the operator $\tilde{T},\left(u_{n+1}, v_{n+1}\right)=\tilde{T}\left(u_{n}, v_{n}\right), n \in \mathbb{N}$. We observe that, for $n \in \mathbb{N}^{*}, u_{n}(c)=v_{n}(c)$. So, the function x_{n}, defined by

$$
x_{n}(t):=\left\{\begin{array}{l}
u_{n}(t), t \in[a, c] \\
v_{n}(t), t \in[c, b]
\end{array}\right.
$$

is in X.

Remark 3.3. Let $Y \subset X_{1} \times X_{2}$ be defined by

$$
Y:=\left\{(u, v) \in X_{1} \times X_{2} \mid u(c)=v(c)\right\} .
$$

The operator $R: X \rightarrow Y$, defined by $R(x):=\left(\left.x\right|_{[a, c]},\left.x\right|_{[c, b]}\right)$ is a bijection. From the above definitions, it is clear that $T(x)=\left(R^{-1} \tilde{T} R\right)(x)$ and the $n^{\text {th }}$ iterate of T is $T^{n}=R^{-1} \tilde{T}^{n} R$.

In conclusion, to study the equation (1.1) (which is equivalent with $x=T(x)$) it is sufficient to study the fixed point of the operator \tilde{T}. If $\left(u^{*}, v^{*}\right) \in F_{\tilde{T}}$ then $R^{-1}\left(u^{*}, v^{*}\right) \in F_{T}$.

4. Existence and uniqueness of solution of equation (1.1)

In what follows, in addition to the continuity of H, K and g, we suppose on K and H that:
(i) There exists $L_{1} \in C([a, b] \times[a, c], \mathbb{B})$ such that:

$$
|K(t, s, \xi)-K(t, s, \eta)| \leq L_{1}(t, s)|\xi-\eta|, \text { for all } t \in[a, b], s \in[a, c], \xi, \eta \in \mathbb{B}
$$

(ii) There exists $L_{2} \in C([a, b] \times[a, b], \mathbb{B})$ such that:

$$
|H(t, s, \xi)-H(t, s, \eta)| \leq L_{2}(t, s)|\xi-\eta|, \text { for all } t, s \in[a, b], \xi, \eta \in \mathbb{B}
$$

(iii) $\left(\int_{[a, c] \times[a, c]}\left(L_{1}(t, s)+L_{2}(t, s)\right)^{2} d t d s\right)^{\frac{1}{2}}<1$.

The basic result of our paper is the following.
Theorem 4.1. In the above conditions we have that:
(1) The equation (1.1) has in $C([a, b], \mathbb{B})$ a unique solution x^{*}.
(2) The operator \tilde{T} is a Picard operator with respect to $\xrightarrow{\text { unif. }}$. Let $F_{\tilde{T}}=\left\{\left(u^{*}, v^{*}\right)\right\}$.
(3) The operator T is a Picard operator with respect to $\xrightarrow{\text { unif. }}$ and $F_{T}=\left\{x^{*}\right\}$. Moreover, $x^{*}=R^{-1}\left(u^{*}, v^{*}\right)$.

Proof. From the remarks which were given in $\S 3$, it is sufficient to prove that the operator \tilde{T} is a Picard operator with respect to the uniform convergence on $X_{1} \times X_{2}$.

In order to apply the Fiber contraction principle, we shall prove that:
(j) $T_{1}:\left(X_{1} \xrightarrow{\text { unif. }}\right) \rightarrow\left(X_{1} \xrightarrow{\text { unif. }}\right)$ is a Picard operator;
$(j j) T_{2}(u, \cdot):\left(X_{2},\|\cdot\|_{\tau}\right) \rightarrow\left(X_{2},\|\cdot\|_{\tau}\right)$ is a contraction.
Let us prove (j).
We consider on X_{1}, the norms $\|\cdot\|_{\infty}$ and $\|\cdot\|_{L^{2}}$. By using the assumptions (i) and (ii), we have the following estimations:

$$
\begin{aligned}
\left|T_{1}\left(u_{1}\right)(t)-T_{1}\left(u_{2}\right)(t)\right| & \leq \int_{a}^{c}\left|K\left(t, s, u_{1}(s)\right)-K\left(t, s, u_{2}(s)\right)\right| d s \\
& +\int_{a}^{t}\left|H\left(t, s, u_{1}(s)\right)-H\left(t, s, u_{2}(s)\right)\right| d s
\end{aligned}
$$

$$
\begin{aligned}
& \leq \int_{a}^{c} L_{1}(t, s)\left|u_{1}(s)-u_{2}(s)\right| d s+\int_{a}^{c} L_{2}(t, s)\left|u_{1}(s)-u_{2}(s)\right| d s \\
& \stackrel{\substack{\text { Hölder's } \\
\text { inequality }}}{\leq}\left(\int_{a}^{c} L_{1}(t, s)^{2} d s\right)^{\frac{1}{2}}\left(\int_{a}^{c}\left|u_{1}(s)-u_{2}(s)\right|^{2} d s\right)^{\frac{1}{2}} \\
& +\left(\int_{a}^{c} L_{2}(t, s)^{2} d s\right)^{\frac{1}{2}}\left(\int_{a}^{c}\left|u_{1}(s)-u_{2}(s)\right|^{2} d s\right)^{\frac{1}{2}} .
\end{aligned}
$$

By taking the $\max _{t \in[a, c]}$ in the above inequalities, there exists a real positive constant

$$
c:=\max _{t \in[a, c]}\left(\int_{a}^{c} L_{1}(t, s)^{2} d s\right)^{\frac{1}{2}}+\max _{t \in[a, c]}\left(\int_{a}^{c} L_{2}(t, s)^{2} d s\right)^{\frac{1}{2}}
$$

such that

$$
\left\|T_{1}\left(u_{1}\right)-T_{1}\left(u_{2}\right)\right\|_{\infty} \leq c\left\|u_{1}-u_{2}\right\|_{L^{2}}, \text { for all } u_{1}, u_{2} \in X_{1}
$$

On the other hand, we have that

$$
\begin{aligned}
\left\|T_{1}\left(u_{1}\right)-T_{1}\left(u_{2}\right)\right\|_{L^{2}} & =\left(\int_{a}^{c}\left|T_{1}\left(u_{1}\right)(t)-T_{1}\left(u_{2}\right)(t)\right|^{2} d t\right)^{\frac{1}{2}} \\
& \leq\left(\int_{a}^{c}\left(\int_{a}^{c}\left(L_{1}(t, s) d s+L_{2}(t, s)\right)^{2} d s\right)\left\|u_{1}-u_{2}\right\|_{L^{2}}^{2} d t\right)^{\frac{1}{2}} \\
& =\left(\int_{a}^{c} \int_{a}^{c}\left(L_{1}(t, s)+L_{2}(t, s)\right)^{2} d s d t\right)^{\frac{1}{2}}\left\|u_{1}-u_{2}\right\|_{L^{2}} \\
& \text { for all } u_{1}, u_{2} \in X_{1} .
\end{aligned}
$$

By using the assumption (iii), it follows that the operator T_{1} is a contraction with respect to $\|\cdot\|_{L^{2}}$ on X_{1}.
The conclusion follows from the variant of Maia theorem.
Let us prove ($j j$).
For $t \in[c, b]$ and $M_{L_{2}}:=\max _{t, s \in[c, b]} L_{2}(t, s)$, we have that

$$
\begin{aligned}
\left|T_{2}\left(u, v_{1}\right)(t)-T_{2}\left(u, v_{2}\right)(t)\right| & \leq \int_{c}^{t}\left|H\left(t, s, v_{1}(s)\right)-H\left(t, s, v_{2}(s)\right)\right| d s \\
& \leq \int_{c}^{t} L_{2}(t, s)\left|v_{1}(s)-v_{2}(s)\right| d s \\
& \leq M_{L_{2}} \int_{c}^{t}\left|v_{1}(s)-v_{2}(s)\right| e^{-\tau(s-c)} e^{\tau(s-c)} d s \\
& \leq M_{L_{2}}\left\|v_{1}-v_{2}\right\|_{\tau} \int_{c}^{t} e^{\tau(s-c)} d s \leq M_{L_{2}}\left\|v_{1}-v_{2}\right\|_{\tau} \frac{e^{\tau(t-c)}}{\tau}
\end{aligned}
$$

It follows that

$$
\left|T_{2}\left(u, v_{1}\right)(t)-T_{2}\left(u, v_{2}\right)(t)\right| e^{-\tau(t-c)} \leq \frac{M_{L_{2}}}{\tau}\left\|v_{1}-v_{2}\right\|_{\tau}
$$

By taking $\max _{t \in[c, b]}$ and by choosing $\tau>M_{L_{2}}$, there exists a real positive constant

$$
l:=\frac{M_{L_{2}}}{\tau}<1
$$

such that

$$
\left\|T_{2}\left(u, v_{1}\right)-T_{2}\left(u, v_{2}\right)\right\|_{\tau} \leq l\left\|v_{1}-v_{2}\right\|_{\tau}, \text { for all } v_{1}, v_{2} \in X_{2}
$$

Remark 4.2. Let $\mathbb{K}:=\mathbb{R}$ or $\mathbb{C},|\cdot|$ be a norm on $\mathbb{B}:=\mathbb{K}^{m}\left(|\cdot|_{1},|\cdot|_{2},|\cdot|_{\infty}, \ldots\right)$, $a<c<b, K=\left(K_{1}, \ldots, K_{m}\right) \in C\left([a, b], \mathbb{K}^{m}\right)$ and $H=\left(H_{1}, \ldots, H_{m}\right) \in C\left([a, b], \mathbb{R}^{m}\right)$. In this case, the equation (1.1) takes the following form

$$
\left\{\begin{align*}
x_{1}(t)= & \int_{a}^{c} K_{1}\left(t, s, x_{1}(s), \ldots, x_{m}(s)\right) d s \tag{4.1}\\
& +\int_{a}^{t} H_{1}\left(t, s, x_{1}(s), \ldots, x_{m}(s)\right) d s, t \in[a, b] \\
& \vdots \\
x_{m}(t)= & \int_{a}^{c} K_{m}\left(t, s, x_{1}(s), \ldots, x_{m}(s)\right) d s \\
& \int_{a}^{t} H_{m}\left(t, s, x_{1}(s), \ldots, x_{m}(s)\right) d s, t \in[a, b]
\end{align*}\right.
$$

From Theorem 4.1 we have an existence and uniqueness result for the system (4.1).
In the case when \mathbb{B} is a Banach space of infinite sequences with elements in \mathbb{K} $\left(c(\mathbb{K}), C_{p}(\mathbb{K}), m(\mathbb{K}), l^{p}(\mathbb{K}), \ldots\right)$ we have from Theorem 4.1 an existence and uniqueness result for an infinite system of Fredholm-Volterra integral equations.

References

[1] Bolojan, O.-M., Fixed Point Methods for Nonlinear Differential Systems with Nonlocal Conditions, Casa Cărţii de Ştiinţă, Cluj-Napoca, 2013.
[2] Boucherif, A., Differential equations with nonlocal boundary conditions, Nonlinear Anal., 47(2001), 2419-2430.
[3] Boucherif, A., Precup, R., On the nonlocal initial value problem for first order differential equations, Fixed Point Theory, 4(2003), 205-212.
[4] Filip, A.-D., Fixed Point Theory in Kasahara Spaces, Casa Cărţii de Ştiinţă, ClujNapoca, 2015.
[5] Nica, O., Nonlocal initial value problems for first order differential systems, Fixed Point Theory, 13(2012), 603-612.
[6] Petruşel, A., Rus, I.A., A class of functional integral equations with applications to a bilocal problem, 609-631. In: Topics in Mathematical Analysis and Applications (Rassias, Th.M. and Tóth, L., Eds.), Springer, 2014.
[7] Precup, R., Methods in Nonlinear Integral Equations, Kluwer, Dordrecht-BostonLondon, 2002.
[8] Rus, I.A., On a fixed point theorem of Maia, Stud. Univ. Babeş-Bolyai Math., 22(1977), no.. 1, 40-42.
[9] Rus, I.A., Picard operators and applications, Sci. Math. Jpn., 58(2003), 191-219.
[10] Rus, I.A., Abstract models of step method which imply the convergence of successive approximations, Fixed Point Theory, 9(2008), no. 1, 293-307.
[11] Rus, I.A., Some variants of contraction principle in the case of operators with Volterra property: step by step contraction principle, Adv. Theory Nonlinear Anal. Appl., 3(2019), no. 3, 111-120.
[12] Rus, I.A., Şerban, M.-A., Basic problems of the metric fixed point theory and the relevance of a metric fixed point theorem, Carpathian J. Math., 29(2013), no. 2, 239-258.
[13] Şerban, M.-A., Teoria Punctului Fix pentru Operatori Definiţi pe Produs Cartezian, Presa Univ. Clujeană, Cluj-Napoca, 2002.

Alexandru-Darius Filip
Babeş-Bolyai University,
Faculty of Economics and Business Administration,
Department of Statistics-Forecasts-Mathematics,
Teodor Mihali Street, No. 58-60,
400591 Cluj-Napoca, Romania
e-mail: darius.filip@econ.ubbcluj.ro
Ioan A. Rus
Babeş-Bolyai University,
Faculty of Mathematics and Computer Sciences,
1, Kogălniceanu Street,
400084 Cluj-Napoca, Romania
e-mail: iarus@math.ubbcluj.ro

